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Abstract
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equation on the Laguerre hypergroup using generalized homogeneous Besov-
Laguerre type spaces.

Mathematics Subject Classification: 42B35, 35L35, 35K35
Key Words and Phrases: Strichartz inequalities, Besov type space, La-

guerre hypergroup

0. Introduction

Let α ≥ 0 and K = [0,+∞[×R. We consider the generalized wave
equation operators

2K = ∂2
t −DK

in the two space variables (y, s) ∈ K and time t ∈ R where

DK :=
∂2

∂y2
+

2α + 1
y

∂

∂y
+ y2 ∂2

∂s2
; (y, s) ∈]0,∞[×R.

Let f ∈ L1([0, T ], L2(K)) and (u0, u1) ∈
•
H1(K)×L2(K);

•
H1(K) is being the

homogeneous Sobolev space on the Laguerre hypergroup. It is well known
that the Cauchy problem

{
2Ku = f,

(u|t=0, ∂tu|t=0) = (u0, u1)
(1)
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is well posed in the energy space (u, ∂tu) ∈ C([0, T ],
•
H1(K) × L2(K)) and

that the energy

E(u) =
∥∥∥u(., t)

∥∥∥
2

•H1(K)
+

∥∥∥∂tu(., t)
∥∥∥

2

L2(K)

is constant independent of t for solutions of (1). For α = n− 1; n ∈ N\{0},
the operator DK is the radial part of the sub Laplacian on the Heisenberg
group Hn. We denote by ϕλ,m; (λ,m) ∈ R × N, the unique solution of
the following system:





∂su = iλu,

DKu = −4|λ|(m + α+1
2 )u;

u(0, 0) = 1,
∂u

∂y
(0, s) = 0 for all s ∈ R.

One knows that ϕλ,m(y, s) = eiλsLα
m(|λ|y2), where Lα

m is the Laguerre

functions defined on R+ by Lα
m(x) = e−

x
2

Lα
m(x)

Lα
m(0)

and Lα
m is the Laguerre

polynomial of degree m and order α ([16], [8], [10], [15]). We recall that for
(λ,m) ∈ R×N and for a suitable function f : K −→ C the Fourier-Laguerre
transform F(f)(λ,m) of f at (λ,m) is defined by ([17], [2], [20, 21], [9]):

F(f)(λ,m) =
∫

K
ϕ−λ,m(y, s)f(y, s)dµα(y, s), (2)

where dµα(y, s) =
y2α+1dyds

πΓ(α + 1)
.

It has been proved in [17, Theorem II.1] that the Fourier-Laguerre trans-
form is a topological isomorphism from S∗(K) onto S(R× N), where

• S∗(K) is the Schwartz space of functions ψ : R2 −→ C even with
respect to the first variable, C∞ on R2 and rapidly decreasing together
with all their derivatives; i.e. for all k, p, q ∈ N we have

Ñk,p,q(ψ) = sup
(y,s)∈K

{
(1 + y2 + s2)k

∣∣∣ ∂ p+q

∂yp∂sq
ψ(y, s)

∣∣∣
}

< ∞. (3)

• S(R× N) the space of functions Ψ : R× N −→ C satisfying:

i) For all m, p, q, r, s ∈ N, the function

λ 7−→ λp
(
|λ|(m +

α + 1
2

)
)q

Λr
1

(
Λ2 +

∂

∂λ

)γ
Ψ(λ,m)
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is bounded and continuous on R, C∞ on R∗ = R\{0} and such that
the left and the right derivatives at zero exist.

ii ) For all k, p, q ∈ N, we have

Vk,p,q(Ψ) = sup
(λ,m)∈R∗×N

{(
1 + λ2(1 + m2)

)k
∣∣∣Λp

1

(
Λ2 +

∂

∂λ

)q
Ψ(λ,m)

∣∣∣
}

< ∞,

(4)
where
• Λ1Ψ(λ,m) = 1

|λ|
(
m∆+∆−Ψ(λ,m) + (α + 1)∆+Ψ(λ, m)

)
.

• Λ2Ψ(λ,m) = −1
2λ

(
(α + m + 1)∆+Ψ(λ,m) + m∆−Ψ(λ, m)

)
.

• ∆+Ψ(λ, m) = Ψ(λ, m + 1)−Ψ(λ,m).

• ∆−Ψ(λ, m) = Ψ(λ, m)−Ψ(λ, m− 1), if m ≥ 1
and ∆−Ψ(λ, 0) = Ψ(λ, 0).

We note that S∗(K) (resp. S(R×N)) equipped with the semi-norms Ñk,p,q

(resp. Vk,p,q), k, p, q ∈ N, is a Fréchet space ([17]).
This paper is organized as follows: In the first section we collect some

harmonic analysis results on the Laguerre hypergroup which are developed
in [17] and [20, 21]. In the second section we recall the definition and some
properties of generalized homogeneous Besov-Laguerre type spaces

•
Λγ

p,q(K);
1 ≤ p, q ≤ ∞, γ ∈ R, similar to the classical one’s given in [7], [5], [6]
and [23]. These spaces are introduced in terms of convolution of tempered
distributions with a class of smooth functions. It has been proved in [1] that
these spaces are Banach spaces for γ < (2α + 4)/p. We prove that

•
Λγ

2,2(K)

coincide with the homogeneous Sobolev-Laguerre type space
•Hγ(K). In

the third section we generalize, for solutions of Cauchy problem (1), the
Strichartz inequalities (see [22], [14] and [3]) to the Laguerre hypergroup.
Many functional analysis results which remained valid also in our context
are used to prove the main results given in Theorems 3.1 and 3.2.

Finally, we mention that, C will be always used to denote a suitable
positive constant that is not necessarily the same in each occurrence.

1. Preliminaries

Throughout this paper we fix α ≥ 0 and we denote by

• R∗ = R\{0} and R∗+ =]0, +∞[.
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• C∗(K) the space of continuous functions on R2 even with respect to
the first variable.

• C∗,c(K) the subspace of C∗(K) consisting of functions with compact
support.

• S1
∗,0(K) the subset of functions ψ in S∗(K) such that Fψ ∈ D(R∗×N)

and ∫ ∞

0

(
Fψ(r2λ,m)

)2 dr

r
= 1, for (λ,m) ∈ R∗× N.

These functions are known as generalized wavelets on K ([17]).

• D(R × N) the subspace of S(R × N) of functions ψ satisfying the
following:

i) There exists m0 ∈ N satisfying ψ(λ,m) = 0, for all (λ,m) ∈ R×N
such that m > m0.

ii) For all m ≤ m0, the function λ 7−→ ψ(λ,m) is C∞ on R, with
compact support and vanishes in a neighborhood of zero.

• Lp(K) = Lp(K, dµα), 1 ≤ p ≤ ∞, the space of Borel measurable
functions on K such that ‖f‖Lp(K) < ∞, where

‖f‖Lp(K) =
(∫

K
|f(y, s)|pdµα(y, s)

) 1
p

, if p ∈ [1,∞[,

‖f‖L∞(K) = esssup
(y,s)∈K

|f(y, s)|,

dµα being the positive measure defined on K given in the introduction.

Each of these spaces is equipped with its usual topology.

Definition 1.1.
• The generalized translation operators T

(α)
(y,s) on the Laguerre hy-

pergroup are given for a suitable function f by:

T
(α)
(y,s)f(x, z) =





1
2π

∫ 2π

0
f((x2 + y2 + 2xy cos θ)

1
2 , z + s + xy sin θ)dθ,

if α = 0,

α

π

∫ 1

0

∫ 2π

0
f((x2 + y2 + 2xyρ cos θ)

1
2 , z + s + xyρ sin θ)

× ρ(1− ρ2)α−1dθdρ, if α > 0.
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• The generalized convolution product on the Laguerre hypergroup is
defined for a suitable pair of functions f and g by:

f#g(y, s) =
∫

K
T

(α)
(y,s)f(x, z)g(x,−z)dµα(x, z) for all (y, s) ∈ K.

We recall that (K, #, i) is an hypergroup in the sense of Jewett ([13],
[4]), where i denotes the involution defined on K by i(y, s) = (y,−s). This
hypergroup is the Laguerre hypergroup which coincides, for α = n − 1;
n ∈ N\{0}, with the hypergroup of radial functions on the Heisenberg group
(see [17]).

Notations. Let r > 0. We will denote by

• (y, s)r = (
y

r
,

s

r2
) the dilation of (y, s) ∈ K.

• fr(y, s) = r−(2α+4)f((y, s)r) the dilation of the function f defined on
K preserving the mean of f with respect to the measure dµα, in the
sense that

∫

K
fr(y, s)dµα(y, s) =

∫

K
f(y, s)dµα(y, s), for all r > 0 and f ∈ L1(K).

(5)

Proposition 1.1. The following properties hold ([17])

1) Let f be in Lp(K), 1 ≤ p ≤ ∞. Then for all (y, s) ∈ K, the function

T
(α)
(y,s)f belongs to Lp(K) and we have

‖T (α)
(y,s)f‖Lp(K) ≤ ‖f‖Lp(K).

2) For f in Lp(K) and g in Lq(K), 1 ≤ p, q ≤ ∞, the function f#g belongs
to Lr(K); 1

p + 1
q = 1 + 1

r , and we have

‖f#g‖Lr(K) ≤ ‖f‖Lp(K)‖g‖Lq(K).

3) (i) Let f be in L1(K). Then the function F(f) is bounded on R×N
and we have

‖F(f)‖L∞(R×N) ≤ ‖f‖L1(K)

where ‖F(f)‖L∞(R×N) = ess sup
(λ,m)∈R×N

|F(f)(λ,m)|.



426 M. Assal, H. Ben Abdallah

(ii) Let f and g in L1(K), then we have

F(f#g) = F(f)F(g).

(iii) Let f be in L1(K). Then for all (y, s) in K and (λ,m) in R× N,
we have

F(T (α)
(y,s)f)(λ,m) = ϕλ,m(y, s)F(f)(λ,m).

2. Generalized homogeneous Besov-Laguerre type spaces

In this section we summarize some results on the generalized homoge-
neous Besov-Laguerre type spaces studied in [1].

Definition 2.1. Let 1 ≤ p, q ≤ ∞, γ ∈ R and ψ ∈ S1
∗,0(K). We define

the generalized homogeneous Besov-Laguerre type spaces
•
Λγ

p,q(K) as the set
of tempered distributions f such that

f =
∫ ∞

0
f#ψr#ψr

dr

r
(6)

and ‖f‖ •
Λγ

p,q(K)
< ∞, where

‖f‖ •
Λγ

p,q(K)
=





(∫ ∞

0

(‖f#ψr‖p

rγ

)q dr

r

) 1
q

, if 1 ≤ q < ∞,

esssup
r>0

(‖f#ψr‖p

rγ

)
, if q = ∞.

Remark 2.1.
1) We begin by mentioning that the definition of the generalized ho-

mogeneous Besov-Laguerre type spaces given here is the same than that
introduced by Chemin in the classical case (see [7]) and generalized by Ba-
houri, Gérard and Xu on the Heisemberg group (see [3]). We do not choose
the classical definition introduced by Peetre (see [19]) in which

•
Λγ

p,q(K) is
defined as a set of distributions modulo polynomials. In fact in the case
γ < 2α+4

p , the condition ‖f‖ •
Λγ

p,q(K)
< ∞ implies the convergence of the

integral ∫ ∞

0
f#ψr#ψr

dr

r
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in the sense of distributions and not only in the sense of distributions mod-
ulo polynomials, thus the two points of view are equivalent and that the
expression (6) is independent, in S′∗(K), of the choice of ψ in S1

∗,0. We note

finally that, similarly to the classical case, for γ ≥ 2α+4
p , the space

•
Λγ

p,q(K),
as we define, is not Banach space.

2) If f belongs to L2(K), then (6) holds in L2(K). Which is a conse-
quence of Plancherel’s formula (see [18]). Hence one can write

∥∥∥∥∥f −
∫ ε

1/ε
f#ψr#ψr

dr

r

∥∥∥∥∥
2

2

=
∫ +∞

−∞

{
+∞∑

m=0

Lα
m(0)

∣∣∣Ff(λ,m)
∣∣∣
2∣∣∣1−

∫ ε

1/ε

(
Fψr(λ,m)

)2 dr

r

∣∣∣
2
}
|λ|α+1dλ.

And, using Lebesgue theorem, the right hand side of the above equality
tends to zero as ε tends to +∞. Indeed,

∣∣∣1−
∫ ε

1/ε

(
Fψr(λ,m)

)2 dr

r

∣∣∣
2
−→ 0 as ε −→ +∞

and
+∞∑

m=0

Lα
m(0)

∣∣∣Ff(λ,m)
∣∣∣
2∣∣∣1−

∫ ε

1/ε

(
Fψr(λ,m)

)2 dr

r

∣∣∣
2

≤
+∞∑

m=0

Lα
m(0)

∣∣∣Ff(λ,m)
∣∣∣
2
∈ L1(R, |λ|α+1dλ).

3) The expression (6) is not true in S′∗(K) if f is a polynomial function
on K. Indeed in this case, for all r > 0, we have f#ψr = 0.

4) For 1 ≤ p, q ≤ ∞ and γ ∈ R, the space
•
Λγ

p,q(K) is independent of the
choice of the function ψ in S1

∗,0(K).

5) For 1 ≤ p, q ≤ ∞ and γ ∈ R, the Besov-Laguerre type space
•
Λγ

p,q(K)
is homogeneous of degree d(p, γ) = 2α+4

p − γ in the sense that, for all

f ∈
•
Λγ

p,q(K)

‖drf‖ •
Λγ

p,q(K)
= r

2α+4
p

−γ‖f‖ •
Λγ

p,q(K)
, for all r > 0,

where drf(y, s) = f((y, s)r), for all (y, s) ∈ K.

In what follows we collect some properties of the generalized homoge-
neous Laguerre-Besov type-spaces. For more details, see [1].
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Proposition 2.1. Let 1 ≤ p, q ≤ ∞ and γ < 2α+4
p . Then

•
Λγ

p,q(K) is

a Banach space, and the result remains also valid for γ = 2α+4
p if q = 1.

Proposition 2.2.
1) Let 1 ≤ q ≤ ∞ and γ1, γ2 ∈ R. Then, for 1 ≤ p1 ≤ p2 ≤ ∞ such

that d(p1, γ1) = d(p2, γ2), we have

•
Λγ1

p1,q(K) ⊆
•
Λγ2

p2,q(K) (with continuous embedding).

2) Let 2 ≤ p ≤ ∞. Then

•
Λ0

p,2(K) ⊆ Lp(K) (with continuous embedding).

3) Let 1 ≤ p ≤ ∞. Then we have

•
Λ0

p,1(K) ⊆ Lp(K) (with continuous embedding).

4) For all 1 ≤ p ≤ ∞, γ ∈ R and 1 ≤ q1 ≤ q2 ≤ ∞
•
Λγ

p,q1
(K) ⊆

•
Λγ

p,q2
(K) (with continuous embedding).

Remark 2.2. It is clear that
•
Λ0

2,2(K) = L2(K). More general, we

prove that
•
Λγ

2,2(K) is a Hilbert space which coincides with the homogeneous

Sobolev-Laguerre type space
•
Hγ(K) defined as follows:

Definition 2.2. Let γ ∈ R. The homogeneous Sobolev-Laguerre type
space

•
Hγ(K) is the set of all tempered distributions f such that Ff ∈

L2
loc(K) and

‖f‖ •Hγ(K)
=

(
+∞∑

m=0

Lα
m(0)

∫

R

(
|λ|

(
m+

α + 1
2

))γ∣∣∣Ff(λ,m)
∣∣∣
2
|λ|α+1dλ

)1/2

<+∞.

Theorem 2.1. Let γ < α+2. The homogeneous Besov-Laguerre type

space
•
Λγ

2,2(K) is equal to the homogeneous Sobolev-Laguerre type space
•
Hγ(K) with equivalent norms.

P r o o f. It suffices to prove that there exist C1, C2 > 0, such that, for
all f ∈ S′∗(K),

C1‖f‖ •
Λγ

2,2(K)
≤ ‖f‖ •Hγ(K)

≤ C2‖f‖ •
Λγ

2,2(K)
.
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By Plancherel’s theorem (see [18]) one has

‖f‖2•
Λγ

2,2(K)
=

+∞∑

m=0

Lα
m(0)

∫

R

∣∣∣Ff(λ,m)
∣∣∣
2
∫ +∞

0

|Fψr(λ, m)|2
r2γ

dr

r
|λ|α+1dλ

and taking into account that

‖f‖2•Hγ(K)
=

+∞∑

m=0

Lα
m(0)

∫

R

(
|λ|

(
m +

α + 1
2

))γ∣∣∣Ff(λ,m)
∣∣∣
2
|λ|α+1dλ

we have to compare
∫ +∞

0

|Fψr(λ,m)|2
r2γ

dr

r
and

(
|λ|

(
m +

α + 1
2

))γ
.

From the hypothesis ψ ∈ S1
∗,0, there exist a, b, A, B > 0 such that

SuppFψ ⊂
{

(λ,m) ∈ R× N; a ≤ |λ|
(
m +

α + 1
2

)
≤ b

}

and
A ≤ |Fψr(λ,m)|2 ≤ B on SuppFψr.

This leads to
∫ +∞

0

|Fψr(λ,m)|2
r2γ

dr

r
=

∫ b(|λ|(m+α+1
2

))−1/2

a(|λ|(m+α+1
2

))−1/2

|Fψ(r2λ,m)|2
r2γ

dr

r
.

So the desired inequalities hold.

3. Generalized Strichartz inequalities
on the Laguerre hypergroup

It is well known that the Cauchy problem (1) is solved by u = v + w
where v is the solution of the homogeneous equation with the same data

{
∂2

t u−DKu = 0

(u|t=0, ∂tu|t=0) = (u0, u1)
(7)

and w is the solution of the inhomogeneous equation with zero, data
{

∂2
t u−DKu = f

(u|t=0, ∂tu|t=0) = (0, 0).
(8)

Following closely the arguments of Ginibre-Velo [11], one can prove, as in
[3], the following lemma that will be useful in the sequel.
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Lemma 3.1. Let γ1, γ2 ∈ R and p1, p2, r1, r2 ∈ [2,+∞] satisfying:

2/pi + 1/ri ≤ 1/2, for i = 1, 2, (9)

1/p1 + (2α + 4)/r1 − γ1 = (2α + 4)/2− 1, (10)

1/p2 + (2α + 4)/r2 − γ2 = (2α + 4)/2. (11)

1) For all (u0, u1) ∈
•
H1(K)× L2(K), we have

‖v‖
Lp1 (R,

•
Λ

γ1
r1,2(K))

+ ‖∂tv‖Lp1 (R,
•
Λ

γ1−1
r1,2 (K))

≤ C
{
‖u0‖ •H1(K)

+ ‖u1‖L2(K)

}
.

(12)
2) For all interval I containing 0, we have

‖w‖
Lp1 (I,

•
Λ

γ1
r1,2(K))

+ ‖∂tw‖Lp1(I,
•
Λ

γ1−1
r1,2 (K))

≤ C‖f‖
Lp̄2 (I,

•
Λ
−γ2
r̄2,2(K))

, (13)

where p̄2 and r̄2 are the conjugate exponents of p2 and r2 respectively.

The main results in this work are the generalized Strichartz inequalities
given in the following two theorems.

Theorem 3.1. Let p ∈ [4α + 3, +∞] and let q such that 1/p + (2α +
4)/q = α + 1. Then there exists Cq > 0 such that, for all T > 0, we have

‖u‖Lp([0,T ],Lq(K)) ≤ Cq

[
‖f‖L1([0,T ],L2(K)) + E

1/2
0 (u)

]
,

where E0(u) = ‖u0‖2•H1(K)
+ ‖u1‖2

L2(K).

P r o o f. First, from the conditions on p and q, one can verify that
q ≥ 2. And hence, from Proposition 2.2, we have

•
Λ0

q,2(K) ⊂ Lq(K). That is

‖v‖Lp(I,Lq(K)) ≤ C‖v‖
Lp(I,

•
Λ0

q,2(K))
.

Using Lemma 3.1, we obtain

‖v‖Lp(I,Lq(K)) ≤ C
{
‖v‖

Lp1 (I,
•
Λ0

q,2(K))
+ ‖∂tv‖Lp1 (I,

•
Λ−1

q,2(K))

}

≤ C{‖u0‖ •H1(K)
+ ‖u1‖L2(K)}

≤ CE
1/2
0 (u).
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To obtain the estimate on w, we take p1 = p, r1 = q, γ1 = 0, p2 = ∞, r2 = 2
and γ2 = 0 in (13), then it holds

‖w‖Lp(I,Lq(K)) ≤ C‖w‖
Lp(I,

•
Λ0

q,2(K))

≤ C
{
‖w‖

Lp1 (I,
•
Λ0

q,2(K))
+ ‖∂tw‖Lp1 (I,

•
Λ−1

q,2(K))

}

≤ C‖f‖
Lp̄2 (I,

•
Λ
−γ2
r̄2,2(K))

.

The required estimate is proved.
Our purpose now is to prove that the method given by Ginibre and

Velo in [11] and by Bahouri, Gérard and Xu in [3] can be generalized to
the Laguerre hypergroup. Using a suitable representation of the solution u
we prove decreasing inequalities in time if the data are sufficiently smooth.
These estimates describe the dispersion effects and take the following form:

sup
t∈R

|t| 12 ‖u(t)‖L∞(K) < ∞. (14)

This dispersion inequality is given as follows.

Theorem 3.2. If u0 ∈
•
Λ2α+4−1/2

1,1 (K), u1 ∈
•
Λ2α+4−3/2

1,1 (K), f = 0 and
u is solution of (1), then we have the following estimate

‖u(t)‖L∞(K) ≤ C|t|−1/2
{
‖u0‖ •

Λ
2α+4−1/2
1,1 (K)

+ ‖u1‖ •
Λ

2α+4−3/2
1,1 (K)

}
. (15)

Furthermore, there exist u0, u1 ∈ S∗(K) such that the solution u of (1) with
f = 0 satisfies

‖u(t)‖L∞(K) ≥ C|t|−1/2, for t ≥ 1. (16)

In order to prove the above theorem, we have to recall some classical
results which remain also valid in our context. We begin by introducing
some pseudo-differential operators that will be useful to our purpose.

Definition 3.1. For (λ,m) ∈ R× N, δ ∈ R and t ∈ R, we denote by

bm(λ) =
(
|λ|

(
m +

α + 1
2

))1/2
and am(λ, t) =

sin(2bm(λ)t)
2bm(λ)

and we define the operators (DK)δ/2, At and Ut as follows

F((DK)δ/2f)(λ,m) = (bm(λ))δFf(λ,m) (17)
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F(Utf)(λ,m) = exp(2ibm(λ)t)Ff(λ, m) (18)

F(Atf)(λ,m) = am(λ, t)tFf(λ,m) (19)

which allows to define the operator
dAt

dt
by

F
(dAt

dt
f
)
(λ,m) = cos(2bm(λ)t)Ff(λ,m). (20)

The solution of (1) is then u = v + w with

v(., t) =
dAt

dt
u0 + Atu1 (21)

and

w(., t) =
∫ t

0
At−sf(., s)ds. (22)

The following results are standard and elementary.

Lemma 3.2.

1) The operator (DK)δ/2 is an isomorphism from
•
Λγ

p,2(K) on
•
Λγ−δ

p,2 (K).
2) Ut is an unitary operator on L2(K).
3) At is a continuous operator from L2(K) in

•
H1(K).

4)
dAt

dt
is a continuous operator from L2(K) in L2(K).

5) A0 = 0,
dA0

dt
= Id, [At, DK] = 0 and

[dAt

dt
, DK

]
= 0.

Lemma 3.3. For all p ∈ [1,∞] and t ∈ R we have the following
estimates ∥∥∥dAt

dt
u0

∥∥∥
Lp
≤ 1

2

{
‖Utu0‖Lp + ‖U−tu0‖Lp

}
. (23)

‖Atu1‖Lp ≤ 1
2

{
‖(DK)−1/2(Utu1)‖Lp + ‖(DK)−1/2(U−tu1)‖Lp

}
. (24)

P r o o f. The results hold from the expressions of the operators Ut, At

and
dAt

dt
.

Lemma 3.4. Let ψ ∈ S1
∗,0. Then there exists C > 0 such that, for all

t ∈ R, we have

sup
(y,s)∈K

|Utψ(y, s)| ≤ C min(1, |t|−1/2).
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P r o o f. We proceed as in [3] to obtain the required estimate.

P r o o f o f T h e o r e m 3.2. Using Lemma 3.4, we obtain by homogene-
ity

‖Utψr‖L∞(K) ≤ C|t|−1/2r−(2α+4−1/2). (25)

Let σ ∈ S∗(K) such that Fσ ∈ D∗(K) and Fσ = 1 on Suppψ. Then, for a
suitable f in S′∗(K), we have

(Utf)#ψr = Ut(f#ψr) = Ut(f#ψr#σr) = f#ψr#(Utσr).

By Young’s inequality, we obtain

‖(Utf)#ψr‖L∞(K) = ‖f#ψr‖L1(K)‖Utσr‖L∞(K).

Applying (25) to σ it holds

‖(Utf)#ψr‖L∞(K) ≤ C|t|−1/2r−(2α+4−1/2)‖f#ψr‖L1(K)

which leads to

‖Utf‖ •
Λ−1
∞,1(K)

≤ C|t|−1/2‖f‖ •
Λ

2α+4−3/2
1,1 (K)

. (26)

Combining (23) and (26) (with f = u0), we obtain

∥∥∥dAt

dt
u0

∥∥∥
L∞(K)

≤ C
{
‖Utu0‖L∞(K) + ‖U−tu0‖L∞(K)

}

≤ C
{
‖Utu0‖ •

Λ0
∞,1(K)

+ ‖U−tu0‖ •
Λ0
∞,1(K)

}
.

Now, using the fact that (DK)δ/2 is continuous from
•
Λγ
∞,1(K) to

•
Λγ+δ
∞,1(K)

and (26), we get

∥∥∥dAt

dt
u0

∥∥∥
L∞(K)

≤ C
{
‖Ut(DK)1/2u0‖ •

Λ−1
∞,1(K)

+ ‖U−t(DK)1/2u0‖ •
Λ−1
∞,1(K)

}

≤ C|t|−1/2‖(DK)1/2u0‖ •
Λ

2α+4−3/2
1,1 (K)

= C|t|−1/2‖u0‖ •
Λ

2α+4−1/2
1,1 (K)

.
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On the other hand, combining (24) and (26) (with f = u1), we obtain

‖Atu1‖L∞(K) ≤ C‖(DK)−1/2Utu1‖L∞(K)

≤ C‖(DK)−1/2Utu1‖ •
Λ0
∞,1(K)

≤ C‖Utu1‖ •
Λ−1
∞,1(K)

≤ C|t|−1/2‖u1‖ •
Λ

2α+4−3/2
1,1 (K)

.

And hence the solution of the homogenous equation u =
dAt

dt
u0 + Atu1

satisfies the inequality (15). To prove (16) we consider H ∈ D(]1/2, 2[×{0})
such that H(1, 0) = 1. Then u0 = F−1(H) belongs to S∗(K) and u =

dAt

dt
u0

is a solution of homogenous the following Cauchy problem




2Ku = 0

u|t=0 = u0

∂tu|t=0 = 0.

In particular we have,

u(0, t
√

α + 1, t) =
∫ 2

1/2
e−iλt

√
α+1 cos(2t

√
λ(α + 1))H(λ, 0)λα+1dλ.

By the stationary phase’s lemma (see § 7.7 of [12]) we obtain

u(0, t
√

α + 1, t) ∼ √
π(α + 1)−1/4e−iπ/4t−1/2; if t −→ +∞.

This completes the proof.
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