A NOTE ON A CLASSICAL GENERATING FUNCTION FOR THE JACOBI POLYNOMIALS

Peter Rusev ${ }^{1}$

Dedicated to Acad. Bogoljub Stanković on the occasion of his 80th birthday

Abstract

A more general form for a classical generating function for the Jacobi polynomials is given.

Mathematics Subject Classification: 33C45
Key Words and Phrases: Jacobi polynomials, generating function

1. If $z \neq \pm 1$, then we define $l(1 ; z): \zeta=1+t(1-z)$ and $l(-1 ; z): \zeta=$ $-1-t(1+z)$ for $0 \leq t<\infty$ as well as

$$
\left(\frac{1-\zeta}{1-z}\right)^{\alpha}:=\exp \left\{\alpha \log \frac{1-\zeta}{1-z}\right\}
$$

for $\zeta \in S(1 ; z):=\mathbb{C} \backslash l(1 ; z)$, and

$$
\left(\frac{1+\zeta}{1+z}\right)^{\beta}:=\exp \left\{\beta \log \frac{1+\zeta}{1+z}\right\}
$$

for $\zeta \in S(-1 ; z):=\mathbb{C} \backslash l(-1 ; z)$, provided α and β are arbitrary complex numbers.

It is clear that $S(1 ; x)=\mathbb{C} \backslash[1, \infty), S(-1 ; x)=\mathbb{C} \backslash(-\infty,-1]$ for $x \in$ $(-1,1)$ and, moreover, that

[^0]$$
\left(\frac{1-\zeta}{1-x}\right)^{\alpha}=\frac{(1-\zeta)^{\alpha}}{(1-x)^{\alpha}},\left(\frac{1+\zeta}{1+x}\right)^{\beta}=\frac{(1+\zeta)^{\alpha}}{(1+x)^{\beta}}
$$
for $\zeta \in S(1 ; x) \cap S(-1 ; x)=\mathbb{C} \backslash\{(-\infty,-1)] \cup[1, \infty)\}$ and $x \in(-1,1)$.
Proposition 1. Let γ be a rectifiable Jordan curve such that $\gamma \cup$ int $\gamma \subset$ $\mathbb{C} \backslash l(1 ; z) \cup l(-1 ; z)$, where $z \neq-1,1$, and $\operatorname{ind}(\gamma ; z)=1$. Then
\[

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(z)=\frac{1}{2 \pi i} \int_{\gamma}\left\{\frac{\zeta^{2}-1}{2(\zeta-z)}\right\}^{n}\left(\frac{1-\zeta}{1-z}\right)^{\alpha}\left(\frac{1+\zeta}{1+z}\right)^{\beta} \frac{d \zeta}{\zeta-z} \tag{1.1}
\end{equation*}
$$

\]

The above integral representation is a corollary of the Rodrigues formula for the Jacobi polynomials as well as of the Cauchy integral formulas for the derivatives of a holomorphic function.
2. A well-known fact is that there exists unique complex-valued function h holomorphic in the region $H=\mathbb{C} \backslash[-1,1]$, and such that $h^{2}(z)=z^{2}-1$ for $z \in H$ and $h(x)>0$ when $x>1$. Usually, the value of this function at any point $z \in H$ is denoted by $\sqrt{z^{2}-1}$. The function ω, defined in H as $\omega(z)=z+h(z)$, is also holomorphic in H. Moreover, $\omega(z) \neq 0$ and $\left(\omega(z)+(\omega(z))^{-1}\right) / 2=z$ when $z \in H$, i.e. $\omega(z)$ is an inverse of the Zhukovski function $z=\left(\omega+\omega^{-1}\right) / 2$. As it is well-known, the last one is univalent in the domain $D=\{\omega:|\omega|>1\}$ and maps it onto H. Hence, the function ω maps H onto D. Since $\lim _{z \rightarrow \infty} \omega(z)=\infty, \omega$ is a meromorphic function in the region $\overline{\mathbb{C}} \backslash[-1,1]$ with a (simple) pole at the point of infinity.

If $z \in H$, then we define the function $p(z . w)$ in the disk, $U\left(0 ;|\omega(z)|^{-1}\right)$ by the requirements $p^{2}(z, w)=1-2 z w+w^{2}$ and $p(z, 0)=1$. We denote this function by $\sqrt{1-2 z w+w^{2}}$. Its existence follows from the fact that the disk $U\left(0 ;|\omega(z)|^{-1}\right)$ is a simply connected region and $1-2 z w+w^{2} \neq 0$ whenever w is in this disk, and $z \in H$. Indeed, the equality $1-2 z w+w^{2}=0$ implies $w=\omega(z)$ or $w=(\omega(z))^{-1}$ which is impossible.

Let us note that the function $1+p(z, w)$ does not vanish in the disk $U\left(0 ;|\omega(z)|^{-1}\right)$ when $z \in H$. Indeed, the equality $p\left(z_{0}, w_{0}\right)=0$ yields that $w_{0}\left(w_{0}-2 z_{0}\right)=0$ which contradicts to $p\left(z_{0}, 0\right)=p\left(z_{0}, 2 z_{0}\right)=1$. Hence,

$$
\begin{equation*}
\zeta(w)=\frac{2 z-w}{1+p(z, w)} \tag{2.1}
\end{equation*}
$$

is a holomorphic function in the disk $U\left(0 ;|\omega(z)|^{-1}\right)$ for $z \in H$.
If $w \neq 0$, then from (2.1) it follows that $\zeta(w)=(1-p(z, w)) w^{-1}$ and, hence, the equalities hold:

$$
(1-w+p(z, w))(1-\zeta(w))=2(1-z),(1+w+p(z, w))(1+\zeta(w))=2(1+z)
$$

A direct verification shows that these equalities are still valid for $w=0$. Moreover, as their implication we obtain that $1-w+p(z, w) \neq 0$ and $1+w+p(z, w) \neq 0$ for $z \in H$ and $w \in U\left(0 ;|\omega(z)|^{-1}\right)$.

We define the function $P^{(\alpha, \beta)}(z, w)$ for $z \in H$ and $w \in U\left(0 ;|\omega(z)|^{-1}\right) \backslash$ $\{0\}$ by

$$
\begin{aligned}
& P^{(\alpha, \beta)}(z, w)=\frac{2^{\alpha+\beta}}{p(z, w)(1-w+p(z, w))^{\alpha}(1+w+p(z, w))^{\beta}} \\
& \quad=\frac{2^{\alpha+\beta}}{\sqrt{1-2 z w+w^{2}}\left(1-w+p(z, w)(1+w+p(z, w))^{\beta}\right.},
\end{aligned}
$$

and assume that $P^{(\alpha, \beta)}(z, 0) \equiv 1$.
Proposition 2. For $z \in H$ and $w \in U\left(0 ;|\omega(z)|^{-1}\right)$ it holds

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta)}(z) w^{n}=P^{(\alpha)}(z, w) \tag{2.2}
\end{equation*}
$$

Proof. We note that $P^{(\alpha, \beta)}(z, w)$, as a function of w, is holomorphic in the disk $U\left(0 ;|\omega(z)|^{-1}\right)$ and, hence, by Taylor's theorem it has a power series representation centered at the origin, i.e.

$$
\begin{equation*}
P^{(\alpha, \beta)}(z, w)=\sum_{n=0}^{\infty} a_{n}^{(\alpha, \beta)}(z) w^{n} . \tag{2.3}
\end{equation*}
$$

If $0<r<|\omega(z)|^{-1}$, then for the coefficient in the right-hand side of (2.3) we have

$$
a_{n}^{(\alpha, \beta)}(z)=\frac{1}{2 \pi i} \int_{C(0 ; r)} \frac{P^{(\alpha, \beta)}(z, w)}{w^{n+1}} d w, \quad n=0,1,2, \ldots
$$

where $C(0 ; r)$ is the positively oriented circle centered at the origin and having radius r.

From $p^{2}(z, w)=1-2 z w+w^{2}$ it follows that $p_{w}^{\prime}(z, 0)=-z$, and using (2.1) we find that $\zeta^{\prime}(0)=-1+z^{2} \neq 0$ for $z \in H$. Hence, there exists a neighbourhood $U(0 ; \delta)$ with $0<\delta<|\omega(z)|^{-1}$, where the function $\zeta(w)$ is univalent. Since $\zeta(0)=0$, it is clear that for arbitrary $r \in(0, \delta)$ the image of the circle $C(0 ; r)$ by the $\operatorname{map} \zeta(w)$ is a positively oriented rectifiable Jordan curve $\gamma(z ; r)$ such that $\operatorname{ind}(\gamma(z ; r) ; z)=1$. Moreover, r can be chosen such that $\gamma(z ; r) \cup \operatorname{int} \gamma(z ; r) \subset H \cap S(1 ; z) \cap S(-1 ; z)$.

Using the representation (1.1) with $\gamma=\gamma(z ; r)$ and the equalities

$$
\frac{\zeta^{2}(w)-1}{2(\zeta(w)-z)}=\frac{1}{w}, \quad \frac{\zeta^{\prime}(w)}{\zeta(w)-z}=\frac{1}{w p(z, w)}, \quad w \in U\left(0 ;|\omega(z)|^{-1}\right) \backslash\{0\}
$$

and denoting the variable ζ by w, we obtain

$$
P_{n}^{(\alpha, \beta)}(z)=\frac{1}{2 \pi i} \int_{C(0 ; r)} \frac{P^{(\alpha, \beta)}(z, w)}{w^{n+1}} d w, \quad n=0,1,2, \ldots
$$

Hence, $a_{n}^{(\alpha, \beta)}(z)=P_{n}^{(\alpha, \beta)}(z)$ for $n=0,1,2, \ldots$. Then from (2.3) it follows that (2.2) holds in the disk $U\left(0 ;|\omega(z)|^{-1}\right)$.
3. Let $g(z)$ be the unique complex-valued function which is holomorphic in the region $G=\mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty)\}$, and such that $g^{2}(z)=z^{2}-1$ and $g(0)=1$. The function $\tau(z)$, defined as $\tau(z)=z+i g(z)$, is holomorphic and nowhere vanishing in G and, moreover, $\left(\tau(z)+(\tau(z))^{-1}\right) / 2=z$ for $z \in G$. Hence, $\tau(z)$ is an inverse of the Zhukovski function $z=\left(\tau+\tau^{-1}\right) / 2$ and as such it is univalent in the half-plane $\Im \tau>0$ and maps it onto the region G. In particular, the image of the point i is the origin. More precisely, the image of the half-plane $\Im z>0$ is the region determined by the inequalities $|\tau|<1$ and $\Im \tau>0$, while the image of the interval $(-1,1)$ is the arc of the unit circle located in the half-plane $\Im \tau>0$. The image of the half-plane $\Im z<0$ is the region determined by $|\tau|>1$ and $\Im \tau>0$.

The proof of Proposition 2 leads to the following assertion:
Proposition 3. The equality (2.2) holds for arbitrary $z \in G$ and $w \in$ $U(0 ; \rho(z))$, where $\rho(z)=\min \left(|\tau(z)|,|\tau(z)|^{-1}\right)$.

A particular case of (2.2) is the representation

$$
\sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta)}(x) w^{n}=P^{(\alpha, \beta)}(x, w),
$$

which holds for $-1<x<1$ and $|w|<1[1,10.8,(29)]$. Indeed, in this case we have that $|\tau(x)|=\left|x+i \sqrt{1-x^{2}}\right|=1$.

References

[1] H. Bateman, A. Erdélyi, Higher Transcendental Functions, I,II,III. Mc Graw-Hill, New York (1953).

[^0]: ${ }^{1}$ Partially supported by Project MM 1305 - National Science Fund, Bulgarian Ministry of Educ. Sci.

