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Abstract

We obtain the Lp → Lq - estimates for the fractional acoustic potentials
in Rn, which are known to be negative powers of the Helmholtz operator,
and some related operators. Some applications of these estimates are also
given.
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1. Introduction

We obtain the Lp → Lq - estimates, and the estimates from Lp into
Lr+Ls, for the fractional acoustic potentials Aγ and some related operators.
Some applications of these estimates are also given.
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The acoustic potentials Aγ are well-known in the multidimensional frac-
tional calculus as complex fractional powers, of the order −γ with Re γ > 0,
of the Helmholtz operator

I + ∆,

where ∆ is the Laplace operator in Rn. Together with the operator Aγ , we
consider the potentials Aγ

b which realize the complex powers

Aγ
b = (−∆ + 2ib · D)−γ/2 , 0 < Re γ < n + 1, (1)

where

b · D =
n∑

j=1

bj
∂

∂xj
, bj ∈ R,

and the potentials Hγ
θ ϕ defined via Fourier transform by the equality

Ĥγ
θ ϕ(ξ) = (|ξ| − 1− i0)−γ/2(1 + |ξ|)−θϕ̂(ξ), (2)

where 0 < Re γ < n + 1, Re θ > 0.
Our interest in potentials (1) is caused by the fact that their symbols

have singularities on the sphere |ξ + b| = |b|. The case of operators of such a
kind (whose symbols have singularities “spread” over various manifolds in
Rn) is the most difficult for studying their complex powers; it has been con-
sidered by now for special-type operators only. Operators (1) are connected
with the acoustic potentials by the relation

Aγ
b = |b|−1U−1AγU, (Uϕ) (x) = exp

(
−i

b · x
|b|

)
ϕ

(
−i

x

|b|
)

. (3)

Operators (2) are close to Aγ in the sense that their symbols have the
same order of singularities on the unit sphere (but different orders of de-
crease at infinity). Here the following natural question arises, which ex-
plains our interest in these operators: what is the difference between the
L-characteristics L(Aγ) and L(Hγ

θ ) of the operators Aγ and Hγ
θ ? (The L

- characteristic L(A) of the operator Aγ is the set of all pairs (1/p, 1/q) for
which this operator is bounded from Lp into Lq.)

As a matter of fact, this is the question about the influence of the
function (1 + |ξ|)−θ on mapping properties of operator (2).

We construct some convex sets in the (1/p, 1/q)-plane for which the
operators under consideration are bounded from Lp into Lq and point out
the domains, where they are not bounded. We also obtain some Lp →
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Lq + Lr - estimates for the operator Aγ
b , which are then applied to describe

the range Aγ
b (Lp). The importance of such a description is beyond any

doubt; it is explained by the fact that these classes can be regarded as the
natural domains of complex powers with positive real parts of the operator
−∆+2ib·D. In this connection, we note that although an explicit expression
for these complex powers was obtained in [4], the range Aγ

b (Lp) has never
been described as yet.

Direct analysis of the estimates, obtained for the operators Aγ and Hγ
θ ,

shows that their L – characteristics may essentially differ from each other
(see Remark 6).

In connection with fractional powers of operators, we refer, for example,
to the books [7, 13, 15]. Here we choose the approach developed in [13, 15]
(see also the survey papers [12, 10, 11, 14]), where fractional powers with
negative real parts of various differential operators in partial derivatives are
treated as the corresponding fractional potentials.

We note that some Lp → Lq - estimates for the operator Aγ , 0 < Re γ <
n + 1, were established in [5]. Here we essentially complement these results
proving the Lp → Lq - estimates for the operator Aγ when

(
1
p , 1

q

)
belongs

to an interval which passes through the point D =
(

1
2 + Re γ

2(n+1) ,
1
2 − Re γ

2(n+1)

)

orthogonally to the line of duality 1/p + 1/q = 1 (so far only the relation
D ∈ L(Aγ), 0 < γ < n + 1, has been proved; see [9]). This allows us, in
particular, to describe the L-characteristic of the operator Aγ in the case
of real γ, γ ≥ 1, γ 6= 2, 4, . . . (see Remark 2). We also note that the range
Aγ(Lp) was described in [5] for 0 < Re γ < 2.

We observe that the principal difficulties, which arise when studying
mapping properties of operator (2), are caused by the following reason.
It seems impossible to establish a suitable integral representation for this
operator convenient for obtaining the Lp → Lq – estimates. To overcome
these difficulties, we split Hγ

θ into a sum of the acoustic potential and some
multiplier operators with the known L – characteristics and then apply the
results obtained for the operator Aγ .

2. Main results and some comments

Throughout the paper, the symbol (A,B, . . . , K) denotes the open poly-
gon in R2 with the vertices at the points A,B, . . . , K; [A,B, . . . , K] stands
for its closure.
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For 0 < Re γ < n + 1, we put

A =
(

1, 1− n− Re γ + 1
2n

)
, A′ =

(
Re γ + n− 1

2n
, 0

)
,

B =
(

1− (n + 1)2 + Re γ(n− 1)
2n(n + 1)

,
n− Re γ + 1

2n

)
,

B′ =
(

Re γ + n− 1
2n

,
(n− 1)(n− Re γ + 1)

2n(n + 1)

)
,

D =
(

1
2

+
Re γ

2(n + 1)
,
1
2
− Re γ

2(n + 1)

)
, E = (1, 0),

G =
(

1− (n− Re γ + 1)(n− 1)
2n(n + 3)

,
n− Re γ + 1

2n

)
,

G′ =
(

Re γ + n− 1
2n

,
(n− Re γ + 1)(n− 1)

2n(n + 3)

)
,

H =
(

n− Re γ + 1
2n

,
n− Re γ + 1

2n

)
, H ′ =

(
n + Re γ − 1

2n
,
n + Re γ − 1

2n

)
,

K =
(

1
2

+
Re γ

n + 1
,
1
2

)
, K ′ =

(
1
2
,
1
2
− Re γ

n + 1

)
,

L =
(

1, 1− Re γ

n

)
, L′ =

(
Re γ

n
, 0

)
, O = (1, 1), O′ = (0, 0).

To formulate the main statements, we introduce the following sets (see also
Picture 1):

L1(γ, n) =

{
(A′, B′, B, A,E) ∪ (A,E] ∪ (A′, E], 1 ≤ Re γ < n + 1

(A′, G′,K ′,K, G,A, E) ∪ (A,E] ∪ (A′, E], 0 < Re γ < 1;

L∗1(γ, n) =





L1(γ, n) ∪ [K ′,K], 0 < Re γ < 1
L1(γ, n) ∪ (B′, B), 1 ≤ γ < n, γ 6= 1, 2, . . . , n− 1
L1(γ, n), 1 < Re γ < n + 1, Im γ 6= 0;

L2(γ, n) = [O, O′, L, L′] \ ({L′} ∪ {L}) if 0 < Re γ < n, L2(γ, n) =
[O′, O,E] if either n < Re γ < n + 1 or Re γ = n, Im γ 6= 0, and L2(γ, n) =
[O′, O,E] \ {E} if γ = n.
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The following theorem provides the Lp → Lq - estimates for the acoustic
potential

(Aγϕ)(x) =
∫

Rn

hγ(|y|)ϕ(x− y) dy,

where
hγ(|y|) = ζn,γ |y|

γ−n
2 H

(1)
n−γ

2

(|y|),

ζn,γ = 2(γ−n)/2π1−n/2 i

Γ(γ/2)
, H

(1)
ν (z) is the Hankel function of the first

kind.

Theorem 1. Let 0 < Re γ < n + 1. Then

L(Aγ) ⊃ L∗1 (γ, n) ∩ L2(γ, n). (4)

We also indicate the domains in the (1/p, 1/q) plane where the operator
Aγ is not bounded from Lp into Lq.

Remark 1. ([5]) The L - characteristic L(Aγ) does not contain the
points of the sets L2(γ, n), [A,H, O], and [A′, H ′, O′] and the points above
the straight line B′B if 0 < γ < n + 1.

In the case γ = n, the point {E} does not belong to L(Aγ) also.

Remark 2. From Theorem 1 and Remark 1 we deduce that in the
case 1 ≤ γ < n+1, γ 6= 2, 4, . . . , the L - characteristic L(Aγ) is exactly the
set L∗1 (γ, n) ∩ L2(γ, n).

The next theorem provides the Lp → Lq - estimates for operator (2).

Theorem 2. Let 0 < Re γ < n + 1. Then

L(Hγ
θ ) ⊃ L∗1 (γ, n) ∩ L2(θ + γ/2, n). (5)

Moreover, L(Hγ
θ ) does not contain the points of the set L2(θ + γ/2, n) if

Re θ > Re γ(n−1)
2(n+1) .

Remark 3. The inequality Re θ > Re γ(n−1)
2(n+1) means that the straight

line L′L lyes below B′B (see Picture 1). Thus, the intersection of the sets
on the right-hand side of (5) is always not empty in this case.

Remark 4. Imbedding (5) means that the operator Hγ
θ , initially de-

fined on functions in the Schwartz class S, is extended to the whole space
Lp to a bounded operator from Lp into Lq if

(1/p, 1/q) ∈ L∗1(γ, n) ∩ L2(θ + γ/2, n).
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In the rest of this section we state some results on the operator Aγ
b . In

view of (3), the operator Aγ
b has the same boundedness properties as Aγ

has, that is,
L(Aγ

b ) = L(Aγ)

and the Lp → Lr + Ls - estimates for Aγ
b and Aγ are also the same. We

apply these estimates to describe the range Aγ
b (Lp) in terms of the operator

Nγ
b (left) inverse to Aγ

b .
We observe that the inversion of potentials f = Aγ

b ϕ, ϕ ∈ Lp, 0 <
Re γ < n + 1, 1 ≤ p < 2n

n+Re γ−1 , was constructed in [4] in the form

Nγ
b f(x) =

(Lp,µ)

lim
ε→0

Nγ
b,εf(x)

=
(Lp,µ)

lim
ε→0

∫

Rn

Nγ,b,ε(y)f(x− y)dy, µ >
n + Reγ − 1

2
p, (6)

where Nγ,b,ε(x) = |b|n+γeib·xSε,γ(|b|x),

Sε,γ(x) =
(2π)−

n
2

|x|n−2
2

∫ ∞

0
tn/2e−εt2 (t2 − 1)n+γ/2

(t2 + (ε + i)2)n
Jn−2

2
(t|x|)dt;

the limit in Lp,µ-norm in (6) can be replaced with the almost everywhere
limit.

To formulate the corresponding result, we denote

1
p0(γ)

=





1
2 + (Re γ−1)(n+3)(n+1−2n Re γ)

2n((n+1)(3n+1)−Re γ(n2+6n+1))
if 0 < Re γ < n+1

2n ,

1
2 + Re γ

n+1 − 1
2n if n+1

2n ≤ Re γ < 2.

We note that the number 1/p0(γ) is the abscissa of the point, where the
straight line 1/q = (n − 1)/(2n) meets the straight lines B′B and K ′G′ in
the cases (n+1)/(2n) ≤ Re γ < 2 and 0 < Re γ < (n+1)/(2n), respectively.

Theorem 3. Let 0 < Re γ < 2. Suppose that 1/p ∈ [1/p0(γ), 1] if either
1 ≤ γ < 2 or (n + 1)/(2n) ≤ Re γ < 1 and 1/p ∈ (1/p0(γ), 1] otherwise.
Then

Aγ
b (Lp) = {f ∈ Lq1 + Lq2 : Nγ

b f ∈ Lp}, (7)

where q1, q2 are such numbers that 2n/(n + 1) < q′1 and q′2 ≤ ∞ and the
operator Aγ

b is bounded from Lp into Lq1 + Lq2 (see Corollary 1 below).
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3. Preliminaries

3.1. Notation

In the sequel, besides the above notation, we shall also use the following:
Sn−1 is the unit sphere in Rn; R0 = {ϕ : ϕ = Ff, f ∈ L1} is the Wiener
ring; Lp,µ = {f(x) : (1 + |x|2)−µ/2 f(x) ∈ Lp}. Following [3], we denote by
Lq

p the space of all distributions k ∈ S′ such that ‖k ∗ f‖q ≤ C‖f‖p, where
f ∈ S, the constant C > 0 not depending on f . The Fourier dual space
F (Lq

p) is denoted by M q
p .

3.2. Analyticity of an integral depending on a parameter

The following lemma is taken from [13] (Lemma 1.31).

Lemma 1. Let f(x, z) be an analytic function in the domain D ⊂ C for
almost all x ∈ Ω ⊆ Rn. If f(x, z) admits an integrable dominant:

m(x) := sup
z∈D

|f(x, z)| ∈ L1(Ω),

then

F (z) =
∫

Ω
f(x, z)dx

is an analytic function in D.

3.3. Some estimates for the acoustic potential
and the operator Aγ

b

We need the following two theorems proved in [5].

Theorem 4. Let 0 < Re γ < n + 1. Then

L(Aγ) ⊃ L1 (γ, n) ∩ L2(γ, n)

if 0 < Re γ < n,
L(Aγ) ⊃ L1 (γ, n)

if either n < Re γ < n + 1 or Re γ = n and Im γ 6= 0,

L(Aγ) ⊃ L1 (γ, n) \ {E}

if γ = n.
In the case of real γ, the relation {D} ∈ L(Aγ) holds.
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Theorem 5. Let 0 < Re γ < n + 1, 1 ≤ p < 2n/(n + Re γ − 1). Then
the operator Aγ is bounded from Lp into Lq1 + Lq2 , where q1 and q2 are
such that

1) (1/p, 1/q1) ∈ L1 (γ, n) and (1/p, 1/q2) ∈ L2(γ, n)

if 0 < Re γ < n and Im γ 6= 0,

2) (1/p, 1/q1) ∈ L1 (γ, n) ∪ {D} and (1/p, 1/q2) ∈ L2(γ, n)

if 0 < γ < n,

3) (1/p, 1/q1) ∈ L1 (γ, n)and p ≤ q2 ≤ ∞
if n ≤ γ < n + 1,

4) (1/p, 1/q1) ∈ L1 (γ, n) ∪ {D} and p ≤ q2 ≤ ∞
if either n < Re γ < n + 1 or Re γ = n and Im γ 6= 0,

5) the conditions of item 3) are fulfilled, except for the case p = 1, in
which we assume that 1 ≤ q2 < ∞ if γ = n.

In view of (3), we have

Theorem 6. Let 0 < Re γ < n + 1, 1 ≤ p < 2n/(n + Re γ − 1). The
statement of Theorem 5 is also valid for the operator Aγ

b .

Corollary 1. Let the conditions of Theorem 3 be fulfilled. Then there
exist such numbers q1, q2 ∈

[
1, 2n

n−1

)
that the operator Aγ

b is bounded from

Lp into Lq1 + Lq2 .

3.4. Estimates for the Bochner-Riesz operators

We consider the Bochner-Riesz operator

(Bγ/2ϕ)(x) =
∫

Rn

|y|(γ−n)/2J(n−γ)/2(|y|)ϕ(x− y) dy, 0 < Re γ < n + 1, (8)

where Jν(z) is the Bessel function of the order ν.

The following statement was proved in [6] (see also [2] and [4] for some
estimates in the case of real γ).
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Theorem 7. Let 0 < Re γ < n + 1. The imbedding

L(Bγ/2) ⊃
{

L1(γ, n) if Im γ 6= 0

L1(γ, n) ∪ {D} if Im γ = 0
(9)

is valid.

3.5. On some conditions of absolute integrability
of Fourier integrals

The following theorems are taken from [16].

Theorem 8. Let f(x) ∈ CN (Rn), N = [n/2] + 1, and let there exist
constants C > 0 and δ > 0 such that

|Djf(x)| ≤ C|x|−δ−|j|, x ∈ Rn,

for all 1 ≤ j ≤ N . Then f(x) ∈ R0.

Theorem 9. Let f(x) ∈ CN (Rn \ {0}), N = [n/2] + 1, have a compact
support and

|Djf(x)| ≤ C|x|δ−|j|, x ∈ Rn \ {0},
for all 1 ≤ j ≤ N . Then f(x) ∈ R0.

4. Some auxiliary statements

4.1. Boundedness results for some multiplier operators

We need the following lemmas.

Lemma 2. Let m(ξ) ∈ M q0
p0 for some (p0, q0), 1 ≤ p0 ≤ q0 ≤ ∞, and let

ω(ξ) ∈ C∞
0 (Rn). Then m(ξ)ω(ξ) ∈ M q

p for all (p, q) such that 1 ≤ p ≤ p0

and q0 ≤ q ≤ ∞.

This statement follows from the relation m(ξ)ω(ξ) ∈ M∞
p0

and the con-
vexity and duality arguments.

Lemma 3. Let the function ψ(r) ∈ C∞(0,∞), be such that 0 ≤ ψ(r) ≤
1, ψ(r) = 0 if r ≤ 1 and ψ(r) = 1 if r ≥ 2. Set kλ = F−1

(
ψ(|ξ|)|ξ|−λ

)
,

0 < Reλ < n, where the inverse Fourier transform is treated in the S ′ -
sense. Then kλ ∈ Lq

p if and only if (1/p, 1/q) ∈ L2(λ, n).
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P r o o f. The “if” part is derived from the fact that the distribution kλ

agrees with the function kλ(x) which possess the following properties:
kλ(|x|) is smooth in Rn \ {0} and for every M > 0,
|kλ(|x|)| ≤ C|x|−M as |x| → ∞,
kλ(|x|) = 2λπn/2Γ(λ

2 )/Γ(n−λ
2 )|x|λ−n + u(|x|),

where u(r) is a smooth function (see [8] for the case of real γ; the case of
complex γ is considered in the same way).

The “only if” part follows from the fact that the kernel χ1(y)|y|λ−n

does not belong to Lq
p if (1/p, 1/q) ∈ [O′, O,E]\L2(λ, n), where χ1(y) is the

characteristic function of the unit ball in Rn.
Proceeding, we establish some Lp → Lq - estimates for the Bochner-

Riesz operator (8) and the operator

(Gγ/2ϕ)(x) = (Aγϕ)(x)− e−iπγ/2 Γ(1− γ/2)
2γ/2(2π)n/2

(Bγ/2ϕ)(x). (10)

The corresponding results are contained in Theorems 10 – 12, which provide
the boundedness of the mentioned operators from Lp into Lq when

(
1
p , 1

q

)

belongs to the interval which passes through the point {D} orthogonally to
the line of duality.

4.2. Estimates for the Bochner-Riesz operator
and the operator Gγ/2

We start with the case of the Bochner-Riesz operator.

Theorem 10. The following imbeddings are valid:

[K ′,K] ⊂ L(Bγ/2), 0 < Re γ < 1, (11)

(B′, B) ⊂ L(Bγ/2), 1 ≤ γ < n + 1. (12)

P r o o f. Imbeddings (11), (12) were proved in [1] in the cases 0 < γ < 1
and 1 ≤ γ < n + 1, respectively. Thus, it remains to prove (11) in the
case of complex γ, 0 < Re γ < 1. To this end, it suffices to verify that
{K} ∈ L(Bγ/2), 0 < Re γ < 1. Equivalently, we need to prove the estimate

‖Bγ/2ϕ‖2 ≤ C‖ϕ‖p, (13)

where ϕ ∈ Lp, 1/p = 1/2 + Re γ/(n + 1), the constant C not depending on
ϕ.
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Together with operator (8), we consider the corresponding multiplier
operator B̃γ/2 with the symbol 2γ/2(2π)n/2

Γ(1−γ/2) (1− |ξ|2)−γ/2
+ .

We first establish (13) for ϕ ∈ S. In view of the relation

Γ(1− γ
2 )

2
γ
2 (2π)

n
2

(B
γ
2 ϕ)(x) = F−1((1− |ξ|2)−

γ
2

+ ϕ̂(ξ))(x), ϕ ∈ S, (14)

it suffices to prove the estimate

‖B̃γ/2ϕ‖2 ≤ C‖ϕ‖p, ϕ ∈ S. (15)

Estimate (15) will follow from the equality

〈B̃γ/2ϕ, B̃γ/2ϕ〉 = 〈B̃Re γϕ,ϕ〉, ϕ ∈ S, 0 < Re γ < 1. (16)

Let us prove (16). Applying the Parseval equality, we obtain

〈B̃γ/2ϕ, B̃γ/2ϕ〉 = (2π)−n

∫

Rn

|ϕ̂(ξ)|2(1− |ξ|2)−Re γ
+ dξ. (17)

On the other hand, for 0 < Reβ < 1/2 we have

〈B̃β/2ϕ,ϕ〉 = (2π)−n

∫

Rn

|ϕ̂(ξ)|2(1− |ξ|2)−β/2
+ dξ. (18)

As both sides of (18) are analytic with respect to β in the strip 0 < Reβ < 1,
equality (18) also holds for such β. Setting β = 2 Re γ in (18), we see that
the right hand sides of (17) and (18) coincide, which yields (16).

By virtue of (16) and (14) we have

‖B̃Re γϕ‖2
2 ≤ ‖B̃Re γϕ‖p′‖ϕ‖p ≤ C‖ϕ‖2

p. (19)

The last inequality in (19) follows from the relation {D} ∈ L(BRe γ) (see
[2]).

Thus, we have proved (13) for ϕ ∈ S. As is seen from Theorem 7, the
operator Bγ/2 is bounded from Lp into Lq, 0 ≤ 1/q < 1/2, which implies
the validity of (13) for ϕ ∈ Lp as well.

From Theorems 7 and 10 we deduce the following statement, which is
of special interest itself.
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Theorem 11. Let 0 < Re γ < n + 1. Then

L(Bγ/2) ⊃ L∗1(γ, n).

Theorem 12. Under the additional condition γ 6= 2, 4, . . . , in the case
1 ≤ γ < n + 1, the statement of Theorem 10 is also valid for the operator
Gγ/2.

P r o o f. The proof of imbedding

[K ′,K] ⊂ L(Gγ/2), 0 < Re γ < 1,

is much in lines with that of (11).
Let us prove the imbedding

(B′, B) ⊂ L(Gγ/2), 1 ≤ γ < n + 1, γ 6= 2, 4, . . . , (20)

which is non-trivial in view of the fact that the right-hand side of (10) tends
to ∞ as γ → 2k.

For every fixed γ ∈ [1, n + 1) and the point (1/p, 1/q) ∈ (B′, B), 1/q +
1/p > 1, we consider the family of the operators

(T zϕ) (x) = π−1Γ
(

γ0(1− z) +
n + 1

2
z

)
sin

(
γ0(1− z) +

n + 1
2

z

)

×
(
A2γ0(1−z)+(n+1)zϕ

)
(x)− eiπ(γ0(1−z)+z(n+1)/2)(2π)n/2

2γ0(1−z)+z(n+1)/2

×
(
Bγ0(1−z)+z(n+1)/2ϕ

)
(x), 0 ≤ Re z ≤ 1, ϕ ∈ C∞

0 ,(21)

γ0 = (q(1−p)+p)(n+1)
2p , 0 < γ0 < 1, and apply to it the Stein-Weiss interpola-

tion theorem (see [17]). It is not difficult to verify that this is the family of
admissible growth in the sense of definition given in [17] (the proof is direct
and we omit it).

For every σ ∈ R we have

‖T 1+iσϕ‖∞ ≤
(

‖hn+1+iσ(n+1−2γ0)‖∞
Γ ((n + 1)/2 + iσ((n + 1)/2− γ0))

+ eπ|σ|((n+1)/2−γ0)‖b(n+1+iσ(n+1−2γ0))/2‖∞
)
‖ϕ‖1

≤ Ceπ|σ|((n+1)/2−γ0)‖ϕ‖1, (22)
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where hn+1+iσ(n+1−2γ0)(|y|) and b(n+1+iσ(n+1−2γ0))/2(|y|) are the kernels of
the acoustic potential and the Bochner-Riesz operator, respectively.

Applying the same arguments as in the proof of imbedding (11) and the
estimate

|Γ(µ + iν)|−1 ≤ eπ|ν|,

we have

‖T iσϕ‖2 =
〈Gγ0(1−iσ)+iσ(n+1)/2ϕ, Gγ0(1−iσ)+iσ(n+1)/2ϕ〉

|Γ(1− γ0 + iσ(γ0 − (n + 1)/2))|2

=
〈G2γ0ϕ, ϕ〉

|Γ(1− γ0 + iσ(γ0 − (n + 1)/2))|2 ≤ Ceπ|σ|(n+1
2
−γ0)‖ϕ‖p0 , (23)

where 1/p0 = (4γ0 + n + 1)/(2n + 2). The last inequality follows from the
relations {D} ∈ L(Aγ) and {D} ∈ L(Bγ/2), 0 < γ < n + 1; see Theorems 4
and 7.

Setting 1/pt = 1−t
p0

+ t, 1/qt = 1−t
2 , t = γ−γ0

(n+1)/2−γ0
, and interpolating

between (22) and (23), we arrive at the inequality

‖Gγ/2ϕ‖q ≤ C‖ϕ‖p,

where ϕ ∈ C∞
0 , the constant C not depending on ϕ. As the operator Gγ/2

is bounded from Lp into Lr, 1/p− γ/n ≤ 1/r < 1/q, by virtue of Theorems
7 and 4, this estimates also holds for ϕ ∈ Lp.

Thus, we have proved the boundedness of operator (10) from Lp into Lq

for the points (1/p, 1/q) ∈ (B′, B) such that 1/p + 1/q > 1. We obtain (20)
due to duality.

Remark 5. In the case γ = 2, 4, . . . , the question about the validity
of imbedding (12) remains open.

5. Proof of the main results

5.1. Proof of Theorem 1

The statement of Theorem 1 follows from Theorems 4, 10, 12 and equal-
ity (10).

5.2. Proof of Theorem 2

P r o o f. The operator

(
Hγ

θ ϕ
)
(x) =

1
(2π)n

∫

Rn

(|ξ| − 1− i0)−γ/2(1 + |ξ|)−θϕ̂(ξ)e−ix·ξdξ (24)
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is well-defined on functions in S if 0 < Re γ < 2. In the case Re γ ≥ 2,
the integral on the right-hand side of (24) is treated in the sense of analytic
continuation into the domain Ωγ = {γ ∈ C : 0 < Re γ < n+1, γ 6= 2, 4, . . . },
which can be constructed as follows:

(
Hγ

θ ϕ
)
(x) =

(2π)−n

(1− γ
2 ) . . . (`− γ

2 )

∫ ∞

0
(ρ− 1− i0)`−γ/2

×
(

d

dρ

)` (
ρn−1

(1 + ρ)θ

∫

Sn−1

ϕ̂(ρσ)e−iρ(x·σ)dσ

)
dρ,

where ` =
[

n−1
2

]
+1. We observe that both sides of this equality are analytic

in Ωγ in view of Lemma 1.
Let the functions χ(r) and ω(r) be such that χ(r), ω(r) ∈ C∞(0, +∞),

0 ≤ χ(r), ω(r) ≤ 1, χ(r) = 1 if r ≥ 2N and χ(r) = 0 if r ≤ N ; ω(r) = 1 if
r ∈ [1− δ/2, 1+ δ/2] and ω(r) = 0 otherwise (here δ,N > 0 and 1+ δ < N).

We base ourselves on the following representation for the symbol hγ
θ (|ξ|)

of the operator Hγ
θ :

hγ
θ (|ξ|) = χ(|ξ|)(|ξ| − 1− i0)−γ/2(1 + |ξ|)−θ

+ω(|ξ|)(|ξ| − 1− i0)−γ/2(1 + |ξ|)−θ

+(1− χ(|ξ|))(1− ω(|ξ|))(|ξ| − 1− i0)−γ/2(1 + |ξ|)−θ

≡ mγ,θ(|ξ|) + nγ,θ(|ξ|) + lγ,θ(|ξ|). (25)

In accordance with (25), in the Fourier pre-images we have
(
Hγ

θ ϕ
)
(x) =

(
Mγ

θ ϕ
)
(x) +

(
Nγ

θ ϕ
)
(x) +

(
Lγ

θϕ
)
(x), ϕ ∈ S, γ ∈ Ωγ , (26)

where Mγ
θ , Nγ

θ , and Lγ
θ are the multiplier operators with the symbols

mγ,θ(|ξ|), nγ,θ(|ξ|), and lγ,θ(|ξ|), respectively.
In the case Re γ ≥ 2, the integral

(
Nγ

θ ϕ
)
(x) is treated in the sense of

analytic continuation into the domain Ωγ which is constructed in just the
same way as that of the integral

(
Hγ

θ ϕ
)
(x):

(
Nγ

θ ϕ
)
(x) =

(2π)−n

(1− γ
2 ) . . . (`− γ

2 )

∫ 1+δ

1−δ
(ρ− 1− i0)`−γ/2

×
(

d

dρ

)` (
ω(ρ)

ρn−1

(1 + ρ)θ

∫

Sn−1

ϕ̂(ρσ)e−iρ(x·σ)dσ

)
dρ.

Note that both sides of this equality are analytic in Ωγ in view of Lemma 1.
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In order to obtain the estimates for the operator Nγ
θ (on functions in

S), we represent it as
(
Nγ

θ ϕ
)
(x) = (AγAγ,θϕ) (x), γ ∈ Ωγ , (27)

where Aγ,θ is the convolution operator with the kernel aγ,θ ∈ S for which
âγ,θ(|ξ|) = ω(|ξ|)(1 + |ξ|)−θ+γ/2.

Equality (27) is derived from the following one:

F−1
(
(|ξ|2 − 1− i0)−β/2ω(|ξ|)(1 + |ξ|)−θ+γ/2ϕ̂(ξ)

)
(x)

=
(
AβAγ,θϕ

)
(x), ϕ ∈ S, (28)

β ∈ Ωβ, x ∈ Rn. (In the case β ≥ 2 the Fourier integral on the left-hand
side of (28) is treated in the sense of analytic continuation.)

Let us prove (28). In the case 0 < Reβ < 1, this equality is verified via
Fourier transform in the L2 - sense. Since both sides of (28) are continuous
throughout Rn, it is valid for every x ∈ Rn. We fix x ∈ Rn and note that
both sides of (28) are analytic (with respect to β) in Ωβ in view of Lemma
1, hence this equality holds for such β.

Setting β = γ in (28), we arrive at (27).
From equality (27), Theorem 4, and Lemma 2 we obtain

L(Nγ
θ ) ⊃ L1(γ, n). (29)

Now we consider the remaining multipliers on the right-hand side of
(25). As lγ,θ(|ξ|) ∈ R0∩L1 (the relation lγ,θ(|ξ|) ∈ R0 is easily verified with
the aid of Theorem 8, we have

L(Lγ
θ ) = [O′, O, E]. (30)

Applying the Taylor formula, we represent the symbol of the operator
Mγ

θ in the form

mγ,θ(|ξ|) =
χ(|ξ|)
|ξ|γ/2+θ

e−iπγ/2




m∑

j=0

Cj

|ξ|j + rm(|ξ|)

 ,

where m = n + 1 + [(n − 3)/2 − Re γ − Re θ]. We note that the multiplier
χ(|ξ|)|ξ|−(γ/2+θ)rm(|ξ|) belongs to L1; it is also in R0 by virtue of Theorem
9. From here and Lemma 3, we have

mγ,θ(|ξ|) ∈ M q
p ⇐⇒ (1/p, 1/q) ∈ L2 (γ/2 + θ) . (31)

From (29) - (31) we derive (5). The second statement of Theorem 2 is
also evident.
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Remark 6. In order to illustrate the essential difference between the
sets L(Aγ) and L(Hγ

θ ), we consider two opposite situations: when θ > γ/2
and θ < γ/2 (let γ and θ be positive real numbers).

In the former case, the straight line M ′M lies above L′L; the points
between these straight lines belong to L(Hγ

θ ) but they do not belong to
L(Aγ). (Moreover, we can state that mesL(Aγ) < mesL(Hγ

θ )). In the
latter case, the situation is directly opposite: (M ′, L′, L,M) ⊂ L(Aγ) but
(M ′, L′, L, M) ∩ L(Hγ

θ ) = ∅ (see Picture 2).

5.3. Proof of Theorem 3

Making use of Theorem 6 and Corollary 1, we have to repeat the same
arguments as in the proof of Theorem 2.2 from [5].

Acknowledgements. The authors are grateful to Professors S. G.
Samko and N. K. Karapetyants† for useful discussions of the results and
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