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Abstract

A relation showing that the Grünwald-Letnikov and generalized Cauchy
derivatives are equal is deduced confirming the validity of a well known
conjecture. Integral representations for both direct and reverse fractional
differences are presented. From these the fractional derivative is readily
obtained generalizing the Cauchy integral formula.
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1. Introduction

In [1] Diaz and Osler presented a brief insight into the fractional differ-
ences. They proposed an integral formulation for the differences and con-
jectured about the possibility of using them for defining fractional deriva-
tives. This problem was also discussed in a round table held at the Interna-
tional Conference on ”Transform Methods & Special Functions, Varna’96”
as stated by Kiryakova [3].

In this paper, the validity of such conjecture is proved. In fact, we will
enounce and later prove the following statement [5]:

The Grünwald-Letnikov fractional derivative is equal to the generalized
Cauchy derivative.
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We must refer that we will not address the existence problem. We are
mainly interested in obtaining generalization for a well known formalism.

For the proof, we begin by introducing the fractional differences, consid-
ering two cases: direct and reverse1. From these we obtain the direct and
reverse Grünwald-Letnikov fractional derivatives. For those differences, in-
tegral representations will be proposed following a Diaz and Osler’s idea.
The integration path is a U shaped contour that encircles all the poles and
”closes” at infinite. From these representations we obtain the fractional
differintegrals by using the asymptotic properties of the Gamma function.
As we will show there are infinite ways of computing a fractional deriva-
tive: we only have to choose a branch cut line and fix a suitable integration
path. If α is a positive integer, we have an integrand with a pole: this is
the well known Cauchy formula. It is important to remark that accordingly
to the equality of the Cauchy and the Grünwald-Letnikov derivatives, the
integration path has necessarily a form like we referred above, unless α is a
positive integer. This means that the derivative definitions based in finite
straight line segments are not valid.

A theorem stating the main result of the paper is presented in Section 2.
In Section 3, we will introduce the general formulation for the differences,
considering two cases: direct and reverse. For these, integral representations
will be proposed. From these representations we obtain in Section 4 the
derivative integrals by using the properties of the Gamma function. At last
we will present some conclusions.

2. Main result

The main result of this paper can be stated in a theorem that we will
present below. Consider the U shaped contour represented in Figure 1.

Let f(z) be a complex variable function analytic in the region inside and
continuous on that contour. The generalized Cauchy derivative is given by
[4-6]:

Dα
d f(z) =

Γ(α + 1)
2πi

∫

Cd

f(w)
1

(w − z)α+1
dw, (1)

where we assume that the branch cut line is inside the above referred ana-
lyticity region, and Cd is a U shaped contour encircling the branch cut line.
By now, we consider a branch cut line (with the corresponding contour) in

1We avoid the common used backward and forward since can be misleading.



FROM DIFFERENCES TO DERIVATIVES 461

Figure 1: U shaped contour

the left hand complex plane or in the lower imaginary half axis. Now, we
introduce the direct Grünwald-Letnikov derivative given by:

Dα
d f(z) = lim

h→0+

∑∞
k=0 (−1)k

(
α
k

)
f(z − kh)

hα
, (2)

where h is any complex in the right hand complex plane. Making a substi-
tution h → −h, we obtain the reverse Grünwald-Letnikov derivative.

Dα
r f(z) = (−1)α lim

h→0+

∑∞
k=0 (−1)k

(
α
k

)
f(z + kh)

hα
. (3)

Both expressions agree with the usual derivative definition when α is a
positive integer. Moreover, expression (2) corresponds to the so-called left-
hand sided Grünwald-Letnikov fractional derivative while (3) has the extra
factor (−1)α, when compared with the right-hand sided Grünwald-Letnikov
fractional derivative [5]. We maintain that this factor must be retained
and call the pairs defined by (2) and (3) as Grünwald-Letnikov fractional
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derivatives2. We assume also that the points z−nh, n = 0, 1, . . ., are on the
branch cut line.

Theorem . Under the above stated conditions we have:

lim
h→0+

∑∞
k=0 (−1)k

(
α
k

)
f(z − kh)

hα
=

Γ(α + 1)
2πi

∫

Cd

f(w)
1

(w − z)α+1
. (4)

This theorem remains valid for the reverse Grünwald-Letnikov fractional
derivative provided that we choose a branch cut line in the right hand
complex plane or in the upper imaginary half axis (see Figure 3). This
result is very important since it establishes a bridge between two different
formulations both generalizing classical results. Other definitions that are
not logically deduced from (4), although allowing similar results, should
be considered as pseudo-derivatives. Although all the above relations are
formally valid for any α ∈ R (or even for α ∈ C), in the following we will
speak always of derivative. Before we prove the theorem, we will present
the integral representations for the fractional differences.

3. Differences

3.1. Definitions

Let f(z) be a function of complex variable and introduce 4d and 4r as
finite ”direct” and ”reverse” differences defined by:

4df(z) = f(z)− f(z − h) (5)

and
4rf(z) = f(z + h)− f(z) (6)

with h ∈ C and, as before, we assume that Re(h) > 0. The repeated use of
the above definitions leads to

4N
d f(z) =

N∑

k=0

(−1)k

(
N
k

)
f(z − kh) (7)

2These derivatives were proposed first by Liouville [2]. So, they should be called
Liouville-Grünwald-Letnikov derivatives.
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and

4N
r f(z) = (−1)N

N∑

k=0

(−1)k

(
N
k

)
f(z + kh) (8)

where
(

N
k

)
are the binomial coefficients. These definitions are readily

extended to the fractional order case [1]:

4α
d f(z) =

∞∑

k=0

(−1)k

(
α
k

)
f(z − kh) (9)

and

4α
r f(z) = (−1)α

∞∑

k=0

(−1)k

(
α
k

)
f(z + kh). (10)

This formulation remains valid in the negative integer order case. Let
α = −N (N a positive integer). As it is well known from the Z Transform
theory, the following relation holds if k ≥ 0

∞∑

n=0

(n + 1)k qn =
k!

(1− q)k+1
for |q| < 1. (11)

Introducing the Pochhammer symbol for the shifted factorial, (a)k =
a(a + 1)(a + 2) · · · (a + k − 1) and putting k = N − 1, we obtain easily:

(1− z)−N =
∞∑

n=0

(n + 1)N−1

(N − 1)!
zn for |z| < 1 (12)

leading to

4−N
d f(z) =

∞∑

n=0

(n + 1)N−1

(N − 1)!
· f(z − nh). (13)

For the reverse case, we have:

4−N
r f(z) = (z − 1)−N

= (−1)N
∞∑

n=0

(n + 1)N−1

(N − 1)!
· f(z + nh). (14)

As

(n + 1)N−1 =
(n + N − 1)!

n!
=

(N − 1)!(N)n

n!
(15)
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and
(−a)n

n!
= (−1)n

(
a
n

)
, (16)

we have

(n + 1)N−1 = (N − 1)! (−1)n

( −N
n

)
. (17)

So, we can write:

4−N
d f(z) =

∞∑

n=0

(−1)n

( −N
n

)
f(z − nh). (18)

For the anti-causal case, we have:

4−N
r f(z) = (−1)N

∞∑

n=0

(−1)n

( −N
n

)
f(z + nh). (19)

As it can be seen, these expressions are the ones we obtain by putting
α = −N into (9) and (10). So, the relations (9) and (10) are representations
for the differences of any order.

3.2. Integral representations

3.2.1. Positive integer order

Consider first the positive integer order case. Assume that f(z) is
analytic inside and on a closed integration path that includes the points
t = z − kh in the direct case and t = z + kh in the corresponding reverse
case, with k = 0, 1, . . . , N . The results stated in (9) and (10) can be inter-
preted in terms of the residue theorem3. In fact, they can be considered as
1

2πi

∑
residues in the computation of the integral of a function with poles

at t = z − kh and t = z + kh, k = 0, 1, 2, . . .. As it can be seen by direct
verification, we have [1]:

N∑

k=0

(−1)k

(
N
k

)
f(z − kh) =

N !
2πih

·
∫

Cd

f(w)∏N
k=0

(
w−z

h + k
)dw (20)

3It is important to remark that the poles are simple and that this case can be deduced
without the use of the derivative notion.
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Figure 2: integration paths and poles for the integral representation of
integer order differences

and

N∑

k=0

(−1)k

(
N
k

)
f(z + kh) = − N !

2πih
·
∫

Cr

f(w)∏N
k=0

(
z−w

h + k
)dw. (21)

We must remark that the binomial coefficients appear naturally when
computing the residues.

Introducing the Pochhammer symbol, we can rewrite the above formulae
as:

4N
d f(z) =

N !
2πih

∫

Cd

f(w)(
w−z

h

)
N+1

dw (22)

and

4N
r f(z) =

(−1)N+1 N !
2πih

∫

Cr

f(w)(
z−w

h

)
N+1

dw. (23)

Attending to the relation between the Pochhammer symbol and the
Gamma function:

Γ(z + n) = (z)nΓ(z), (24)
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we can write:

4N
d f(z) =

N !
2πih

∫

Cd

f(w)
Γ

(
w−z

h

)

Γ
(

w−z
h + N + 1

)dw (25)

and

4N
r f(z) =

(−1)N+1 N !
2πih

∫

Cr

f(w)
Γ

(
z−w

h

)

Γ
(

z−w
h + N + 1

)dw. (26)

This is correct and is coherent with (20) and (21), because the Gamma
function Γ(z) has poles at the negative integers (z = −n). The correspond-
ing residues are equal to (−1)n /n!, [5]. Although both the Gamma functions
have infinite poles, outside the contour they cancel out and the integrand is
analytic. We should also remark that the direct and reverse differences are
not formally equal.

3.2.2. Fractional order

Consider the fractional order differences defined in (9) and (10). It is
not hard to see that we are in presence of a situation similar to the positive
integer case, excepting the fact of having infinite poles. So we have to use
an integration path that encircles all the poles. This can be done with a U
shaped contour like those shown in Figure 3.

With the suitable adaptations, we obtain from (25) and (26):

4α
d f(z) =

Γ (α + 1)
2πih

∫

C
f(w)

Γ
(

w−z
h

)

Γ
(

w−z
h + α + 1

)dw (27)

and

4α
r f(z) =

(−1)α+1 Γ (α + 1)
2πih

∫

C
f(w)

Γ
(

z−w
h

)

Γ
(

z−w
h + α + 1

)dw. (28)

Remark that one turns into the other with the substitution h → −h,
justifying the assumption we made in Section 2.

3.2.3. Two properties

In the following, we shall be concerned with the fractional order case
and will consider the direct case only. The other one is similar.
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Figure 3: integration paths and poles for the integral representation of
fractional order differences

3.2.3.1. Repeated differencing

We are going to study the effect of a sequential application of the dif-
ference operator 4. We have

4β
d [4α

d f(z)] = Γ(β+1)Γ(α+1)

(2πih)2

∫
C

∫
C f(w)

Γ(w−s
h )

Γ(w−s
h

+α+1)dw
Γ( s−z

h )
Γ( s−z

h
+β+1)ds.

(29)

Permuting the integrations, we have:

4β
d [4α

d f(z)] = Γ(β+1)Γ(α+1)

(2πih)2

∫
C f(w)

∫
C

Γ(w−s
h )

Γ(w−s
h

+α+1)
Γ( s−z

h )
Γ( s−z

h
+β+1)dsdw.

(30)
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As, by the residue theorem

Γ(β+1)
2πih

∫
C

Γ(w−s
h )

Γ(w−s
h

+α+1)
Γ( s−z

h )
Γ( s−z

h
+β+1)ds

= 1
h

∑∞
n=0

(−1)n

n!

Γ(β+1)·Γ(w−z
h

+n)
Γ(w−z

h
+α+1+n)Γ(β−n+1)

= 1
h

Γ(w−z
h )

Γ(w−z
h

+α+1)
∑∞

n=0
(w−z

h )
n
(−β)n

(w−z
h

+α+1)
n

= 1
h

Γ(w−z
h )

Γ(w−z
h

+α+1) 2F1

(
w−z

h ,−β, w−z
h + α + 1, 1

)
, (31)

where 2F1 is the Gauss hypergeometric function. If α + β + 1 > 0, we have:

Γ(β+1)
2πih

∫
C

Γ(w−s
h )

Γ(w−s
h

+α+1)
Γ( s−z

h )
Γ( s−z

h
+β+1)ds

= 1
h

Γ(w−z
h )Γ(α+β+1)

Γ(w−z
h

+α+β+1)Γ(α+1)
, (32)

leading to the conclusion that:

4β
d [4α

d f(z)] =
Γ (α + β + 1)

2πih

∫

C
f(w)

Γ
(

w−z
h

)

Γ
(

w−z
h + α + β + 1

)dw (33)

and
4β

d [4α
d f(z)] = 4α+β

d f(z), (34)

provided that α+β+1 > 0. It is not difficult to see that the above operation
is commutative. The condition α + β + 1 > 0 is restrictive, since we cannot
have β ≤ −α − 1. However, we must remark that (27) and (28) are valid
for every α ∈ R. The same happens with (α + β) in (33). This means that
we can use (33) with every α, β ∈ R, at least formally.

3.2.3.2. Inversion

Putting α = −β into (33), we obtain:

4−α
d [4α

d f(z)] = 4α
d

[4−α
d f(z)

]
=

1
2πi

∫

C
f(w)

1
w − z

dw = f(z) (35)

as we would expect. So the operation of differencing is invertible. This
means that we can write:

f(z) =
Γ (α + 1)

2πih

∫

C
4α

d f(w)
Γ

(
w−z

h

)

Γ
(

w−z
h − α + 1

)dw (36)
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in the direct case. In the reverse case, we will have:

f(z) =
Γ (α + 1)

2πih

∫

C
4α

r f(w)
Γ

(
z−w

h

)

Γ
(

z−w
h − α + 1

)dw, (37)

according to (27).

4. Derivatives

4.1. On Grünwald-Letnikov derivatives

The Grünwald-Letnikov derivatives are obtained from (9) and (10) by
dividing them by hα and performing the limit h → 0+ 4. Although we are
not concerned here with existence problems, we must refer that in general
we can have the direct derivative without existing the reverse one and vice-
versa. For example, let us apply both definitions to the function f(z) =
eaz. If Re(a) > 0, expression (2) converges to Dα

d f(z) = aαeaz, while (3)
diverges. On the other hand, if f(z) = e−az equation (2) diverges while (3)
converges to Dα

r f(z) = (−a)α e−az. This suggests that (2) and (3) should
be adopted for right and left functions5, respectively in agreement with
Liouville reasoning [2]. In particular, for the functions such that f(z) = 0
for Re(z) < 0 or f(z) = 0 for Re(z) > 0.

4.2. Generalizing the Cauchy formula

The ratio of two gamma functions Γ(s+a)
Γ(s+b) has an interesting expansion

[6]:
Γ(s + a)
Γ(s + b)

= sa−b

[
1 +

N∑

1

cks
−k +O (

s−N−1
)
]

(38)

as |s| → ∞, uniformly in every sector that excludes the negative real half-
axis. The coefficients in the series can be expressed in terms of Bernoulli
polynomials. Their knowledge is not important here.

Consider (27) and (28) again. Let |h| < ε ∈ R, where ε is a small
number. This allows us to write:

4α
d f(z) =

Γ (α + 1)
2πih

∫

Cd

f(w)
1(

w−z
h

)α+1 dw + hα+2g1(h) (39)

40+ means that Re(h) > 0
5We say that f(t) is a right [left] function if f(−∞) = 0 [f(+∞) = 0].
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and

4α
r f(z) =

(−1)α+1 Γ (α + 1)
2πih

∫

Cr

f(w)
1(

z−w
h

)α+1 dw + hα+2g2(h), (40)

where Cd and Cr are the contours represented in Figure 3. The g1(h) and
g2(h) are functions that assume a finite value near zero. So, the fractional
incremental ratia are given by:

4α
d f(z)
hα

=
Γ (α + 1)

2πi

∫

Cd

f(w)
1

(w − z)α+1 dw (41)

and
4α

r f(z)
hα

=
Γ (α + 1)

2πi

∫

Cr

f(w)
1

(w − z)α+1 dw. (42)

Allowing h → 0+, we obtain the direct and reverse generalized Cauchy
derivatives:

Dα
d f(z) =

Γ (α + 1)
2πi

∫

Cd

f(w)
1

(w − z)α+1 dw (43)

and

Dα
r f(z) =

Γ (α + 1)
2πi

∫

Cr

f(w)
1

(w − z)α+1 dw. (44)

If α = N , both the derivatives are equal and coincide with the usual
Cauchy definition. In the fractional case we have different solutions, since
we are using a different integration path. Remark that (43) and (44) are
formally the same. They differ only in the integration path. Thus we can
define a generalized Cauchy derivative by:

Dαf(z) =
Γ (α + 1)

2πi

∫

C
f(w)

1
(w − z)α+1 dw, (45)

where C is any half straight line starting at z.

5. Conclusion

Let γ be a half straight line beginning at any z ∈ C and let h ∈ γ. The
Grünwald-Letnikov fractional derivative is equal to the generalized Cauchy
derivative provided that it is computed along an integration path surround-
ing the above straight line.
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Figure 4: Grünwald-Letnikov derivative vs Cauchy derivative
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