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Abstract

In this paper we study generalized Strichartz inequalities for the wave
equation on the Laguerre hypergroup using generalized homogeneous Besov-
Laguerre type spaces.
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0. Introduction

Let @« > 0 and K = [0,400[xR. We consider the generalized wave
equation operators
Ox = 97 — Dk
in the two space variables (y, s) € K and time ¢t € R where

2 20410 5,8

Dgi=—5+—— ;
K 8y2+ y 8y+y632’

(y,s) €]0,00[xR.

Let f € LY([0,T], L2(K)) and (uo, u1) € M (K) x L2(K): H'(K) is being the
homogeneous Sobolev space on the Laguerre hypergroup. It is well known
that the Cauchy problem

Ugu = f7
1
{( (1)

uli=0, Opult=0) = (uo,u1)
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is well posed in the energy space (u,dpu) € C([O,T],?'.[I(K) x L?(K)) and
that the energy
2

1 (K)

2

BE(u) = Hu(.,t)

+ H@tu(.,t)’

L2(K)

is constant independent of ¢ for solutions of (1). For a =n — 1; n € N\{0},
the operator Dx is the radial part of the sub Laplacian on the Heisenberg
group H". We denote by ©xm; (A,m) € R x N, the unique solution of
the following system:

Osu = iAu,
Dxu = —4|\|(m + “L)u;

u(0,0) =1, g (0,5) =0 for all s e R.

One knows that ¢y m(y,s) = e L2 (|\[y?), where L&, is the Laguerre
L (z
L, (0)

functions defined on Ry by £2(z) = e 2 a0

and L, is the Laguerre

)

)
polynomial of degree m and order « ([16], [8], [10], [15]). We recall that for
(A\,m) € Rx N and for a suitable function f : K — C the Fourier-Laguerre

transform F(f)(\, m) of f at (A\,m) is defined by ([17], [2], [20, 21], [9]):

F(f)(Am) = /K o rm(y: )1 W, )iy, 5), ()

y2a+1 dy ds
al(a+1)"

It has been proved in [17, Theorem II.1] that the Fourier-Laguerre trans-
form is a topological isomorphism from S,(K) onto S(R x N), where

where dia(y, s) =

e S.(K) is the Schwartz space of functions 1 : R* — C even with
respect to the first variable, C* on R? and rapidly decreasing together
with all their derivatives; i.e. for all k,p,q € N we have

\ oprta
Nipa(¥) = sup {(1 +y2 + 82)k‘

s 5y Sblys)|} <o (3)

e S(R x N) the space of functions ¥ : R x N — C satisfying:
i) For all m,p,q,r, s € N, the function

A — W (j(m + ; 1))qu (Ao + (%)7\11()\,m)



GENERALIZED STRICHARTZ INEQUALITIES FOR ... 423

is bounded and continuous on R, C* on R* = R\{0} and such that
the left and the right derivatives at zero exist.

ii ) For all k,p,q € N, we have

Vipa(¥) = sup {(1 +A2(1+m?)" A7 (A2 + 8)qw<x,m>\} <o,
(Am)ER*xN O
()

where

o MU(\,m) = %‘(mAJFA_\II()\,m) +(a+ 1)A+\Il()\,m)).

o MU(\m) =3 ((a Fm A DAL, m) + mA_W(, m)).
e ALU(A\,m)=T(A\,m+1)— T\ m).

)
e A_U(A\,m)=TY(A\,m)—TA\m—-1), if m>1
and A_TU(X0)=T(A0).

We note that S,(K) (resp. S(R x N)) equipped with the semi-norms J\~/k7p7q
(resp. Vipg)s k,p,q €N, is a Fréchet space ([17]).

This paper is organized as follows: In the first section we collect some
harmonic analysis results on the Laguerre hypergroup which are developed
in [17] and [20, 21]. In the second section we recall the definition and some

properties of generalized homogeneous Besov-Laguerre type spaces /.\g,q(K);
1 < p,g < oo, v € R, similar to the classical one’s given in [7], [5], [6]
and [23]. These spaces are introduced in terms of convolution of tempered
distributions with a class of smooth functions. It has been proved in [1] that

these spaces are Banach spaces for v < (2« +4)/p. We prove that /.\32 (K)

coincide with the homogeneous Sobolev-Laguerre type space 7:(7(K). In
the third section we generalize, for solutions of Cauchy problem (1), the
Strichartz inequalities (see [22], [14] and [3]) to the Laguerre hypergroup.
Many functional analysis results which remained valid also in our context
are used to prove the main results given in Theorems 3.1 and 3.2.

Finally, we mention that, C' will be always used to denote a suitable
positive constant that is not necessarily the same in each occurrence.

1. Preliminaries

Throughout this paper we fix a > 0 and we denote by
e R* = R\{0} and R% =|0,+o0].
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e C.(K) the space of continuous functions on R? even with respect to
the first variable.

e C..(K) the subspace of C.(K) consisting of functions with compact
support.

. Si,o(K) the subset of functions ¢ in S, (K) such that Fip € D(R*x N)
and

> 2 2dr *
(fw(r A,m)) = 1, for (A\,m) e R*x N.
0
These functions are known as generalized wavelets on K ([17]).

e D(R x N) the subspace of S(R x N) of functions ¢ satisfying the
following:

i) There exists mg € N satisfying (A, m) = 0, for all (A\,m) € RxN
such that m > mg.
ii) For all m < my, the function A —— (A, m) is C* on R, with

compact support and vanishes in a neighborhood of zero.

o [P(K) = LP(K,duy), 1 < p < oo, the space of Borel measurable
functions on K such that || f||z»x) < oo, where

e = (/K |f<y,s>|pdua<y,s>)p, i pe L ol

[fllpeex) = esssup |f(y,s)l,
(y,s)eK

dp being the positive measure defined on K given in the introduction.
Each of these spaces is equipped with its usual topology.

DEFINITION 1.1.
e The generalized translation operators T((yal) on the Laguerre hy-
pergroup are given for a suitable function f by:
(1 27 1
/. f((x? +y? + 2zycosb)2, z + s + xysin )d,
T
if a =0,
T((;;)f(a:, Z) =
// fl(2® +y* + 2xypcos€)%,z + s+ zypsinb)

p(1 — p?)*~Ldodp, if a > 0.
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e The generalized convolution product on the Laguerre hypergroup is
defined for a suitable pair of functions f and g by:

Featws) = [ T @20l ~2)dua(e,2) forall (5,) € K.

We recall that (K, «,7) is an hypergroup in the sense of Jewett ([13],
[4]), where ¢ denotes the involution defined on K by i(y, s) = (y, —s). This
hypergroup is the Laguerre hypergroup which coincides, for a = n — 1;
n € N\{0}, with the hypergroup of radial functions on the Heisenberg group
(see [17]).

Notations. Let r > 0. We will denote by

e (y,s), = (%, r%) the dilation of (y, s) € K.

o fi(y,s) = r~ 2ot f((y,s),) the dilation of the function f defined on
K preserving the mean of f with respect to the measure du,, in the
sense that

[ 50 5)al:9) = [ £ 5)dhialy.s), forall >0 and 1 € L}(K).
K K
(5)
PROPOSITION 1.1. The following properties hold ([17])

1) Let f be in LP(K), 1 < p < co. Then for all (y,s) € K, the function
T((;li ) f belongs to LP(K) and we have

1T, Flry < 171 2oy

2) For f in LP(K) and g in L4(K), 1 < p,q < oo, the function f#g belongs
to L™(K); % + % =1+ 1, and we have

| f#9llzrx) < 1fllr) gl Lag)-

3) (i) Let f be in L*(K). Then the function F(f) is bounded on R x N

and we have

I F (N oo @xny < Nl 2r )

where || F(f)|| Lo mxn) = ess sup |F(f)(A,m)].
(A,m)eRxN
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(ii) Let f and g in L*(K), then we have
F(f#g) = F())F(9).

(iii) Let f be in L'(K). Then for all (y,s) in K and (\,m) in R x N,
we have

FITE) O m) = @xm(y, ) F(H) (A m).

2. Generalized homogeneous Besov-Laguerre type spaces

In this section we summarize some results on the generalized homoge-
neous Besov-Laguerre type spaces studied in [1].

DEFINITION 2.1. Let 1 < p,q < 0o,y € Rand ¢ € 5] ((K). We define

the generalized homogeneous Besov-Laguerre type spaces A} 4(K) as the set
of tempered distributions f such that

f= [ oot (©

and || f]| Ry, < 0% where

1
[e'e) - d =
(/ (Hf#w ||p>““>", if 1<g¢<oo,
B 0 rY T

Il =
Aal®) (Ul .
esssup ( ——— |, if ¢q=o0.

r>0 7

REMARK 2.1.

1) We begin by mentioning that the definition of the generalized ho-
mogeneous Besov-Laguerre type spaces given here is the same than that
introduced by Chemin in the classical case (see [7]) and generalized by Ba-
houri, Gérard and Xu on the Heisemberg group (see [3]). We do not choose

the classical definition introduced by Peetre (see [19]) in which A} 4(K) is
defined as a set of distributions modulo polynomials. In fact in the case

v < 22t the condition || f]| = < oo implies the convergence of the
p APﬁQ(K)

& d
L/‘ f#¢%#wr‘i
0 T

integral
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in the sense of distributions and not only in the sense of distributions mod-
ulo polynomials, thus the two points of view are equivalent and that the
expression (6) is independent, in S, (K), of the choice of ¢ in Sio. We note

finally that, similarly to the classical case, for v > 20;%4, the space ]\gq(K),
as we define, is not Banach space.

2) If f belongs to L?*(K), then (6) holds in L?*(K). Which is a conse-
quence of Plancherel’s formula (see [18]). Hence one can write

2
Hf S s

1/e r 9

_ /+O° {io L%(O)‘Ff()\,m)ﬂl/; (MT(A,m)f% 2} AL,
m=0 €

—0o0

And, using Lebesgue theorem, the right hand side of the above equality
tends to zero as € tends to +oco. Indeed,

i [ (Foom)

= 2
%LT(O)‘]:f(A,m)) ‘1—/

2
—0 as ¢ — +0o

and

€ 2dr |2

(f¢r(Avm)) T
1/e r
x 2
< 3 LaO|FFOm)| € LR AN,
m=0
3) The expression (6) is not true in S, (K) if f is a polynomial function
on K. Indeed in this case, for all r > 0, we have fx, = 0.
4) For 1 < p,q < oo and 7 € R, the space [.\z,q(K) is independent of the
choice of the function % in Si,o(K)-

5) For 1 < p,q < 0o and v € R, the Besov-Laguerre type space 1.\;7q(K)
is homogeneous of degree d(p,7y) = 26;%4 — 7 in the sense that, for all

fe Apq(K)
200+4
Hder A;,q(K) =7r »r 7”]“” /.\g’q(K)’ for all r > 0,

where d, f(y, 5) = £((y,5),), for all (y,5) € K.

In what follows we collect some properties of the generalized homoge-
neous Laguerre-Besov type-spaces. For more details, see [1].
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PROPOSITION 2.1. Let 1 <p,q < oo and vy < 2°‘+4. Then /.\Z,q(K) is

a Banach space, and the result remains also valid for v = 20‘;4 ifqg=1.

PROPOSITION 2.2.
1) Let 1 < g < o0 and 1,72 € R. Then, for 1 < p; < ps < oo such
that d(p1,v1) = d(p2,72), we have

Azi,q( ) C Ag;q( ) (with continuous embedding).

2) Let 2 <p<oo. Then

A272(K) C LP(K) (with continuous embedding).

3) Let 1 <p<oo. Then we have

I.Xg’l(K) C LP(K) (with continuous embedding).

4) Foralll<p<oo,y€Rand1<q <q <0

AY

pa (K) € AT (K) (with continuous embedding).

REMARK 2.2. It is clear that Ag’Q(K) = L?*(K). More general, we
prove that J.ng(K) is a Hilbert space which coincides with the homogeneous
Sobolev-Laguerre type space ’I-.(”/(K) defined as follows:

DEFINITION 2.2. Let v € R. The homogeneous Sobolev-Laguerre type

space 7:[7(K) is the set of all tempered distributions f such that Ff €
L? (K) and

loc

1/2

11 = }jLa o (15 (m a+1»‘ffAm)MP“d9 <-+oo.

THEOREM 2.1. Lety < a+2. The homogeneous Besov-Laguerre type

space A;Q(K) is equal to the homogeneous Sobolev-Laguerre type space

7'.(7(K) with equivalent norms.

P r oo f. It suffices to prove that there exist Cy,Cs > 0, such that, for
all f e S.(K),

CUFI 3,00 S Ml gy < Coll £l 3
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By Plancherel’s theorem (see [18]) one has

= 2 [+ | Fy (A, m)|? dr
1Py = 3 25000 [ |Frovm|” [ EGIE gy
’ m=0

s
and taking into account that

||f|]27.mK) = Jf L%(O)/}R(W(er a;l))v‘ff()\,m)ﬁ/\yaﬂd/\
m=0

we have to compare

/OJrOO |.7:71)r()\,771)‘2@ and (‘)\‘<m+a—2|—1>>7.

r2Y r

From the hypothesis ¢ € Si’o, there exist a,b, A, B > 0 such that

1
SuppF C {()\,m) ERxN; a< |)\‘<m+ a—2¢— ) < b}
and
A<|Fp(\,m)|* < B on SuppFi,.
This leads to
oo | Fp (A m)Pdr AN E (2 m) 2 dr
o ), 2

2
(IM(me-242)) =172 e r

So the desired inequalities hold. [ ]

3. Generalized Strichartz inequalities
on the Laguerre hypergroup

It is well known that the Cauchy problem (1) is solved by v = v + w
where v is the solution of the homogeneous equation with the same data

O?u—Dgu = 0
(ult=0, Opult=0) = (uo,u1)

(7)

and w is the solution of the inhomogeneous equation with zero, data

Pu—Dgu = f @
(ult=0, Oruli=0) = (0,0).

Following closely the arguments of Ginibre-Velo [11], one can prove, as in
[3], the following lemma that will be useful in the sequel.
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LEMMA 3.1. Let 1,72 € R and py,pa,r1,7m2 € [2,400] satisfying:

2/pi+1/r; <1/2, for 1=1,2, (9)
p1+ Qa+4)/r —y = (2a+4)/2 -1, (10)
1/p2+ 2a+4)/ra — v2 = (2a + 4) /2. (11)

1) For all (ug,uy) € ﬁl(K) x L*(K), we have

HUHLm R, 7\:1 + ||6tUHLp1 /'\Zil;l(K)) < C{HUOH UK) + HulHLQ(K)}'
(12)
2) For all interval I containing 0, we have

y T 18] (13)

[[]]

e, AL (K Lri(r, A5 (K)) = < Clifll a ALB(K)

where ps and 7o are the conjugate exponents of py and 19 respectively.

The main results in this work are the generalized Strichartz inequalities
given in the following two theorems.

THEOREM 3.1. Let p € [4a + 3, +0o0] and let ¢ such that 1/p + (2 +
4)/q = o+ 1. Then there exists Cy > 0 such that, for all T > 0, we have

el o017, 200y < Co |12 o7y 2230y + B> ()]

where Bo(u) = [[uol%, .+ llun ]2

P r o o f. First, from the conditions on p and ¢, one can verify that
¢ > 2. And hence, from Proposition 2.2, we have A),(K) C LI(K). That is

[vllo(rzay < Clloll g A0 LK)

Using Lemma 3.1, we obtain

Pl asay < C{Iln 30 ) + 19001, 3300 )
< C{lluoll g gy + Hulum(K)}
< CEY?(u).
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To obtain the estimate on w, we take py =p, r1 =¢q, 71 =0, po =00, 190 = 2
and 2 = 0 in (13), then it holds

HwHLT’(I,Lq(K)) < CHwHLpI AO ,(K))

< {HwHLm I, AO + HathLpl I, A ( ))}
< Clifllpeer, /'\;;%(]K))'
The required estimate is proved. =

Our purpose now is to prove that the method given by Ginibre and
Velo in [11] and by Bahouri, Gérard and Xu in [3] can be generalized to
the Laguerre hypergroup. Using a suitable representation of the solution u
we prove decreasing inequalities in time if the data are sufficiently smooth.
These estimates describe the dispersion effects and take the following form:

1
sup [¢[2[|u(t) || Lo ) < 00 (14)
teR

This dispersion inequality is given as follows.

THEOREM 3.2. Ifug € A2a+4 V2(K), uy € A20Hr4 %2(K), f = 0 and
w is solution of (1), then we have the following estimate

le(®)lzee < Ol ol ganirvaggy + lnll gasa-srage - (15)

Furthermore, there exist ug, u1 € S«(K) such that the solution u of (1) with
f = 0 satisfies

()| peey = CtI7Y2, for  t>1. (16)

In order to prove the above theorem, we have to recall some classical
results which remain also valid in our context. We begin by introducing
some pseudo-differential operators that will be useful to our purpose.

DEFINITION 3.1. For (A\,m) € Rx N, § € R and ¢t € R, we denote by

sin(2b,, (A)t)
2 ()

a—|—1>>1/2

bin(A) = (W(m+ and  am(\t) =

and we define the operators (DK)‘;/ 2 A; and Uy as follows

F((Dg)*2F)(A,m) = (bn(X)° FF(A,m) (17)
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F(ULf)(A,m) = exp(2ibm (X)) F f (A, m) (18)
F(ALf) A, m) = am (X OEF f(A,m) (19)
which allows to define the operator % by
]—"(d—At f)(/\ m) = cos(2bm(\EF (A, m) (20)
dt T " T

The solution of (1) is then v = v + w with

v(.,t) = %uo + Ay (21)
and .
w(.,t) :/0 Ai—sf(.,s)ds. (22)

The following results are standard and elementary.

LEMMA 3.2. . .

1) The operator (Dx)%/? is an isomorphism from A;Q(K) on A;E‘S(K).
2) U, is an unitary operator on L*(K).

3) A; is a continuous operator from L*(K) in H!(K).

dA
4) —tt is a continuous operator from L*(K) in L?*(K).
dA dA,

0 prg g _— prg
—% = Id, [A1, Dg] = 0 and [ — ,DK] 0.

LEmMA 3.3.  For all p € [1,00] and t € R we have the following
estimates

5) Ay =0,

dA 1
e B (A R L )

lAnllee < {1D0) W) leo + (D) 20 un) s} (24)

P r 0 o f. The results hold from the expressions of the operators Uy, Ay
dA;
d —.
and — [
LEMMA 3.4. Let vy € Si,o' Then there exists C' > 0 such that, for all
t € R, we have
sup [Usth(y, 5)| < C'min(1L, [¢|71/2).
(y,s)eK
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P r oo f. We proceed as in [3] to obtain the required estimate. [

Proof of Theorem 3.2. Using Lemma 3.4, we obtain by homogene-
ity
[Uzhr | oo i) < CJt| /2= (Gata=1/2), (25)

Let 0 € S,(K) such that Fo € D.(K) and Fo = 1 on Suppip. Then, for a
suitable f in S, (K), we have

(Ut #br = Ue(fpr) = Up(fbraor) = fabr(Uioy).
By Young’s inequality, we obtain
(Ut f)#drll o) = 1f#0ell 1) 1 Utor | Lo (x)
Applying (25) to o it holds
I(UeF)#tor ]| ooy < CPIT 2~ 4D fonhy || )
which leads to

—1/2

Combining (23) and (26) (with f = ug), we obtain

[

pal < C{HUtUOHLw(K) + HU—tUOHLw(K)}

< C{HUtU/O” 7\201(K) + ”U—tUOH /'\gol(]K)}'

Now, using the fact that (Dg)%/2 is continuous from /.\Zol(K) to /.\Z:f(K)
and (26), we get

IN

H‘“t of| o g C{IUDR) 20l 31, ey + 1U-eD) 20l 31, }

C|t‘71/2 ” (DK)l/QUOH K20+4-3/2
1,1

IN

(K)

C‘t‘71/2 HUOH A?i+4—1/2(K) .
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On the other hand, combining (24) and (26) (with f = u;), we obtain

Aoy < CI(Dg) ™2V | e (x)
< QD0 Ul 3
< ClUanll 31
S T pr.
And hence the solution of the homogenous equation u = d—Atuo + Apuq

satisfies the inequality (15). To prove (16) we consider H € D(]1/2,2[x{0})
such that H(1,0) = 1. Then up = F~(H) belongs to S,(K) and u = %uo
is a solution of homogenous the following Cauchy problem

DK’U, =0
ulz=o = uo
8tu|t:0 = 0.

In particular we have,

2
u(0,tvVa +1,t) = / e AL cog(2t /N + 1)) H (X, 0)A“TLa.
1/2

By the stationary phase’s lemma (see § 7.7 of [12]) we obtain
w(0, Vo + 1,8) ~ /(o + 1) VAT 4120 i s oo
This completes the proof. [
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