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Abstract

In this paper, we extend the theory of complex powers of operators to a
class of operators in Banach spaces whose spectrum lies in C \ ]−∞, 0[ and

whose resolvent satisfies an estimate
∥

∥

∥
(λ + A)−1

∥

∥

∥
≤
(

λ−1 + λm
)

M for all

λ > 0 and for some constants M > 0 and m ∈ R. This class of operators
strictly contains the class of the non negative operators and the one of
operators with polynomially bounded resolvent. We also prove that this
theory may be extended to sequentially complete locally convex spaces.
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1. Introduction

The theory of fractional powers of linear operators in Banach spaces has
been developed during the second half of the last century, both in abstract
settings and for their applications to partial differential equations. The first
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class of operators under consideration was the one of non-negative operators
introduced by A. Balakrishnan in [1]. An operator A in this class satisfies
that its resolvent set, ρ (A) , contains the interval ]−∞, 0[ and the estimate

∥

∥

∥(λ + A)−1
∥

∥

∥ ≤ M

λ
(1)

holds for all λ > 0 and some M > 0. It is proved (see [12, Prop. 1.2.1, p. 7])
that (1) may always be extended to some sector C\{z ∈ C \ {0} : |arg z| ≤ ω},
for an appropriate ω ∈ ]−π, π], so that these operators are called sectorial
as well.

During the last two decades, the theory of fractional powers has been
extended to a class of operators whose spectrum is contained in a certain
region of the complex plane and whose resolvent is uniformly bounded by a
polynomial (see [15], [17], [2]-[4], [6], [14] and [16]). This class of operators
is usually called the class of operators with polynomially bounded resolvent.

The aim of this paper is to construct a theory of complex powers for
a class of operators which strictly contains the class of the non-negative
operators and the class of operators with polynomially bounded resolvent.
Injective operators of this type have been recently studied by R. DeLauben-
fels and J. Pastor [5].

Our construction does not require the condition of injectivity and it is
based on the ideas underlying the theory of complex powers of non-negative
operators defined in a sequentially complete locally convex space (see [12,
Section 1.4 and 5.6]), and on the properties of a semigroup that it is as-
sociated with the base operator A. This paper is organized as follows. In
Section 2, we introduce the class of almost non-negative operators and give
some examples. Next, we study the spectrum of these operators and present
more theoretical examples. Section 3 is devoted to the construction of the
complex powers. In Section 4, we study some properties such as additivity
and multiplicativity and we prove that the spectral mapping theorem, in
general, does not hold. Finally, in Section 5 we prove that this theory may
be extended to a sequentially complete locally convex space.

2. Almost non-negative operators

Throughout this paper, with the exception of Section 5, the operators
which are considered are linear and defined in a complex Banach space
(X, ‖·‖). As usual, D (A) and R (A) stand for the domain and range of A,
respectively, ρ (A) is the resolvent set of A, σ (A) its spectrum, and A |Z
denotes the restriction of A to a vector subspace Z.
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Definition 2.1. The operator A : D (A) ⊆ X → X is said to be
almost non-negative if ρ (A) ⊃ ]−∞, 0[ and if there exists m ∈ R and M > 0
such that

∥

∥

∥
(λ + A)−1

∥

∥

∥
≤
(

λ−1 + λm
)

M for all λ > 0. (2)

We denote this class of operators by M (m).

Remark 2.1. Note that the class of non-negative operators coincides
with M (−1). If m > −1, then the norm of the resolvent of the operator
has a polynomial behavior when λ → +∞, but if m < −1, then we have a
polynomial behavior for λ → 0.

Remark 2.2. In the case m < −1, we only consider operators A with
0 ∈ σ (A), since if 0 ∈ ρ (A), then (λ + A)−1 is bounded for λ → 0 and
consequently A is non-negative.

Remark 2.3. Obviously, if m > m0 ≥ −1, then M (m0) ⊂ M (m),
and if m < m0 ≤ −1, then M (m0) ⊂ M (m). Consequently, for m ∈ R,
M (−1) ⊂ M (m), and if m1 < −1 and m2 > −1, then M (−1) = M (m1)∩
M (m2) .

Next, we give some examples of operators in the class M (m).

Example 2.1. The operators with polynomially bounded resolvent
considered in [15], [17], [2]-[4], [6], [14] and [16] are examples of almost non-
negative operators with 0 ∈ ρ (A) . In particular, the realization of an elliptic
differential operator in a Hölder space is not sectorial, but has polynomially
bounded resolvent. An example of this class of operators which belongs to
M (m) with −1 < m < 0, can be found in [18, Th. 1].

Example 2.2. Consider the Banach space X = C ([0, 1]) of complex-
valued continuous functions on [0, 1] endowed with the supremum norm.

The operator A = −i
d

dt
, with domain

D (A) =
{

φ ∈ X : φ
′ ∈ X, φ (0) = 0

}

,

is an example of an operator which is not sectorial but its resolvent is
uniformly bounded (see [12, Example 1.4.4, p. 28] for the details). So,
this operator belongs to M (m), m ≥ 0, its domain in not dense and its
spectrum is empty.
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Remark 2.4. If A is an injective operator and m ∈ R,then A belongs
to M (m) if and only if A−1 belongs to M (−m − 2).

It is a direct consequence from the relation
(

λ + A−1
)−1

= λ−1A
(

λ−1 + A
)−1

= λ−1 − λ−2
(

λ−1 + A
)−1

.

In fact, if A ∈ M (m) and m ∈ R, then for λ > 0
∥

∥

∥

(

λ + A−1
)−1
∥

∥

∥ ≤ λ−1 + λ−2
(

λ + λ−m
)

M ≤
(

λ−1 + λ−m−2
)

(M + 1)

and A−1 ∈ M (−m − 2). Conversely, if A−1 ∈ M (−m − 2), we can reason
for A−1 and their inverse A as before.

Our next goal in this section is to locate the spectrum of an almost
non-negative operator. This will allow us to generate operators of any class
M (m), to separate each one of these classes and to prove that the classes
of sectorial operators and of operators with polynomially bounded resolvent
are strictly contained in ∪m∈RM (m).

We will use the following notations:

Sω = {z ∈ C
∗ : |arg z| < ω} , 0 < ω <

π

2

H+
m,a,∞ =

{

z ∈ C : Re z ≥ 1, |Im z| < a (Re z)−m} , m ≥ −1, a > 0

H+
m,a,0 =

{

z ∈ C : 0 < Re z < 1, |Im z| < a (Re z)−m} , m ≤ −1, a > 0

G+
a,∞ = {z ∈ Sarctan a : Re z ≥ 1} , a > 0

G+
a,0 = {z ∈ Sarctan a : 0 < Re z < 1} , a > 0

H−
m,a,∞ =

{

z ∈ C : −z ∈ H+
m,a,∞

}

and H−
m,a,0 =

{

z ∈ C : −z ∈ H+
m,a,0

}

G−
a,∞ =

{

z ∈ C : −z ∈ G+
a,∞

}

and G−
a,0 =

{

z ∈ C : −z ∈ G+
a,0

}

.
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From now on, by M we will denote the constant of (2).
In the next theorem we obtain that the resolvent set of almost non-

negative operators with m 6= −1 contains one of the following regions:
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Theorem 2.1. If A ∈ M (m), with m ≥ −1, then the resolvent set
ρ (A) contains the open region G−

1
2M

,0
∪ H−

m, 1
2M

,∞
. Further, if 0 < τ < 1

2M ,

then the function χ defined on ρ (A) by

η 7−→ χ (η) =
(

|η|−1 + |η|m
)−1

(η + A)−1 (3)

is uniformly bounded on G+

( 1
2M

−τ),0
∪ H+

m,( 1
2M

−τ),∞
.

If A ∈ M (m), for m ≤ −1, then the region H−
m, 1

2M
,0
∪ G−

1
2M

,∞
is con-

tained in ρ (A) , and if in addition 0 < τ < 1
2M , then the function (3) is

uniformly bounded on H+

m,( 1
2M

−τ),0
∪ G+

( 1
2M

−τ),∞
.

Consequently, in particular case m = −1 (non-negative operator) the
resolvent set ρ (A) contains the sector

G−
1

2M
,0
∪ H−

−1, 1
2M

,∞
= H−

−1, 1
2M

,0
∪ G−

1
2M

,∞
.

P r o o f. Suppose that A ∈ M (m) with m ≥ −1, and consider the
bijective mapping

ζ : Sarctan( 1
2M ) → G+

1
2M

,0
∪ H+

m, 1
2M

,∞

z 7→ η = ζ (z) = Re z − (Re z − z) (Re z)−k−1 ,
(4)

where k = −1 whenever z ∈ G+
1

2M
,0
, and k = m for z ∈ G+

1
2M

,∞
.

Given z ∈ Sarctan( 1
2M ), the operator Bz = (Re z − z) (Re z)−k−1

(Re z + A)−1 is bounded and ‖Bz‖ < 1. So,

[I − Bz]
−1 =

∞
∑

n=0

[

(Re z − z) (Re z)−k−1
]n [

(Re z + A)−1
]n
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is bounded as well and consequently the same holds for the inverse of η+A =
(Re z + A) [I − Bz]. Therefore G−

1
2M

,0
∪ H−

m, 1
2M

,∞
⊂ ρ (A).

Suppose m ≥ −1. Given 0 < τ < 1
2M let us prove that (3) is bounded.

Assume first that η ∈ G+

( 1
2M

−τ),0
. In this case η = ζ (η) and denoting

θ = arg (η), we get |tan θ| < 1
2M − τ , and since 0 < Re z < 1,

‖χ (η)‖ = |η|
∥

∥

∥
(η + A)−1

∥

∥

∥
≤ |η|

Re η
τ−1 ≤ (1 + |tan θ|) τ−1 ≤ 2M + 1

2Mτ
.

If we assume that η ∈ H+
m,( 1

2M
−τ),∞

, by (4) there is a unique z = λeiθ ∈
G+

1
2M

,∞
such that η = ζ (z), |tan θ| < 1

2M − τ , Re z ≥ 1, and we obtain

‖χ (η)‖ = |η|−m
∥

∥

∥
(η + A)−1

∥

∥

∥
≤ |η|−m (Re z)m τ−1.

Note that if m ≥ 0, then

|η|−m (Re z)m =
[

1 + tan2 θ (λ cos θ)−2m−2
]−m

2 ≤ 1,

and that if −1 ≤ m < 0, we can obtain a similar estimate with a constant
that only depends on M and m. This completes the first part of the proof.

If A ∈ M (m) and m ≤ −1, then we consider the mapping

ζ : Sarctan( 1
2M ) → H+

m, 1
2M

,0
∪ G+

1
2M

,∞

z 7→ η = ζ (z) = Re z − (Re z − z) (Re z)−k−1

where if z ∈ G+
1

2M
,0

we take k = m; and if z ∈ G+
1

2M
,∞

, then k = −1. The

proof then follows in the same way as in the preceding case.
In Theorem 2.1 we have proved that the spectrum of an almost non-

negative operator is a closed set which is contained in the complement of
an open region that depends on m and M . Next, we will see that given
a closed set F , which is contained in the complement of any region with
these characteristics, it is possible to find an almost non-negative operator
A whose spectrum coincides with F .

Let us first consider the open region G−
a,0 ∪H−

m,a,∞ with a > 0, m ≥ −1,

and a closed set F ⊂ C\
(

G−
a,0 ∪ H−

m,a,∞

)

. Assume that F 6= ∅. Otherwise,

it is sufficient to take a non-negative operator A. As F is separable, there
is a sequence {zn}n∈N

⊂ C such that {zn : n ∈ N} = F .
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As usual, we denote by lp, 1 ≤ p < ∞, the Banach space of complex
sequences φ = {φn}n∈N

such that
∑∞

n=1 |φn|p < ∞, endowed with the norm

‖φ‖
l
p = (

∑∞
n=1 |φn|p)

1
p . By l∞ we denote the Banach space of bounded

complex sequences endowed with the norm ‖φ‖
l
∞ = supn∈N |φn|.

Now consider in lp, 1 ≤ p ≤ ∞ the operator

Aφ = A (φ1, φ2, . . .) = (z1φ1, z2φ2, . . .) ,

defined on D (A) =
{

φ = {φn}n∈N
∈ lp : Aφ ∈ lp

}

. This operator is bounded
if and only if F is bounded. If F is unbounded, then D (A) is dense if and
only if 1 ≤ p < ∞. Moreover σ (A) = F and for φ ∈ lp, 1 ≤ p ≤ ∞, we have

(λ + A)−1 φ =
(

φ1 (λ + z1)
−1 , φ2 (λ + z2)

−1 , . . .
)

(λ > 0) .

Since −λ /∈ F and {zn}n∈N
⊂ F , the distance from −λ to F , say d (−λ, F ),

is greater than zero, happening for φ ∈ lp, 1 ≤ p ≤ ∞,

d (−λ, F )
∥

∥

∥
(λ + A)−1 φ

∥

∥

∥

l
p
≤ ‖φ‖

l
p .

Elementary geometrical arguments imply that the expression
(

λ−1 + λm
)

d (−λ, F ) is low bounded, uniformly for all λ > 0. This yields that the op-
erator generated holds (2) for m ≥ −1. Thus A ∈ M (m).

Choosing F equal to the boundary of G−
a,0∪H−

m,a,∞, we obtain operators
whose resolvent set cannot contain a sector C \ {z ∈ C \ {0} : |arg z| ≤ ω},
ω ∈ ]−π, π]. So, these operators are not sectorial and different from the
ones considered in [15], [17], [2]-[4], [6], [14] and [16].

Analogously, given m ≤ −1 and a > 0, we find an operator in M (m)

whose spectrum coincides with any closed set contained in C\
(

H−
m,a,0 ∪ G−

a,∞

)

.

In the same manner, if we consider the boundary of this set, then the re-
sulting operator is strictly almost non-negative.

3. Definition of the fractional powers

In this section we define the fractional powers for the operators consid-
ered in the preceding section. The key to construct these fractional powers
is Proposition 3.6, where we prove that for m ≥ −1 the subspace D(A∞) =
⋂

n∈N
D (An) endowed with a certain system of seminorms is a Fréchet space

and that the restriction of A to this space is non-negative. So if m ≥ −1 it
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makes sense to consider the fractional powers of A on D(A∞). In Propo-
sition 3.7 we prove that these fractional powers are closable on the initial
Banach space and from this we define the fractional powers of the opera-
tor A for m ≥ −1. We begin by studying a semigroup associated with the
operator A. This semigroup has two properties proved in Propositions 3.3
and 3.5 which will be very useful later on. For that we first consider the
function

f (λ) = − 1

π
e−tλγ cos πγ sin (tλγ sin πγ)

=
1

2πi

(

e−tλγe−iπγ − e−tλγeiπγ
)

(λ > 0) (5)

defined for t > 0 and 0 < γ < 1/2. Writing ξ = t cos πγ > 0, it is clear that

|f (λ)| ≤ 1

π
e−λγξ. (6)

In general, for 0 < r < π
2 , s > 0, 0 < ε < π

2 and |τ | ≤ π
2 − ε, we have

∣

∣

∣
e−sei(r+τ) − e−se−i(r−τ)

∣

∣

∣
≤ 2rse−s sin ε.

So, in particular, if s = tλγ , r = πγ, τ = arg t, and 0 < ε < π
2 , then

|f (λ)| ≤ γtλγe−tλγ sin ε. (7)

Now let b > 0, δ > 0, 0 < θ∗ < π
2 , and consider the paths

Γ1 (θ∗, b, δ) =
{

z ∈ C : δ ≤ |z| ≤ b
sin θ∗ ,

|arg z| = π − θ∗}

Γ2 (θ∗, δ) = {z ∈ C : |z| = δ, |arg z| ≤ π − θ∗}

Γ3 (θ∗, b) =
{

z ∈ C : |z| = b
sin θ∗ ,

|arg z| ≤ π − θ∗}

and finally,

Γ (θ∗, b, δ) = Γ1 (θ∗, b, δ) ∪ Γ2 (θ∗, δ) ∪ Γ3 (θ∗, b) (8)

with a positive orientation.
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Lemma 3.1. Let f (·) be the function defined in (5). Then

∫ ∞

0
λnf (λ) dλ = 0, n = 0, 1, 2, . . . .

P r o o f. The function F (z) = e−tzγ

, 0 < γ < 1
2 , t > 0 is analytic on

C \ ]−∞, 0] and satisfies

|F (z)| ≤ e−|z|γξ, with ξ = t cos πγ.

By Cauchy’s theorem
∫

Γ(θ∗,b,δ)
znF (z) dz = 0, n = 0, 1, 2, . . . ,

and letting θ∗ → 0, by the Dominated Convergence theorem, we obtain the
result.

Lemma 3.2. Let A ∈ M (m), with m ≥ −1 and f (·) be as in (5). Then
the integral

∫ ∞

0
λnf (λ) (λ + A)−1 dλ, , n = 0, 1, 2, . . .

is absolutely convergent and defines a bounded linear operator.

P r o o f. From (2), (7) and (6) it follows that

∫ ∞

0

∥

∥

∥
λnf (λ) (λ + A)−1

∥

∥

∥
dλ ≤ 2M

sin ε
+

2M

πγ
ξ
−
�

n+1
γ

�
Γ

(

n + m + 1

γ

)

,

for 0 < ε < π
2 , and where Γ (·) denotes the gamma function. This completes

the proof.
Now let A ∈ M (m), with m ≥ −1, t > 0 and 0 < γ < 1

2 . Lemma 3.2
shows that the operator

Sγ (t) =
1

2πi

∫ ∞

0

(

e−tλγe−iπγ − e−tλγeiπγ
)

(λ + A)−1 dλ (9)

is well-defined and bounded.

Proposition 3.3. Let A ∈ M (m), with m ≥ −1, t > 0 and 0 < γ < 1
2 .

Then
R (Sγ (t)) ⊂ D (A∞) =

⋂

n∈N
D (An) . (10)
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P r o o f. By Lemmas 3.1 and 3.2,

∫ ∞

0
λn−1f (λ) dλ =

∫ ∞

0
λnf (λ) (λ + A)−1 dλ

+

∫ ∞

0
λn−1f (λ) A (λ + A)−1 dλ = 0, n ∈ N,

and the integral
∫∞
0 λn−1f (λ) (λ + A)−1 dλ is convergent. On the other

hand, as the operator A is closed,

A

∫ ∞

0
λn−1f (λ) (λ + A)−1 dλ = −

∫ ∞

0
λnf (λ) (λ + A)−1 dλ, n ∈ N.

We can now proceed by induction on n to obtain

∫ ∞

0
λnf (λ) (λ + A)−1 dλ = (−1)n+1 AnSγ (t) ,

which shows that R (Sγ (t)) ⊂ D (An), n ∈ N.

Lemma 3.4. Let F (z) = e−tzγ

, 0 < γ < 1
2 , t > 0, z0 ∈ C with Re z0 > 0

and f (λ) be as in (5). Then

∫ ∞

0

f (λ)

(λ + z0)
n+1 dλ =

(−1)n+1

n!
F (n) (z0) , n = 0, 1, 2, . . . (11)

where F (n) denotes the n − th derivative of F , n ≥ 1, and F (0) = F .

P r o o f. Consider the path (8), with 0 < δ < |z0|, b > 0 and θ∗0
sufficiently small so that b

sin θ∗0
> |z0|. With these assumptions, for 0 < θ∗ ≤

θ∗0, by Cauchy’s theorem we have

1

2πi

∫

Γ(θ∗,b,δ)

F (z)

(z − z0)
n+1 dz =

1

n!
F (n) (z0) , n = 0, 1, 2, . . . .

Note that with this choice of θ∗0 and taking 0 < θ∗ < θ∗0, if z ∈ Γ3 (θ∗, b),
then

|z0| <
b

sin θ∗
and |z − z0| ≥

b

sin θ∗
− |z0| ≥

b

sin θ∗0
− |z0| ,

and hence, by dominated convergence, equality (11) is easily obtained.
From now on, the notation [x] means the integer part of x ∈ R.
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Proposition 3.5. If A ∈ M (m), m ≥ −1 and p = [m + 2], then

D (Ap) ⊂
{

φ ∈ X : lim
t→0

Sγ (t) φ = φ
}

. (12)

P r o o f. Let us first note that the derivatives of the function F (z) =
e−tzγ

, t > 0, 0 < γ < 1
2 , can be written as F (n) (z) = tHn (z), n ∈ N, for

certain functions Hn (z) which are analytic in C \ ]−∞, 0].
Suppose that m ≥ 0, φ ∈ D (Ap), λ > 0 and z0 ∈ C with Re z0 > 0.

Then from the identity

(λ+A)−1φ=

(

p
∑

k=1

1

(λ+z0)
k

(z0−A)k−1φ

)

+
1

(λ+z0)
p (λ + A)−1(z0 − A)p φ

and (11), it follows that

Sγ (t)φ = e−tzγ
0 φ + t

p
∑

k=2

(−1)k+1

(k − 1)!
Hk−1 (z0) (z0 − A)k−1 φ

−
∫ +∞

0

f (λ)

(λ + z0)
p (λ + A)−1 (z0 − A)p φdλ (13)

for all t > 0. Now letting t → 0, we find that

lim
t→0

[

e−tzγ
0 φ + t

p
∑

k=2

(−1)k+1

(k − 1)!
Hk−1 (z0) (z0 − A)k−1 φ

]

= φ.

On the other hand, for a fixed λ > 0, limt→0 f (λ) = 0. Taking into ac-
count (2), (6), (7) and the fact that m + 1 < p, and applying dominated
convergence to the integral in (13), we obtain that

lim
t→0

∫ +∞

0

f (λ)

(λ + z0)
p (λ + A)−1 (z0 − A)p φdλ = 0

and therefore limt→0 Sγ (t) φ = φ.
If −1 < m < 0, then in (13) not would appear the second term but we

would reason in the same way. In the particular case m = −1 (non-negative
operator) we know that the continuity with respect to t of operator Sγ (t)
holds in X.

In the sequel, we let p stand for [m + 2].

Proposition 3.6. Let A ∈ M (m) with m ≥ −1. Then the following
properties hold.
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(i) The subspace D (A∞) =
⋂

n∈N
D (An) 6= ∅, endowed with the system

of seminorms

‖φ‖q = max
o≤k≤q

{∥

∥

∥Akφ
∥

∥

∥

}

, φ ∈ D (A∞) , q = 0, 1, 2, . . . (14)

is a Fréchet space. We will denote this space by Y =
{

D (A∞) , ‖·‖q

}

.

(ii) The operator B = A |D(A∞): D (A∞) −→ D (A∞) is continuous and
ρ (B) ⊃ ρ (A).

(iii) If φ ∈ D (A∞), λ > 0 and q = 0, 1, 2, . . ., then
∥

∥

∥λ (λ + B)−1 φ
∥

∥

∥

q
≤ (1 + c (m,M)) ‖φ‖q+[m+2] , (15)

where c (m,M) > 0 depends only on m and M . Consequently, the
operator B is non-negative in the Fréchet space Y .

P r o o f. Note first that since D (A∞) ⊃ R (Sγ (t)) , D (A∞) 6= {0}. On
the other hand, as the operators Ar, with r ∈ N, are closed, Y is a Fréchet
space. Moreover, from the inequality ‖Bφ‖q ≤ ‖φ‖q+1, with φ ∈ D (A∞) ,
it follows that B is continuous. The inclusion ρ (B) ⊃ ρ (A) is evident and
so ]−∞, 0[ ⊂ ρ (B).

The non-negative character of B, for 0 < λ < 1, is a straightforward
consequence of (2). Now let m ≥ 0, λ ≥ 1 and φ ∈ D (A∞) . Writing
n = [m + 1] and using the relation

(λ+B)−1φ = λ−n (λ+B)−1Bnφ +

n−1
∑

t=0

(

n

t

) n−t−1
∑

s=0

(

n−t−1

s

)

λs−nBn−1−sφ

on deduces the estimate
∥

∥

∥(λ + B)−1 φ
∥

∥

∥

q
≤ c (m,M) ‖φ‖q+[m+1] , q = 0, 1, 2, . . . , (16)

where

c (m,M) = 2M +
n−1
∑

t=0

(

n

t

) n−t−1
∑

s=0

(

n − t − 1

s

)

.

Further, for −1 ≤ m < 0 and λ ≥ 1, the estimate (16) is evident. Thus, for
λ > 0, φ ∈ D (A∞) and q = 0, 1, 2, . . . we obtain
∥

∥

∥λ (λ + B)−1 φ
∥

∥

∥

q
≤ ‖φ‖q +

∥

∥

∥(λ + B)−1 Bφ
∥

∥

∥

q
≤ (1 + c (m,M)) ‖φ‖q+[m+2] .
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This proves that the operator B in non-negative in Y .
The theory of fractional powers of non-negative operators defined in

sequentially complete complex spaces ([9]-[10], [11]-[13]) allows us to define
the power Bα, with α ∈ C, as the closure in Y of the operator Jα

B which
was introduced by Balakrishnan and Komatsu (see [1] and [12, Prop.3.1.3]),
([7]-[8] and [12, Def. 7.2.1 y 7.2.2]).

Definition 3.1. Let A ∈ M (m), with m ≥ −1, α ∈ C, τ ∈ R
∗ =

R \ {0} and B = A |D(A∞). If Reα > 0 and n ∈ N such that 0 < Reα < n,
then we define the operator Bα, with domain D (Bα) = D (A∞) , as

Bαφ =
Γ (n)

Γ (α) Γ (n − α)

∫ ∞

0
λα−1

[

B (λ + B)−1
]n

φdλ, φ ∈ D (Bα) . (17)

If in addition the operator A is injective, we define:
– for φ ∈ D (B−α) = D (A∞) ∩ R (Bn),

B−αφ =
Γ (n)

Γ (α) Γ (n − α)

∫ ∞

0
λn−α−1

[

(λ + B)−1
]n

φdλ (18)

– and for φ ∈ D
(

Biτ
)

= D (A∞) ∩ R (B),

Biτφ =
sinh πτ

πτ

∫ ∞

0
λiτ (λ + B)−2 Bφdλ . (19)

Proposition 3.7. If A ∈ M (m), m ≥ −1, α ∈ C and B = A |D(A∞),
then the operator Bα is closable in X.

P r o o f. Let {φn}n∈N
⊂ D (Bα) ⊂ D (A∞) be a sequence such that

φn → 0 and Bαφn → φ for the topology of X.

The inclusion (10) and the closedness of the operators Ak, k = 0, 1, 2, . . . ,
imply that the operator AkSγ (t) (1 + A)−1 is bounded and hence the se-
quences

{

Sγ (t) (1 + A)−p φn

}

n∈N
and

{

Sγ (t) (1 + A)−p Bαφn

}

n∈N

converge to zero and Sγ (t) (1 + A)−p φ, respectively, for the topology of
Y . Taking into account that Sγ (t) (1 + A)−p is a bounded operator which
commutes with Bα, and since Bα is closed, Sγ (t) (1 + A)−p φ = 0. Now
letting t → 0, from (12) it follows that (1 + A)−p φ = 0. Since (1 + A)−p is
injective, φ = 0. This proves that Bα is closable in X.
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Given a closed linear operator A and a linear subspace Z ⊂ X, by A ‖Z

we denote the part of A in Z, that is, the operator defined as (A ‖Z)φ = Aφ,
with domain

D (A) = {φ ∈ D (A) ∩ Z : Aφ ∈ Z} .

Proposition 3.8. Let A ∈ M (m), m ≥ −1 and B = A |D(A∞). Then
the following properties hold:

(i) If α, β ∈ C, with Re α,Re β > 0, then

Bα+β ⊂ BαBβ ⊂ Bα Bβ (20)

and

Bα Bβ ‖D(Ap)⊂ Bα+β. (21)

Moreover, if A is injective, then (20) and (21) hold for α, β ∈ C.

(ii) If A is injective and α ∈ C, then

B−α Bα = I |D(Bα) and Bα B−α = I |
D(B−α) . (22)

Hence Bα is injective and
(

Bα
)−1

= B−α.

P r o o f. The second extension of (20) is trivial and the first one is a
straightforward consequence of the additivity of the fractional powers of B.

Now let φ ∈ D
(

Bα Bβ ‖D(Ap)

)

. Since Sγ (t) commutes with Bα and Bβ,

from (12) one deduces that the nets {Sγ (t) φ}t>0 and
{

Bα+βSγ (t)φ
}

t>0

converge to φ and Bα Bβφ, respectively as t → 0. This proves (21).

The statement (ii) is a direct consequence of the non-negativity of B in
Y , since B is injective and the equality

φ = B−αBαφ = BαB−αφ

holds for all φ ∈ D (A∞).

Proposition 3.9. Let A ∈ M (m), m ≥ −1, α ∈ C, with Re α > 0 and
n ∈ N be such that 0 < Reα < n. Then

D
(

An(p+1)+p
)

⊂ D
(

Bα
)

. (23)
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If in addition A is injective and τ ∈ R, then

D
(

An(p+1)+p
)

∩ R (An) ⊂ D
(

B−α
)

(24)

and

D
(

A3p+2
)

∩ R (A) ⊂ D
(

Biτ
)

. (25)

P r o o f. Since A is non-negative in zero, from (17) and (15) it follows
that, ϕ ∈ D (A∞),

∥

∥

∥

∥

Γ (α) Γ (n − α)

Γ (n)
Bαϕ

∥

∥

∥

∥

≤ (1 + 2M)n

Reα
‖ϕ‖ +

(1 + c (m,M))n

n − Reα
‖ϕ‖n(p+1) .

That is, there exists K1 = K1 (m,M,n, α) > 0 such that

‖Bαϕ‖ ≤ K1 ‖ϕ‖n(p+1) , ϕ ∈ D (A∞) .

Now let φ ∈ D
(

An(p+1)+p
)

⊂ D
(

A2n+p
)

⊂ D (Ap) and 0 < γ < 1/2.
By (12), the net {Sγ (t)φ}t>0 converges to φ as t → 0, and the nets
{

AkSγ (t)φ
}

t>0
, with k = 0, 1, · · · , 2n, are convergent as well.

From the preceding estimate we obtain that

∥

∥BαSγ (t)φ − BαSγ

(

t′
)

φ
∥

∥ ≤ K1

∥

∥Sγ (t) φ − Sγ

(

t′
)

φ
∥

∥

n(p+1)
, t, t′ > 0,

and therefore {BαSγ (t)φ}t>0 is a Cauchy net in X. Hence, φ ∈ D
(

Bα
)

.

Next, we assume that A is injective. Let ϕ ∈ D (A∞) ∩ R (Bn) . From
(18) it follows that there exists η ∈ D (Bn) , with ϕ = Bnη, such that

∥

∥

∥

∥

Γ (α) Γ (n − α)

Γ (n)
B−αϕ

∥

∥

∥

∥

≤ (1 + 2M)n

n − Re α
‖η‖ +

(1 + c (m,M))n

Reα
‖η‖n(p+1) .

So, there exists K2 > 0 such that

∥

∥B−αϕ
∥

∥ ≤ K2

∥

∥B−nϕ
∥

∥

n(p+1)
, ϕ ∈ D (A∞) ∩ R (Bn) .

A similar reasoning as before leads to (24).

Finally, if ϕ ∈ D (A∞) ∩ R (B) , then there exists η ∈ D (B) , with
ϕ = Bη, such that

∥

∥

∥

πτ

sinhπτ
Biτϕ

∥

∥

∥ ≤ (1 + 2M)2 ‖η‖+(1 + c (m,M))2 ‖η‖2(p+1) , τ ∈ R\{0} .
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This estimate is an immediate consequence of (19). As before, there exists
K3 > 0 such that

∥

∥Biτϕ
∥

∥ ≤ K3

∥

∥B−1ϕ
∥

∥

2(p+1)
.

This proves (25) for the case τ 6= 0. The case τ = 0 is obvious since
∥

∥Biτϕ
∥

∥ ≤
‖ϕ‖ .

Theses assertions and Remark 2.4 allow us to give the following defini-
tions.

Definition 3.2. Let α ∈ C, Re α > 0, A ∈ M (m), m ≥ −1 and
B = A |D(A∞). Given n ∈ N such that 0 < Re α < n, we define

Aα = (1 + A)n(p+1)+pBα(1 + A)−n(p+1)−p (26)

with domain

D (Aα) =
{

φ ∈ X : Bα(1 + A)−n(p+1)−pφ ∈ D
(

An(p+1)+p
)}

.

Remark 3.1. The operator Aα is well-defined by (23) and it is closed
since Bα(1 + A)−n(p+1)−p is bounded and (1 + A)n(p+1)+p is closed. Note
that the operator Bα commutes with the resolvent and that the property of
additivity of the powers of integer exponents of the operator (1 + A) implies
that given an integer r0 > n, writing k = r0 − n > 0, we have that

Aα = (1 + A)r0(p+1)+p(1 + A)k(p+1)Bα(1 + A)−n(p+1)−p

= (1 + A)r0(p+1)+pBα(1 + A)−r0(p+1)−p.

So, the preceding definition does not depend on the particular choice of n.
A similar argument shows that the definition does not depend on m ≥ −1.

Definition 3.3. Let α ∈ C, with Reα > 0, A ∈ M (m) be injective,
m ≥ −1 and B = A |D(A∞). Given n ∈ N such that 0 < Reα < n, we define

A−α = (1 + A)n(p+2)+pA−nB−αAn(1 + A)−n(p+2)−p (27)

with domain

D
(

A−α
)

=
{

φ ∈ X : B−αAn(1 + A)−n(p+2)−pφ ∈ D
(

An(p+1)+p
)

∩ R (An)
}

.

As above, from (24) it follows that the operator A−α is well-defined, and
it is closed since B−αAn(1+A)−n(p+2)−p is bounded and (1+A)n(p+2)+pA−n

is closed.
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Given r0 > n, writing k = r0 − n > 0, the bounded linear operator
Ak (1 + A)−(p+2)k commutes with A−n and B−α. Moreover, (1 + A)−(p+2)k

and An(1 + A)−n(p+2)−p also commute. Hence,

A−α = (1 + A)r0(p+2)+pA−kAk (1 + A)−(p+2)k A−nB−αAn(1 + A)−n(p+2)−p

= (1 + A)r0(p+2)+pA−r0B−αAr0(1 + A)−r0(p+2)−p

which proves that this definition does not depend on n. The same holds
with respect to m.

Definition 3.4. Let τ ∈ R, A ∈ M (m) be injective, with m ≥ −1
and B = A |D(A∞). We define

Aiτ = (1 + A)3p+3A−1BiτA(1 + A)−3p−3 (28)

with domain

D
(

Aiτ
)

=
{

φ ∈ X : BiτA(1 + A)−3p−3φ ∈ D
(

A3p+2
)

∩ R (A)
}

.

The inclusion (25) implies that this operator is well-defined and it is
closed. This definition is also independent of m.

Remark 3.2. Note that the three preceding definitions can be unified,
for all α ∈ C, in the form of the operator

Aα = (1 + A)r0(p+2)+pA−r0BαAr0(1 + A)−r0(p+2)−p,

where r0 is an integer which satisfies r0 > max {|Reα| , 3}. Moreover, taking
into account that Bα commutes on its domain with the bounded linear
operator Ar0(1 + A)−r0(p+2)−p, the operator Aα is an extension of Bα.

Definition 3.5. Let A ∈ M (m) be injective, with m ≤ −1 and
α ∈ C. we define

Aα =
(

A−1
)−α

. (29)

Remark 3.3. Note that by Remark 2.4, A−1 belongs to M (−m − 2),

with −m − 2 ≥ −1 and therefore the power
(

A−1
)−α

is given by means of
(26), (27) and (28). In particular, if A is a non-negative operator (m = −1),
then the power can be defined through the operators constructed in (26),
(27) and (28), or in (29), which coincide with ones of the usual definition
([12, Th. 5.2.1, Def. 7.1.1 and 7.1.2]). The coherence of the definitions is
evident for Re α > 0, since Bα is a restriction of the closure of the Bal-
akrishnan operator Jα and (23) holds. For the remaining exponents the
coherence is also immediate since our power satisfies A−α = (Aα)−1 and
the additivity property, as we will see later on.
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4. Basic properties of fractional powers

Proposition 4.1. Let A ∈ M (m).

(i) If A is injective, then A0 = I.

(ii) An = A
n−times· · · A, for all n ∈ N.

(iii) If A is injective and α ∈ C, then Aα is injective as well. Moreover,

AαA−α =I |D(A−α) , A−αAα =I |D(Aα) and A−α =(Aα)−1 =
(

A−1
)α

.

P r o o f. In order to prove (i) in the case m ≥ −1, we fix α ∈ C, with
Reα > 0. Taking into account (20) and (22), we find that

B0 = Bα+(−α) ⊂ Bα B−α ⊂ I.

So, A0 ⊂ I. To see that I ⊂ A0, take φ ∈ X and an integer r0, large enough.
By (22) and (21),

φ = (1 + A)r0(p+2)+p A−r0Bα+(−α)Ar0 (1 + A)−r0(p+2)−p φ.

Suppose m ≥ −1 in the statement (ii). Since the operators Bn and
Sγ (t) commute, and as A is closed, by using (12) is not difficult to prove

that Bn ‖D(A[m+2]) is a restriction of A
n−times· · · A. From this one easily obtains

(ii). From Remark 2.4, it follows that the preceding results are also true for
m ≤ −1.

Finally, if A is injective, by (22), then Bα is also injective, and Aα is
always a composition of injective operators. So, Aα is injective.

If m ≥ −1, in the definition of Aα we take s0 = r0 (p + 2) + p, with
r0 > 0 large enough, and from (22) we obtain

(Aα)−1=(1+A)s0
(

Bα
)−1

(1+A)−s0=(1 + A)s0

(

B−α
)

(1+A)−s0=A−α.

Now let m ≤ −1. For the operator A−1 the preceding equality holds, and
then

(Aα)−1 =
[

(

A−1
)−α

]−1
=
(

A−1
)α

= A−α.

Both operators (Aα)−1 and A−α coincide with
(

A−1
)α

in accordance
with Remark 2.4.
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Proposition 4.2. (Additivity) Let A ∈ M (m) with m ≥ −1 and
α, β ∈ C, with Reα,Re β > 0. Then the following properties hold:

(i) AαAβ ⊂ Aα+β.

(ii) If φ ∈ D
(

Aα+β
)

∩ D
(

Aβ
)

, then

Aβφ ∈ D (Aα) and Aα+βφ = AαAβφ.

In particular, if D
(

Aα+β
)

⊂ D
(

Aβ
)

, then Aα+β = AαAβ.

Furthermore, if A is injective, then the preceding assertions remain true
for all α, β ∈ C and m ≤ −1.

P r o o f. Consider Re α,Re β > 0 and m ≥ −1. Fix r0 > Reα + Reβ
and take s0 = r0 (p + 2) + p for the expressions of Aα and Aβ. Hence, for
φ ∈ D

(

AαAβ
)

we get

AαAβφ = (1 + A)s0 Bα Bβ ‖D(Ap+1) (1 + A)−s0 φ

= (1 + A)s0 Bα+β (1 + A)−s0 φ

and since r0 > Re (α + β), φ ∈ D
(

Aα+β
)

and AαAβφ = Aα+βφ.
To prove (ii), take s0 and r0 as before. Then for φ ∈ D

(

Aα+β
)

we get

(1 + A)−s0 φ ∈ D (Ap) and Aα+βφ = (1 + A)s0 Bα+β (1 + A)−s0 φ.
On the other hand, given φ ∈ D

(

Aβ
)

and the preceding choice of r0,
we find that

(1 + A)−s0 (1 + A)s0 Bβ (1 + A)s0 φ ∈ D (As0) ⊂ D
(

Bα
)

.

Thus, Bα (1 + A)−s0 Aβφ ∈ D (As0) and Aβφ ∈ D (Aα), and taking into
account (21) we have that Aα+βφ = AαAβφ.

For the rest of exponents we can proceed in a similar way, since we can
express the operators Aα, Aβ and Aα+β in the a unified form with a large
enough integer r0.

If A is injective and m ≤ −1, by Remark 2.4, the operator A−1 satisfies
the above properties, and hence the rest of the proof runs as before.

The next example makes evident that the additivity is not complete.

Example 4.1. Let X = C∞

(

R ; C
2
)

be the Banach space of the
continuous functions which vanish at ∞, f = (f1, f2) : R → C

2, with the
norm

‖f‖∞ = max
i=1,2

{‖fi‖∞} , ‖fi‖∞ = sup
x∈R

{|fi (x)|} (i = 1, 2) .
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The multiplication operator A given by

Af (x) =

(

x + i
√

x2 + 1 x2

0 x − i
√

x2 + 1

)(

f1 (x)
f2 (x)

)

, (x ∈ R)

defined on D (A) = {f ∈ X : Af ∈ X}, is not sectorial but (λ + A)−1 is
uniformly bounded with respect to λ > 0. Therefore A ∈ M (0).

It can be proved that for all α ∈ C, the power Aα is the multiplication
operator by the matrix





(

x + i
√

x2 + 1
)α

k12 (x)

0
(

x − i
√

x2 + 1
)α



 , (x ∈ R)

with

k12 (x) =
x2

2i
√

x2 + 1

[(

x + i
√

x2 + 1
)α

−
(

x − i
√

x2 + 1
)α]

.

Fix −1
2 ≤ α, β < 0, and p such that α + β + 1 < p < β + 1. Let us consider

the function

ϕ (x) = (ϕ1 (x) , ϕ2 (x)) =

(

0,
(

x + i
√

x2 + 1
)−p

)

∈ C∞

(

R ; C
2
)

,

then

Aα+βϕ (x) =





kα+β (x)
(

x + i
√

x2 + 1
)−p

(

x − i
√

x2 + 1
)α+β (

x + i
√

x2 + 1
)−p



 .

Since α + β + 1 − p < 0 and α + β − p < 0, then

∣

∣

∣

∣

kα+β (x)
(

x + i
√

x2 + 1
)−p

∣

∣

∣

∣

≤ x2

√
1 + x2

(
√

2x2 + 1
)α+β−p x→∞−→ 0

∣

∣

∣

∣

(

x − i
√

x2 + 1
)α+β (

x + i
√

x2 + 1
)−p

∣

∣

∣

∣

=
(
√

2x2 + 1
)α+β−p x→∞−→ 0.

So, ϕ ∈ D
(

Aα+β
)

. As p < β + 1, then

∣

∣

∣

∣

kβ (x)
(

x + i
√

x2 + 1
)−p

∣

∣

∣

∣

≥ C1
x2

√
1 + x2

(
√

2x2 + 1
)β−p x→∞−→ ∞,
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where C1 = min {sin αε, sin αω} > 0. Hence ϕ /∈ D
(

Aβ
)

. It follows that
AαAβ cannot be an extension of Aα+β.

The statement (iii) of Proposition 4.1 implies that for this operator, the
complete additivity neither holds for 0 < α < 1

2 and 0 < β < 1
2 .

Remark 4.1. Obviously, if A−α is bounded, then Aα+β = AαAβ

for β ∈ C. In fact, given φ ∈ D
(

Aα+β
)

, by Proposition 4.2 (i), φ ∈
D
(

A−αAα+β
)

⊂ D
(

Aβ
)

.

Proposition 4.3. If A ∈ M (m), with −1 ≤ m < 0, 0 ∈ ρ (A) and
α ∈ C with Reα > m + 1, then A−α is a bounded operator.

P r o o f. Firstly note that as A−1 is bounded, the operator A−α can
be expressed in the form (1 + A)s0 B−α (1 + A)−s0, with s0 = r0 (p + 1) + p
and r0 ∈ N such that 0 < m + 1 < Reα < r0.

Now suppose that 0 ≤ m + 1 < Re α < 1. In this case, from (18) it
follows that

B−αφ =
Γ (2)

Γ (α) Γ (2 − α)

∫ ∞

0
λ1−α (λ + A)−2 φdλ , φ ∈ D (A∞) .

Denote by

L−α =
Γ (2)

Γ (α) Γ (2 − α)

∫ ∞

0
λ1−α (λ + A)−2 dλ. (30)

As 0 ∈ ρ (A), the function λ → (λ + A)−2 is continuous in [0, 1]. So, the
integral of (30) is absolutely convergent in zero. Taking into account that
m + 1 − Reα < 0 and integrating by parts it is not difficult to prove that
the mentioned integral is also absolutely convergent in infinity. Hence, L−α

is a bounded extension of B−α. This shows that B−α ⊂ L−α and

B−α (1 + A)−r0 φ = L−α (1 + A)−r0 φ = (1 + A)−r0 L−αφ, for all φ ∈ X.

So, B−α (1 + A)−r0 φ belongs to D (Ar0), that is, φ ∈ D (A−α).
If Re α ≥ 1, then we take k ∈ N such that m + 1 < k ≤ Reα < k + 1.

We proceed as before to show that

B−αφ =
Γ (k + 1)

Γ (α) Γ (k + 1 − α)

∫ ∞

0
λk−α

[

(λ + A)−1
]k+1

φdλ , φ ∈ D (A∞)

and that the operator

L−α =
Γ (k + 1)

Γ (α) Γ (k + 1 − α)

∫ ∞

0
λk−α

[

(λ + A)−1
]k+1

dλ

is bounded. This completes the proof.
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Remark 4.2. An immediate consequence of the previous proposition
and Remark 4.1, is that for an operator A ∈ M (m), with −1 ≤ m < 0 and
0 ∈ ρ (A), the complete additivity holds for α ∈ C with Reα < −m− 1 and
β ∈ C.

The following corollary is an immediate consequence of Propositions 4.3
and 4.1, part (iii).

Corollary 4.4. If A ∈ M (m), with −1 ≤ m < 0, 0 ∈ ρ (A) and
α ∈ C with Re α > m + 1, then 0 ∈ ρ (Aα).

In general, the spectral mapping theorem, say

σ (Aα) = {zα : z ∈ σ (A)} ,

does not hold for the class of operators we are considering in this work.
In fact, there exist operators A in the class M (m) with σ (Aα) = C if
− |m + 1| < Reα < |m + 1|. For an example we refer to [16, Example 2.4],
where it is considered in the Banach space X = C∞

(

R ; C
2
)

of continuous
functions which vanish at infinity, the multiplication operator

Aq : D (Aq) ⊂ X → X
f 7→ Aqf = qf

with domain D (Aq) = {f ∈ X : qf ∈ X} , where q is the matrix-valued
function given by

q (x) =

(

1 + x2 + i
(

x2 + 1
)

x4+2m

0 1 + x2 − i
(

x2 + 1
)

)

, x ∈ R.

This operator satisfies 0 ∈ ρ (A) and its spectrum is contained in the closure
of some sector Sω, 0 ≤ ω < π. Moreover, for ω < µ < π there exists a
constant Cµ such that

∥

∥

∥(z − A)−1
∥

∥

∥ ≤ Cµ |z|m , z /∈ Sµ , −1 < m < 0.

Therefore, Aq ∈ M (m), with −1 < m < 0. The inverse A−1
q of this

operator is in the class M (m0), m0 = −m − 2, with −2 < m0 < −1, and
its powers

(

A−1
q

)α
with m0 + 1 < Re α < −m0 − 1, also have spectrum

equal to C. It is sufficient to note that for these exponents α, we have

−m − 1 < −Reα < m + 1 and
(

A−1
q

)α
=
[

(

A−1
q

)−1
]−α

= A−α
q .

If an almost non-negative operator A is not sectorial, then the powers
Aα with α > 1, may not belong to ∪m∈RM (m) . So, in this case, it has no
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sense to consider (Aα)β. For instance, it is sufficient to generate, with the
method of Section 2, an operator with spectrum equal to the boundary of
the region

{

z + 1 : z ∈ G−
a,0 ∪ H−

m,a,∞

}

, a > 0, m > −1.

It is evident that if α > 1, then σ (Aα) ∩ ]−∞, 0[ 6= ∅, and therefore Aα

cannot be almost non-negative.
So, we can only expect it to make sense and it fulfills the property of

additivity (Aα)β = Aαβ for |m + 1| ≤ |α| < 1, and these exponents can only
exist whether −2 < m < 0. Before proving such as multiplicativity result
let us prove the following lemma.

Lemma 4.5. Let A ∈ M (m), with −1 ≤ m < 0 and 0 ∈ ρ (A). If α ∈ C

with Re α > 0, then
D [(Aα)∞] = D (A∞) .

P r o o f. Given α ∈ C, with Reα > 0 and q ∈ N, there exists s ∈ N

such that, for all integer r with 0 ≤ r ≤ q, we have D(As) ⊂ D(Arα). We
proceed by induction on r. We know that D(As) is contained in D(Aα).

Assume that D(As) ⊂ D
[

(Aα)r−1
]

for 1 ≤ r ≤ q, and take φ ∈ D(As).

Taking into account that

φ ∈ D(Arα) ∩ D
[

(Aα)r−1
]

⊂ D(Arα) ∩ D
[(

A(r−1)α
)]

,

by additivity, we get A(r−1)αφ = (Aα)r−1 φ ∈ D(Aα), and thus φ ∈ D [(Aα)r] .
Therefore, D (A∞) ⊂ D [(Aα)q] and reasoning for all q we obtain the inclu-
sion D (A∞) ⊂ D [(Aα)∞].

In the same way, given s ∈ N and taking r ∈ N such that rα−s > 1+m,
due to Proposition 4.8, the operator As−rα is bounded. By additivity, if φ ∈
D (Arα), then φ ∈ D (As−rαArα) ⊂ D (As). Hence, D((Aα)r) ⊂ D (Arα) ⊂
D(As), and so D [(Aα)∞] ⊂ D (A∞).

Theorem 4.6. (Multiplicativity) Let A ∈ M (m), with −1 ≤ m < 0
and 0 ∈ ρ (A). If α ∈ C with 1 + m < |α| < 1, then Aα ∈ M

(

−1 + m+1
α

)

and
Aaβ = (Aα)β , for all β ∈ C.

If A ∈ M (m), with −2 < m ≤ −1, is injective and bounded, then for
all α such that |1 + m| < |α| < 1, we have Aα ∈ M

(

−1 + m+1
α

)

and

Aaβ = (Aα)β , for all β ∈ C.
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P r o o f. The multiplicativity for non-negative operators is already well-
known and in this case the hypothesis of injectivity and boundedness of the
operators A and A−1 are not necessary.

First consider the case −1 ≤ m < 0, 0 ∈ ρ (A) and 1 + m < α < 1. For
µ > 0, consider the operator

Rµ =
sinαπ

π

∫ ∞

0

λα

λ2α + 2λαµ cos απ + µ2
(λ + A)−1dλ. (31)

Taking into account the expression

Rµ =
sinαπ

απ

∫ ∞

0

µ−1µ1/αt1/α

t2 + 2t cos απ + 1
(µ1/αt1/α + A)−1dt,

which is obtained after changing λα = µt and decomposing the integral

given into
∫ µ−1

0 +
∫∞
µ−1 we find that the integral of the second member of

(31) is absolutely convergent and moreover there exists a constant M1 > 0

such that ‖Rµ‖ ≤ M1(µ
−2 + µ−1+ m+1

α ).

Since B is non-negative in the Fréchet space Y , we know that the op-
erator Rµ, restricted to the domain D (A∞) , coincides with the operator
(µ + Bα)−1 (see [12, (5.24)]). So, given φ ∈ X, t > 0 and 0 < γ < 1

2 and
taking into account (12) and the inclusion D

(

A3
)

⊂ D
(

Bα
)

, we have

Sγ(t)(µ + Bα)(1 + A)−4Rµφ = (µ + Bα)RµSγ(t)(1 + A)−4φ

= (µ + Bα) (µ + Bα)−1 Sγ(t)(1 + A)−4φ = Sγ(t)(1 + A)−4φ.

Now letting t → 0, (µ + Bα)(1 + A)−4Rµφ = (1 + A)−4φ, which proves that
Rµφ ∈ D (Aα) and (µ + Aα)Rµφ = φ.

A similar reasoning shows that for φ ∈ D (Aα), Rµ(µ + Aα)φ = φ. So
−µ ∈ ρ (Aα) and (µ + Aα)−1 = Rµ.

Hence, if µ ≥ 1, then

∥

∥

∥(µ + Aα)−1
∥

∥

∥ ≤ 2M1µ
−1+ m+1

α .

On the other hand, in Corollary 4.4 we have proved that for those ex-
ponents, 0 ∈ ρ(Aα). Hence, due to the continuity of the mapping µ →
µ (µ + Aα)−1 in the interval [0, 1], there exists a constant M2 > 0, such
that, for all µ < 1 we have

∥

∥

∥(µ + Aα)−1
∥

∥

∥ ≤ M2µ
−1.



226 C. Mart́ınez, M. Sanz, A. Redondo

In order to prove the inclusion Aαβ ⊂ (Aα)β , note that since (Aα)−1 is
bounded, we can consider a sufficiently large m0 ∈ N, so that D [(Aα)m0 ] is
contained in D

[

(Aα)β
]

. Let SAα(t) stand for the operator associated with
Aα by (9). If φ ∈ D(Aaβ), then

(

Aα|D[(Aα)∞]

)β
SAα(t)(1 + Aα)−m0φ = (Bα)β SAα(t)(1 + Aα)−m0φ

= AαβSAα(t)(1 + Aα)−m0φ = SAα(t)(1 + Aα)−m0Aαβφ,

where the first equality follows from Lemma 4.5 and the second one from
the multiplicativity of the powers of non-negative operators in locally convex
spaces. Hence, we have a net which converges to (1+Aα)−m0Aαβφ, as t → 0.

On the other hand, the net {SAα(t)(1 + Aα)−m0φ}t>0 converges to (1+
Aα)−m0φ when t tends to zero. It follows that

(

Aα|D[(Aα)∞]

)β
(1 + Aα)−m0φ = (1 + Aα)−m0Aαβφ

which implies that φ ∈ D(Aαβ) and Aαβφ = (Aα)β φ. The opposite inclusion
can be shown in a similar way.

The case −2 < m ≤ −1, with A bounded and injective, and −1 < α <
m+1, is reduced to the previous one making use of Remark 2.4, Proposition
4.1 (iii) and (29).

In fact, in this case we have A−1 ∈ M (−m − 2) with −1 ≤ −m− 2 < 0
and 0 ∈ ρ

(

A−1
)

. Hence

Aα =
(

A−1
)−α ∈ M

(

−1 +
(−m − 2) + 1

−α

)

= M
(

−1 +
m + 1

α

)

and

(Aα)β =
[

(

A−1
)−α

]β
=
(

A−1
)(−α)β

=
(

A−1
)−αβ

= Aαβ.

If A ∈ M (m) with −1 ≤ m < 0, 0 ∈ ρ (A) and −1 < α < −m − 1 < 0,

then 0 ≤ m + 1 < |α| < 1, and A|α| ∈ M
(

−1 + m+1
|α|

)

. Therefore it follows

by Proposition 4.1 (iii) and Remark 2.4,

Aα =
(

A|α|
)−1

∈ M
(

−
(

−1 +
m + 1

|α|

)

− 2

)

= M
(

−1 +
m + 1

α

)

and consequently
(

A−α
)−β

=
(

A|α|
)−β

= A|α|(−β) = Aαβ.

On the other hand, using the Proposition 4.1 (iii), we have
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(

A−α
)−β

=
[

(

A−α
)−1
]β

= (Aα)β .

Hence Aαβ = (Aα)β holds.
In the remaining case we can proceed in a similar way.

5. Powers in locally convex spaces

Throughout this section we assume that X is a locally convex space,

endowed with a directed family of seminorms
{

‖·‖q : q ∈ P
}

. Definition 2.1

can be generalized in this way.

Definition 5.1. A closed linear operator A : D (A) ⊆ X → X, is
said to be almost non-negative if ρ (A) ⊃ ]−∞, 0[ and if there exists m ∈ R

satisfying that for each seminorm q ∈ P there exists another seminorm
s (q) ∈ P and a constant Mq ≥ 0, such that

∥

∥

∥

∥

λ

1 + λm+1
(λ + A)−1 φ

∥

∥

∥

∥

q

≤ Mq ‖φ‖s(q) , φ ∈ X, λ > 0. (32)

For these operators we cannot reasoning as in Theorem 2.1 and therefore
we cannot guarantee that the region mentioned there, exists. However, we
can define the operator Sγ (t) in the same manner as in (9). The results of
Propositions 3.3 and 3.5 remain true and the same holds for its respective
Lemmas. It is due to the fact that all the integrals which appear can be
considered in the sense of a Riemann improper integral of a continuous
function defined on ]0,+∞[.

Proposition 3.6 was the key to construct our definition of power in a
Banach space. We see now that we can also generalize this process. In fact,
if m ≥ −1, then the set D (A∞) , with the family of seminorms

‖φ‖ = max
o≤j,k≤w

{

∥

∥

∥Akφ
∥

∥

∥

j

}

, φ ∈ D (A∞) , w = 0, 1, 2, . . . ,

is a Fréchet space. Denote by Y = {D (A∞) , |‖·‖|w}. In this space, the
operator B = A |D(A∞) satisfies |‖Bφ‖|w ≤ |‖φ‖|w+1 for all w and φ ∈
D (A∞). Hence B is continuous in Y . Moreover, ρ (B) ⊃ ρ (A).

If 0 < λ < 1, from (32) it follows that for w = 0, 1, 2, . . . and φ ∈ D (A∞)
we have

∣

∣

∣

∥

∥

∥λ (λ + B)−1 φ
∥

∥

∥

∣

∣

∣

w
≤ M (w) |‖φ‖|w+r(w) , 0 < λ < 1,
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where M (w) = max0≤j≤w {2Mj} and r (w) satisfies ‖·‖r(w) ≥
max0≤j≤w

{

‖·‖s(j)

}

, Mj and s (j), 0 ≤ j ≤ w, being the constants and

seminorms given by (32) for its respective seminorms ‖·‖j, 0 ≤ j ≤ w.
On the other hand, if λ ≥ 1 and −1 < m < 0, then for w = 0, 1, 2, . . .

and φ ∈ D (A∞) we have
∣

∣

∣

∥

∥

∥
(λ + B)−1 φ

∥

∥

∥

∣

∣

∣

w
≤ M (w) |‖φ‖|w+r(w) , λ ≥ 1.

For m ≥ 0 and φ ∈ D (A∞), by using the same relation of Proposition
3.6 we obtain, for λ ≥ 1,

∣

∣

∣

∥

∥

∥(λ + B)−1 φ
∥

∥

∥

∣

∣

∣

w
≤ Cw (m,M) |‖φ‖|[m+1]+w+r(w)

where

Cw (m,M) = M (w) +

[m]
∑

t=0

(

[m + 1]

t

)





[m]−t
∑

s=0

(

[m] − t

s

)



 .

Since for w = 0, 1, 2, . . ., φ ∈ D (A∞) and λ > 0, we have
∣

∣

∣

∥

∥

∥
λ (λ + B)−1 φ

∥

∥

∥

∣

∣

∣

w
≤ (1 + Cw (m,M)) |‖φ‖|w+r(w)+[m+2]

which shows that B is non-negative in Y . From here we can construct a
theory of fractional powers which is similar to the one developed for the
Banach space case.
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