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Abstract

We obtain the L, — L, - estimates for the fractional acoustic potentials
in R™, which are known to be negative powers of the Helmholtz operator,
and some related operators. Some applications of these estimates are also
given.
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1. Introduction

We obtain the L, — L, - estimates, and the estimates from L, into
L.+ L, for the fractional acoustic potentials A7 and some related operators.
Some applications of these estimates are also given.
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The acoustic potentials A7 are well-known in the multidimensional frac-
tional calculus as complex fractional powers, of the order —v with Re~ > 0,
of the Helmholtz operator

I+ A,

where A is the Laplace operator in R™. Together with the operator A7, we
consider the potentials A which realize the complex powers

A) = (—~A+2ib-D)""% 0<Rey<n+1, (1)

where

- 0
b-D:ijT, b; € R,
— €
7j=1
and the potentials Hy ¢ defined via Fourier transform by the equality

HJ(€) = (1€ — 1 — i0)™7/2(1 + [€))3(€), (2)

where 0 < Rey<n+1, Ref>0.

Our interest in potentials (1) is caused by the fact that their symbols
have singularities on the sphere | +b| = |b|. The case of operators of such a
kind (whose symbols have singularities “spread” over various manifolds in
R™) is the most difficult for studying their complex powers; it has been con-
sidered by now for special-type operators only. Operators (1) are connected
with the acoustic potentials by the relation

A = BT, (U) (x) = exp <—zbb’$> - (-fb') @)

Operators (2) are close to A7 in the sense that their symbols have the
same order of singularities on the unit sphere (but different orders of de-
crease at infinity). Here the following natural question arises, which ex-
plains our interest in these operators: what is the difference between the
L-characteristics L(AY) and L(H]) of the operators A7 and H,) ? (The L
- characteristic £(A) of the operator A7 is the set of all pairs (1/p,1/q) for
which this operator is bounded from L,, into Lj.)

As a matter of fact, this is the question about the influence of the
function (1 + |£])~% on mapping properties of operator (2).

We construct some convex sets in the (1/p,1/q)-plane for which the
operators under consideration are bounded from L, into L, and point out
the domains, where they are not bounded. We also obtain some L, —
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Lq+ L, - estimates for the operator AZ, which are then applied to describe
the range A;’(Lp). The importance of such a description is beyond any
doubt; it is explained by the fact that these classes can be regarded as the
natural domains of complex powers with positive real parts of the operator
—A-+2ib-D. In this connection, we note that although an explicit expression
for these complex powers was obtained in [4], the range A](Ly) has never
been described as yet.

Direct analysis of the estimates, obtained for the operators AY and H, g ,
shows that their £ — characteristics may essentially differ from each other
(see Remark 6).

In connection with fractional powers of operators, we refer, for example,
to the books [7, 13, 15]. Here we choose the approach developed in [13, 15]
(see also the survey papers [12, 10, 11, 14]), where fractional powers with
negative real parts of various differential operators in partial derivatives are
treated as the corresponding fractional potentials.

We note that some L, — L, - estimates for the operator A7, 0 < Rey <

n + 1, were established in [5]. Here we essentially complement these results

proving the L, — L, - estimates for the operator A” when (%, %) belongs

to an interval which passes through the point D = (% + 22371), % - 22?1))
orthogonally to the line of duality 1/p + 1/¢ = 1 (so far only the relation
D e L(AY), 0 < v < n+ 1, has been proved; see [9]). This allows us, in
particular, to describe the L-characteristic of the operator A” in the case
of real 7, v > 1, v # 2,4,... (see Remark 2). We also note that the range
AY(L,) was described in [5] for 0 < Re~y < 2.

We observe that the principal difficulties, which arise when studying
mapping properties of operator (2), are caused by the following reason.
It seems impossible to establish a suitable integral representation for this
operator convenient for obtaining the L, — L, — estimates. To overcome
these difficulties, we split Hg into a sum of the acoustic potential and some
multiplier operators with the known £ — characteristics and then apply the

results obtained for the operator A”.

2. Main results and some comments

Throughout the paper, the symbol (A, B, ..., K) denotes the open poly-
gon in R? with the vertices at the points A, B,..., K; [A, B, ..., K] stands
for its closure.
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For 0 < Rey < n+ 1, we put

e 1’1_n—Rey+1 A= Rey%—n—l)o 7
2n 2n

-(1_ (n+1)2+Rey(n—1) n—Rey+1
B 2n(n +1) ’ 2n ’

B - Rey+n—-1 (n—1)(n—Revy+1)
B 2n ’ 2n(n +1) ’

1 Rey 1 Re~
D= (= - E=(1,0
<2+2(n+1)’2 2(n+1)>’ (1,0),

(n—Rey+1)(n—1) n—Rey+1
G=(1- ) )
2n(n + 3) 2n

o Rey4+n—1 (n—Rey+1)(n—1)
N 2n ’ 2n(n + 3) ’

I7— n—Rey+1 n—Rey+1 I n+Rey—1 n+Rey—1
N 2n ’ 2n ’ N 2n ’ 2n ’

K— 1+Refy71 ’ K L}_Rev ’
2 n+1°2 2°'2 n+1

L:(l,l—Rev), L’=<R27,o>, 0=(11), O =(0,0).

n

To formulate the main statements, we introduce the following sets (see also
Picture 1):

Li( (A,B',B,A,E)U (A,E]U(AJE], 1<Rey<n+1

PN (L6 KK, G A E) U (A B U (AL E], 0 < Rey < 1;
Li(y,n)U[K',K], 0<Rey<1

LT(W?”): Ll(’Y,TL)U(B/,B), 1§’7<n7 77&1727"'7771_1
Li(y,n), 1<Rey<n+1Im~y+#0;

Lo(y,n) = [0,0",L, L' \ {L'}U{L}) if 0 < Rey < n, La(y,n) =
[0, 0, E] if either n < Rey <n+1or Rey =n,Im~v # 0, and Ly(y,n) =
[0, 0,E|\{E} if vy =n.
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The following theorem provides the L, — L, - estimates for the acoustic
potential

(A7) () = /Rn hy(lyDp(z — y) dy,

where )
J—n
ha () = ool =" HLL, (lo)).
“n)j2 1-nj2__ "t 1)y .
Cnpy = ov=n)/2p1-n/2___~__ " [iY)(2) is the Hankel function of the first
" o
md.

THEOREM 1. Let 0 < Rey <n+ 1. Then
L(AY) D L} (v,1) N La(v,n). (4)

We also indicate the domains in the (1/p, 1/q) plane where the operator
A7 is not bounded from L, into L,.

REMARK 1. ([5]) The L - characteristic £(AY) does not contain the
points of the sets La(v,n), [A, H,O], and [A’, H',O'] and the points above
the straight line BB if 0 <y <n+ 1.

In the case v = n, the point {E'} does not belong to L£(AY) also.

REMARK 2. From Theorem 1 and Remark 1 we deduce that in the
case 1 <y <n+1, v#24,..., the L - characteristic L(A?) is exactly the
set LT (y,m) N La(v,n).

The next theorem provides the L, — L, - estimates for operator (2).
THEOREM 2. Let 0 < Rey <n+ 1. Then
L(H) D Li (y,n) N La(0 +7/2,n). (5)

Moreover, L(H,) does not contain the points of the set Ly(0 + ~v/2,n) if

Revy(n—1
Reﬁ > %

REMARK 3. The inequality Red > % means that the straight

line L'L lyes below B’B (see Picture 1). Thus, the intersection of the sets
on the right-hand side of (5) is always not empty in this case.

REMARK 4. Imbedding (5) means that the operator Hy, initially de-
fined on functions in the Schwartz class S, is extended to the whole space
L, to a bounded operator from L,, into L, if

(1/p,1/q) € Li(y,n) N L2(0 +v/2,n).
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In the rest of this section we state some results on the operator A;. In
view of (3), the operator AZ has the same boundedness properties as A7
has, that is,

L(A}) = L(A7)

and the L, — L, 4+ Ly - estimates for AZ and A” are also the same. We
apply these estimates to describe the range A/ (L) in terms of the operator
N, (left) inverse to Aj.

We observe that the inversion of potentials f = A)p, ¢ € Ly, 0 <

Rey<n+1l,1<p< mf?igv—v was constructed in [4] in the form
¥ (L.P,#) ~
N f(z) = lim Ny f()
(L.ZLH) n + Re,y B 1
- iﬂ% . Nove) flx —y)dy, p> D, (6)

where Ny (z) = |b|”+'Yeib‘”S€ﬂ(]b]x),

(2m)"2 /oo P e
S = T e . — Y (TP VR
57’7(1:) ‘:L’|n52 0 € <t2 i (€+l)2)n 72( |I’|)

the limit in L, ,-norm in (6) can be replaced with the almost everywhere
limit.
To formulate the corresponding result, we denote

1 (Rey—1)(n+3)(n+1—2nRe~) . +1
1) 2T DBt —Rey(nZ+on+1) if 0 <Rey <17,
1 R, 1 : 1
po(7) 14 By Lojf il <Rey<2.

We note that the number 1/pg(y) is the abscissa of the point, where the
straight line 1/g = (n — 1)/(2n) meets the straight lines B’B and K'G’ in
the cases (n+1)/(2n) < Rey < 2and 0 < Rey < (n+1)/(2n), respectively.

THEOREM 3. Let 0 < Re~y < 2. Suppose that 1/p € [1/po(), 1] if either
l1<~y<2o0r(n+1)/(2n) < Rey < 1 and 1/p € (1/po(7), 1] otherwise.
Then

A} (Ly) ={f €Lgy+ Ly : N)feLp}, (7)

where qi1, g2 are such numbers that 2n/(n + 1) < ¢} and ¢4 < oo and the
operator A} is bounded from Ly, into Lq, + Ly, (see Corollary 1 below).



Lp — Lg - ESTIMATES FOR THE FRACTIONAL ... 161

3. Preliminaries
3.1. Notation

In the sequel, besides the above notation, we shall also use the following:
S"~1 is the unit sphere in R"; Rg = {p: ¢ = Ff, f € L1} is the Wiener
ring; Ly, = {f(x): (1+ |z|?)""/? f(x) € L,}. Following [3], we denote by
L} the space of all distributions k& € S’ such that ||k * f||; < C| f||p, where
f €S, the constant C' > 0 not depending on f. The Fourier dual space
F(L}) is denoted by M.

3.2. Analyticity of an integral depending on a parameter

The following lemma is taken from [13] (Lemma 1.31).

LEMMA 1. Let f(x,z) be an analytic function in the domain D C C for
almost all x € Q C R™. If f(x, z) admits an integrable dominant:

m(x) = sup |f(z,2)| € L1(Q),
z€D

then
F(z):/ﬂf(x,z)dx

is an analytic function in D.

3.3. Some estimates for the acoustic potential
and the operator A]

We need the following two theorems proved in [5].
THEOREM 4. Let 0 < Rey <n+ 1. Then
[’(A’Y) DLy (77”) N LQ(W/?”)

if 0 < Rey < mn,
L(AY) D Ly (v,n)

if either n < Rey <n+1 or Rey =n and Im~ # 0,
L(AY) D L1 (v,n) \ {E}

if v =mn.
In the case of real v, the relation {D} € L(A") holds.
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THEOREM 5. Let 0 < Rey <n+1,1<p<2n/(n+Rey—1). Then
the operator A7 is bounded from L, into Lg + Lg,, where ¢ and g2 are
such that

1) (1/p,1/q1) € L1 (v,n) and (1/p,1/q2) € La(v,n)
if0 < Rey <n and Im~ # 0,

2) (1/p,1/q1) € L1 (v,n) U{D} and (1/p,1/q2) € La(v,n)
if0<vy<mn,

3) (1/p,1/q1) € Ly (v,n)and p < g2 < 00
ifn<y<n+1,

4) (1/p,1/q1) € L1 (v,n) U{D} and p < g2 < o0
if either n < Rey <n+ 1 or Rey =n and Im~ # 0,

5) the conditions of item 3) are fulfilled, except for the case p = 1, in
which we assume that 1 < go < o0 if v =n.

In view of (3), we have

THEOREM 6. Let 0 < Rey <n+ 1,1 <p < 2n/(n+ Rey—1). The
statement of Theorem 5 is also valid for the operator Az.

COROLLARY 1. Let the conditions of Theorem 3 be fulfilled. Then there
exist such numbers ¢, g2 € [1, %) that the operator A} is bounded from

L, into Ly, + Ly,.
3.4. Estimates for the Bochner-Riesz operators

We consider the Bochner-Riesz operator

(B2p)(z) = / |2 T oyl (@ — y) dy, 0 < Rey <n+1, (8)
Rn

where J,,(2) is the Bessel function of the order v.
The following statement was proved in [6] (see also [2] and [4] for some
estimates in the case of real ).
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THEOREM 7. Let 0 < Rey < n+ 1. The imbedding

Li(y,n) if Imvy #0
L(B"?) > { (9)
Li(y,n)U{D} if Imy=0

is valid.

3.5. On some conditions of absolute integrability
of Fourier integrals

The following theorems are taken from [16].

THEOREM 8. Let f(z) € CN(R"), N = [n/2] + 1, and let there exist
constants C > 0 and 6 > 0 such that

DY f(z)| < Cle| 07V, 2 e R,

for all 1 < j < N. Then f(x) € Ryo.

THEOREM 9. Let f(x) € CN(R"\ {0}), N = [n/2] + 1, have a compact
support and ' '
D7 f ()] < Cla’~V, 2 e R\ {0},

for all 1 < j < N. Then f(x) € Ryo.
4. Some auxiliary statements

4.1. Boundedness results for some multiplier operators

We need the following lemmas.

LEMMA 2. Let m(§) € My for some (pg,qo), 1 < po < qo < oo, and let
w(€) € CP(R™). Then m(&)w(€) € My for all (p,q) such that 1 < p < pg
and gp < ¢ < .

This statement follows from the relation m(§)w(§) € MJY and the con-
vexity and duality arguments.

LEMMA 3. Let the function ¥ (r) € C*°(0,00), be such that 0 < ¥ (r) <
L(r) =0ifr < 1and ¢(r) = 1ifr > 2. Set ky = F~1 (¢(|¢))[€]7),
0 < Re\ < n, where the inverse Fourier transform is treated in the S’ -
sense. Then ky € L} if and only if (1/p,1/q) € La(\,n).
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P roof. The “if” part is derived from the fact that the distribution kj
agrees with the function ky(z) which possess the following properties:

kx(|z]) is smooth in R™ \ {0} and for every M > 0,

[Ex(|z])] < Cla] " as |a] — oo,

E(jal) = 247720 (3) /D (252l + ual),
where u(r) is a smooth function (see [8] for the case of real 7; the case of
complex 7 is considered in the same way).

The “only if” part follows from the fact that the kernel yi(y)|y|*™"
does not belong to L} if (1/p,1/q) € [O', O, E]\ La2(A, n), where x1(y) is the
characteristic function of the unit ball in R”. [

Proceeding, we establish some L, — L, - estimates for the Bochner-
Riesz operator (8) and the operator

(@) a) = (A)a) = PGB (B @), (10)

The corresponding results are contained in Theorems 10 — 12, which provide

the boundedness of the mentioned operators from L, into L, when <1 1

P’ a
belongs to the interval which passes through the point {D} orthogonally to
the line of duality.

4.2. Estimates for the Bochner-Riesz operator
and the operator G/2

We start with the case of the Bochner-Riesz operator.

THEOREM 10. The following imbeddings are valid:
[K',K] C L(B'?), 0<Rey<1, (11)
(B',B)C L(B?), 1<~y<n+1. (12)

Proof. Imbeddings (11), (12) were proved in [1] in the cases 0 < v < 1
and 1 < v < n+ 1, respectively. Thus, it remains to prove (11) in the
case of complex v, 0 < Re~vy < 1. To this end, it suffices to verify that
{K} € L(B"/?), 0 < Rey < 1. Equivalently, we need to prove the estimate

1B 205 < Cllollp, (13)

where ¢ € Ly, 1/p =1/2+ Re~y/(n + 1), the constant C' not depending on
©.
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Together with operator (8), we consider the corresponding multiplier
27/2(2)n/2 1 2\—7/2

T'(1—v/2) ( _‘fy )+ :

We first establish (13) for ¢ € S. In view of the relation

operator B2 with the symbol

(1
(

_ 2
2

~—

~

(Bio)(x) = F N1~ 67,7 BE) @), pes.  (14)

o —

22 (27

~—
|3

it suffices to prove the estimate
1B ?¢ll2 < Cllgllp, @ €S (15)
Estimate (15) will follow from the equality
(B2, BY?p) = (BRVp 0), ¢ €8,0 <Rey < 1. (16)

Let us prove (16). Applying the Parseval equality, we obtain

B2, B0 = em) [ R0 -1ERds (D

On the other hand, for 0 < Re 3 < 1/2 we have

(B2, 0) = (2m) " / BE)PA - |¢2)" de. (18)
RTL

As both sides of (18) are analytic with respect to 3 in the strip 0 < Re 8 < 1,
equality (18) also holds for such . Setting 5 = 2Re~y in (18), we see that
the right hand sides of (17) and (18) coincide, which yields (16).

By virtue of (16) and (14) we have

IBRYlI3 < 1Bl llelly < Cllelly. (19)

The last inequality in (19) follows from the relation {D} € L£L(BR®7) (see
[2]).

Thus, we have proved (13) for ¢ € S. As is seen from Theorem 7, the
operator B"/? is bounded from L, into L4, 0 < 1/q < 1/2, which implies
the validity of (13) for ¢ € L, as well. ]

From Theorems 7 and 10 we deduce the following statement, which is
of special interest itself.
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THEOREM 11. Let 0 < Rey <n+ 1. Then

L(B?) > Li(y,n).

THEOREM 12. Under the additional condition v # 2,4, ..., in the case

1 <y < n+1, the statement of Theorem 10 is also valid for the operator
G/2.

P r o o f. The proof of imbedding
[K', K] C £L(G"?), 0 <Reny < 1,

is much in lines with that of (11).
Let us prove the imbedding

(B'B)CLG?), 1<y<n+1, y#24,..., (20)

which is non-trivial in view of the fact that the right-hand side of (10) tends
to oo as vy — 2k.

For every fixed v € [1,n + 1) and the point (1/p,1/q) € (B’,B), 1/q+
1/p > 1, we consider the family of the operators

1 1
z) sin <"}/()(1 —z)+ n;L z>

6z‘fr(w(1—z)+z(n+1)/2)(27r)n/2
270(1=2)+z(n+1)/2

(T*9) (x) :7rw<%a—@+”+

X

(A270(172)+(n+1)z<p> (:L’) N

X (BVOU*Z)JFZ(”H)/%D) (), 0<Rez<1, ¢eC§(21)
Yo = w, 0 < v < 1, and apply to it the Stein-Weiss interpola-
tion theorem (see [17]). It is not difficult to verify that this is the family of
admissible growth in the sense of definition given in [17] (the proof is direct

and we omit it).
For every o € R we have

HTl-i—ia

<PH < ( ||hn+1+ia(n+1—270) [l oo
[ee] =

F'((n+1)/2+i0((n+1)/2 — 7))

+ 6“*”“(”*4”/2_70)Hb<n+4+4a<n+1_zvo»/zHoo>\Mle

< Ceﬂa\((nﬂ)/?f*m)H(le’ (22)
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where hn+1+ia(n+1—2'yo)(|y|) and b(n+1+ia(n+1—2'yo))/2(|y|) are the kernels of
the acoustic potential and the Bochner-Riesz operator, respectively.
Applying the same arguments as in the proof of imbedding (11) and the
estimate
I+ )|~ < e,

we have
<G70(17ia)+ia(n+1)/2(p’ G70(17i0)+io(n+1)/280>
D1 =0 +io(yo — (n+1)/2))
(G*0p, p) EESE
— ‘ ’ §C€W|U|( 5 —70) . (23
T 70+ i0(0 — (n T D/2)P Ilo: - (23)
where 1/pg = (470 +n + 1)/(2n + 2). The last inequality follows from the
relations {D} € L(A7) and {D} € L(B?/?), 0 <y < n+ 1; see Theorems 4
and 7.
Setting 1/p; = % +t, 1/q = %, t = %, and interpolating

1T ]2 =

between (22) and (23), we arrive at the inequality
1672 ¢lly < Cllellp,

where ¢ € C§°, the constant C' not depending on ¢. As the operator G/?
is bounded from L, into L,, 1/p —vy/n < 1/r < 1/q, by virtue of Theorems
7 and 4, this estimates also holds for ¢ € L.

Thus, we have proved the boundedness of operator (10) from L, into L,
for the points (1/p,1/q) € (B’, B) such that 1/p+1/q > 1. We obtain (20)
due to duality. [ ]

REMARK 5. In the case v = 2,4,..., the question about the validity
of imbedding (12) remains open.
5. Proof of the main results
5.1. Proof of Theorem 1
The statement of Theorem 1 follows from Theorems 4, 10, 12 and equal-

ity (10).
5.2. Proof of Theorem 2

P r o o f. The operator

1
(2m)"

(H39) (@) = Gy [ (61=1 =102+ €)' B (2)
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is well-defined on functions in S if 0 < Revy < 2. In the case Rey > 2,
the integral on the right-hand side of (24) is treated in the sense of analytic
continuation into the domain Q, = {y € C: 0 < Rey <n+1,v#2,4,...},
which can be constructed as follows:

Y ) = (27‘—)7” o 1 L—v/2
) 0= gy gy 01

AN p(a-0)
-~ —ip(x-o
- (dp) ((1 +p)? /Sn—l Ploo)e dg) .

where ¢ = [%‘1] +1. We observe that both sides of this equality are analytic
in Q, in view of Lemma 1.

Let the functions x(r) and w(r) be such that x(r),w(r) € C*(0,400),
0<x(r),w(r) <1, x(r)=1ifr >2N and x(r) =0if r < N; w(r) = 1if
r€[1—-9/2,1+40/2] and w(r) = 0 otherwise (here §, N > 0 and 146 < N).

We base ourselves on the following representation for the symbol &) (|£])
of the operator Hy':

hy(€) = x(ENIE] = 1 —i0) /(1 +|¢])
+w(lE) (€] = 1= i0)772(1 4 1¢))~°
H(1 = x(EN) (L —w(€N) (€] — 1 —i0) 72 (1 + &)~
= my p(1€]) + 140 (I€]) + Ly 0 (I€])- (25)

In accordance with (25), in the Fourier pre-images we have

(Hj¢) (x) = (MJp) (x) + (Nj¢) (z) + (L) (x), ¢ € 8,7 € Qy,  (26)

where M/, NJ, and L] are the multiplier operators with the symbols
m~.0(1&]), ny,0(1€]), and 1, g(|€]), respectively.

In the case Rey > 2, the integral (Ngcp) (x) is treated in the sense of
analytic continuation into the domain €2, which is constructed in just the
same way as that of the integral (Hy ) (z):

)" 1+6
(Njp) (z) = = '25)2)(6— 5 /1—5 (p—1—i0)—/2

Note that both sides of this equality are analytic in €2, in view of Lemma 1.
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In order to obtain the estimates for the operator N, (on functions in
S), we represent it as

(Nj¢) () = (A7A, 00) (2), 7 € Qs (27)
where A, g is the convolution operator with the kernel a9 € S for which

iy o(I€]) = w(l€N (1 + [¢)) =0T/,
Equality (27) is derived from the following one:

(g = 1= i0) (e + 1) TR(E) ) ()

- (ABA%mp) (z), ¢€S, (28)

B € Qp,xz € R*. (In the case § > 2 the Fourier integral on the left-hand
side of (28) is treated in the sense of analytic continuation.)

Let us prove (28). In the case 0 < Re 8 < 1, this equality is verified via
Fourier transform in the Lo - sense. Since both sides of (28) are continuous
throughout R”, it is valid for every x € R™. We fix x € R” and note that
both sides of (28) are analytic (with respect to ) in {23 in view of Lemma
1, hence this equality holds for such g.

Setting § =~ in (28), we arrive at (27).

From equality (27), Theorem 4, and Lemma 2 we obtain

L(Ng) D Li(y,n). (29)

Now we consider the remaining multipliers on the right-hand side of
(25). Asly9(|¢]) € RoN Ly (the relation Iy 4(|£|) € Ry is easily verified with
the aid of Theorem 8, we have

L(Ly) =[0',0, E]. (30)
Applying the Taylor formula, we represent the symbol of the operator
M, in the form
(|£ —z7r /2
(|§D ’5‘7/2+0 K Z ‘5’] + rm ’5‘ )

where m =n+1+4[(n —3)/2 —Re~y — Re 6]. We note that the multiplier
x(1ENNEI~ 72407, (|€]) belongs to Ly; it is also in R by virtue of Theorem
9. From here and Lemma 3, we have

myo([€]) € Myl <= (1/p,1/q) € L2 (v/2+0). (31)

From (29) - (31) we derive (5). The second statement of Theorem 2 is
also evident. =
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REMARK 6. In order to illustrate the essential difference between the
sets L(A") and L(H,), we consider two opposite situations: when 6 > ~/2
and 6 < /2 (let v and € be positive real numbers).

In the former case, the straight line M’M lies above L'L; the points
between these straight lines belong to £(H,) but they do not belong to
L(AY). (Moreover, we can state that mes£(AY) < mesL(H,)). In the
latter case, the situation is directly opposite: (M’, L', L, M) C L(A?Y) but
(M',L',L,M)NL(H,) =& (see Picture 2).

5.3. Proof of Theorem 3

Making use of Theorem 6 and Corollary 1, we have to repeat the same
arguments as in the proof of Theorem 2.2 from [5].

Acknowledgements. The authors are grateful to Professors S. G.
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