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Abstract

This paper provides a new method and corresponding numerical schemes
to approximate a fractional-in-space diffusion equation on a bounded do-
main under boundary conditions of the Dirichlet, Neumann or Robin type.
The method is based on a matrix representation of the fractional-in-space
operator and the novelty of this approach is that a standard discretisation
of the operator leads to a system of linear ODEs with the matrix raised
to the same fractional power. Numerical results are provided to gauge the
performance of the proposed method relative to exact analytical solutions
determined using a spectral representation of the fractional derivative. Ini-
tial results for a variety of one-dimensional test problems appear promising.
Furthermore, the proposed strategy can be generalised to higher dimensions.
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1. Introduction

In the Eulerian theory of turbulence, a concentration field ϕ (t,x) is
commonly assumed to satisfy the advection-diffusion equation

∂ϕ

∂t
+∇. (uϕ) = κ∆ϕ (t,x) , t ∈ R+, x ∈ D ⊂ Rn, (1.1)

where ∇ is the gradient vector, u (t, x) is the velocity vector field, κ is the
molecular diffusivity coefficient and ∆ is the Laplacian. On the other hand,
in the Lagrangian theory, the assumptions of model (1.1) are equivalent
to assuming that the particle trajectories x (t) satisfy the Itô stochastic
differential equation

dx (t) = u (t,x (t)) dt + (2κ)1/2 dB (t) ,

where the components of B (t) are independent Brownian motions (Schuss
[25], Thomson [29]). In the context of anomalous diffusion, particularly
under long-range dependence, the equivalence between the Eulerian and
Lagrangian approaches has not been established.

A fundamental example of a fractional-in-space diffusion equation is

∂ϕ

∂t
= −κ (−∆)α ϕ (t,x) , α > 0, (1.2)

where (−∆)α is understood as the inverse of the Riesz potential defined by
the kernel

Jα (x) =
Γ (n/2− α)
πn/24αΓ (α)

|x|2α−n

(Stein [26]). For α ∈ (0, 1] the Green’s function of (1.2) is the symmet-
ric 2α−stable probability density function and the corresponding particle
trajectories follow a symmetric 2α−stable Lévy motion. This provides a
Lagrangian interpretation of the fractional diffusion equation (1.2) (see
Bochner [5], also Feller [8] for an extension to the asymmetric case). In
fact, Feller [8] considered the problem of generating all the stable proba-
bility distributions through the semigroup (known as the Feller semigroup)
generated by the Green’s function of the diffusion equation

∂ϕ

∂t
= D2α

θ ϕ (t,x) , t > 0, x ∈ R, (1.3)

where D2α
θ is the pseudo-differential operator with symbol

D̂2α
θ = − |λ|2α exp (i sign (λ) θπ/2) ,
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α being the index of stability and θ the index of skewness (asymmetry).
When θ = 0, (1.3) is reduced to (1.2) with κ = 1, and the Feller semigroup
represents all 2α-stable distributions.

Eq. (1.2) and its extensions have been treated by many authors includ-
ing Schneider and Wyss [28], Schneider [24], Kochubei [13], Mainardi [21],
Saichev and Zaslavsky [27], Gorenflo et al. [11, 12, 10], Anh and Leonenko
[2, 3, 4].

Analytical solutions for equations of the type (1.2) using transform
methods on unbounded domains are known for some cases (see Schnei-
der and Wyss [28], for example). For bounded domains and under some
boundary conditions, it appears that the problem must be approached via
numerical methods. To be precise one wants to solve Eq. (1.2) on a bounded
domain D and under a variety of boundary conditions of the Dirichlet, Neu-
mann and Robin types, viz.

(i) ϕ = f on ∂D (Dirichlet);
(ii) ∂ϕ

∂n := (n · ∇)ϕ = f on ∂D (with n outer normal) (Neumann);
(iii) ∂ϕ

∂n + βϕ = f on ∂D, β > 0 (Robin).

In this paper we will provide a method and corresponding numerical
schemes to approximate the solution of Eq. (1.2) in one dimension subject
to one of these boundary condition types with f = 0 (the so-called homo-
geneous boudary conditions). The nonhomogeneous boundary conditions
will be discussed in a subsequent paper by the authors. Specifically, an
approximate solution is sought for the following problem:

Problem 1. Solve the following boundary value problem (BVP) in
one dimension:

∂ϕ

∂t
= −κ

(
− ∂2

∂x2

)α
2

ϕ, 0 < x < L, (1.4)

with the initial condition
ϕ(x, 0) = g(x)

together with one of the following boundary conditions:
(i) ϕ(0, t) = 0, ϕ(L, t) = 0 . . . (BC)1;
(ii) ϕx(0, t) = 0, ϕx(L, t) = 0 . . . (BC)2;
(iii) ϕx(0, t) + βϕ(0, t) = 0, ϕx(L, t) + βϕ(L, t) = 0 . . . (BC)3.

The solutions of Problem 1 will be compared using three methods. In
Section 2, the fractional derivative is expressed using the integral represen-
tation. In Section 3, the fractional derivative is expressed using the spectral
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representation. In Section 4, a new approach is formulated using the fi-
nite difference method to approximate the fractional derivative by a matrix
representation.

For many years the finite difference method has been a mainstay in the
numerical treatment of partial differential equations (Morton and Mayers
[20]). To illustrate the idea, consider the simplest diffusion equation (with
constant diffusivity κ) in one dimension:

∂ϕ

∂t
= κ

∂2ϕ

∂x2
, 0 < x < 1, (1.5)

ϕ(0, t) = f1(t), ϕ(1, t) = f2(t),
ϕ(x, 0) = g(x).

Introducing a finite difference approximation, we obtain

dϕi

dt
=

κ

h2
(ϕi+1 − 2ϕi + ϕi−1), (i = 1, · · · , N − 1),

ϕ0 = f1(t), ϕN = f2(t),
ϕ(xi, 0) = g(xi), (i = 1, · · · , N − 1),

where ϕi = ϕ(xi, t), h is the space step defined as h = 1
N .

The above equations can be expressed as the following system of ordi-
nary differential equations:

dΦ
dt

= −ηAΦ + b, (1.6)

where η = κ
h2 and Φ,b ∈ RN−1, A ∈ RN−1×N−1,

Φ =




ϕ1
...

ϕN−1


 ,b =




ηϕ0

0
...
0

ηϕN




,A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . −1

−1 2




.

The matrix A is a symmetric positive definite (SPD) matrix. Initially, we
have

Φ(0) = [g(h), g(2h), . . . , g((N − 1)h)]T . (1.7)

We make an important observation: If b = 0 (i.e. homogeneous boundary
conditions) and if the operator T = − ∂2

∂x2 has a matrix representation m(T ),
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then Eq.(1.5) becomes

dm(ϕ)
dt

= −κm(T )m(ϕ),

where m is the “coordinate” isomorhism ϕ ↔ Φ. In other words 1
h2 A ≈

m(T ), i.e., 1
h2 A is an approximate matrix representation of T .

The aim of this study is to explore the possibility that Eq. (1.4) can be
replaced by

dΦ
dt

= −η̄A
α
2 Φ,

where η̄ = κ
hα for homogeneous boundary conditions. Numerical results are

obtained to evaluate the performance of the proposed method relative to
exact analytical solutions. The method also can be extended in a natural
manner to higher dimensions, which is an advantage over existing tech-
niques.

2. Integral representation of fractional derivative

2.1. Caputo fractional derivative

A fractional-in-space diffusion equation may take the form

∂ϕ

∂t
= kc

aD
α
xϕ, a < x < b, (2.1)

where c
aD

α
x denotes the fractional derivative in the Caputo sense:

c
aD

α
xϕ(x) =

1
Γ(n− α)

∫ x

a
[
∂nϕ(ξ)

∂ξn
]

dξ

(x− ξ)α−n+1
, (n− 1 < α < n).

Let h = (b − a)/N , x = xl = a + lh, ϕ0 = ϕ(x − lh) = ϕ(a) , ϕ1 =
ϕ(x − (l − 1)h) = ϕ(a + h),...,ϕl−j = ϕ(x − jh),...,ϕl = ϕ(x) = ϕ(a + lh).
Then the fractional derivative term with n = 2 can be approximated by
[19, 20]

c
aD

α
xϕ(x) =

1
Γ(2− α)

∫ x

a

ϕ(2)(ξ)dξ

(x− ξ)α−1

=
1

Γ(2− α)

∫ x−a

0

ϕ(2)(x− ξ)dξ

ξα
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=
1

Γ(2− α)

l−1∑

j=0

∫ (j+1)h

jh

ϕ(2)(x− ξ)dξ

ξα−1

=
1

Γ(2− α)

l−1∑

j=0

ϕ(x− (j − 1)h)− 2ϕ(x− jh) + ϕ(x− (j + 1)h)
h2

×
∫ (j+1)h

jh

dξ

ξα−1

=
h−α

Γ(3− α)

l−1∑

j=0

(ϕl−j+1 − 2ϕl−j + ϕl−j−1)[(j + 1)2−α − j1−α].

Using the technique outlined in Liu et al. [19, 20], equation (2.1) can be
recast into the following ordinary differential equation (ODE):

dϕl

dt
=

k

hαΓ(3− α)

l−1∑

j=0

(ϕl−j+1 − 2ϕl−j + ϕl−j−1)[(j + 1)2−α − j2−α],

l = 1, 2, ..., N, where ϕl = ϕ(xl, t).

2.2. Riesz fractional derivative

A fractional-in-space diffusion equation may also be written as

∂ϕ

∂t
=R

0 Dα
xϕ, a < x < b, (2.2)

where R
0 Dα

x denotes the Riesz fractional derivative

R
0 Dα

x = −(−4)
α
2 =

dα

d|x|α = −xI−α
0

and
xI−α

0 ϕ(x) = C−(α)xIα
+ϕ(x) + C+(α)xIα

−ϕ(x).

Here, xI−α
± denote the Riemann-Liouville fractional integrals, also known

as Weyl fractional integrals, which are defined as

xI−α
+ ϕ(x) =

1
Γ(α)

∫ x

a

ϕ(ξ)dξ

(x− ξ)1−α
,
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xI−α
− ϕ(x) =

1
Γ(α)

∫ b

x

ϕ(ξ)dξ

(ξ − x)1−α
,

C−(α) = C+(α) =
1

2 cos(πα
2 )

,

and thus we recover the Riesz potential

xI−α
0 ϕ(x) =

1
2Γ(α) cos(πα

2 )

∫ b

a

ϕ(ξ)dξ

|x− ξ|1−α
.

We define by analytic continuation the pseudo-differential operator in the
whole range 1 < α < 2 as

xDα
0 = −(C+(α)xDα

+ + C−(α)xDα
−).

For integral representations of the operators xIα±, we have

xIα
± =

d2

dx2
(xI2−α

± ).

Therefore,

xDα
+ϕ =

d2

dx2
(xI2−α

+ )ϕ

=
ϕ(a)(x− a)−α

Γ(1− α)
+

ϕ′(a)(x− a)1−α

Γ(2− α)
+

1
Γ(2− α)

∫ x

a

ϕ(2)(ξ)dξ

(x− ξ)α−1
,

xDα
−ϕ =

d2

dx2
(xI2−α

− )ϕ

=
ϕ(b)(b− x)−α

Γ(1− α)
− ϕ′(b)(b− x)1−α

Γ(2− α)
+

1
Γ(2− α)

∫ b

x

ϕ(2)(ξ)dξ

(ξ − x)α−1
.

Using the technique in Liu et al. [19, 20], equation (2.2) can be recast into
the following ODE:

dϕl

dt
= − 1

2Γ(α) cos(πα
2 )

kh−α

Γ(3− α)

{
(1− α)(2− α)ϕ0

lα

+
(2− α)
lα−1

(ϕ1 − ϕ0) +
l−1∑

j=0

(ϕl−j+1 − 2ϕl−j + ϕl−j−1)[(j + 1)2−α − j2−α]

+
(1− α)(2− α)ϕN

(N − l)α
− (2− α)

(N − l)(α−1)
(ϕN − ϕN−1)

+
N−l−1∑

j=0

(ϕl+j−1 − 2ϕl+j + ϕl+j+1)[(j + 1)2−α − j2−α]



 .
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2.3. Method of lines

The method of lines (MOL) is a well-known technique for solving parabo-
lic-type partial differential equations [30]. In the MOL, time integration is
accomplished using an ODE or a differential-algebraic equations (DAE) inte-
grator. Some of the mathematical and numerical difficulties in working with
these approaches include error control, solution-order adjustment, time-step
adjustment, and nonlinear and linear algebraic equation resolution. Brenan
et al. [7] developed the differential/algebraic system solver (DASSL), which
is based on the backward difference formulas (BDF). DASSL approximates
the derivatives using the k-th order BDF, where k ranges from one to five.
At every step, it chooses the order k and step size based on the behaviour
of the solution. In this work, we use DASSL as our ODE solver. This tech-
nique has been used to solve adsorption problems involving step gradients
in bidisperse solids [14, 17], hyperbolic models of transport in bidisperse
solids [15], transport problems involving steep concentration gradients [16],
and modelling saltwater intrusion into coastal aquifers [18].

3. Spectral representation

Let H be the real Hilbert space L2(0, L) with the usual inner product.
Consider the operator T : H → H defined by Tϕ = −d2ϕ

dx2 = −4ϕ on

H =
{
ϕ ∈ H; ϕ′ is absolutely continuous, ϕ′, ϕ′′ ∈ L2(0, L), B(ϕ) = 0

}
,

where B(ϕ) is one of the boundary conditions in Problem 1. It is known
that T is a closed, self-adjoint operator whose eigenfunctions {ϕn}∞n=1 form
an orthonormal basis for H. Thus Tϕn = λnϕn, n = 1, 2, · · · . For any
ϕ ∈ H,

ϕ =
∞∑

n=1

cnϕn, cn =< ϕ, ϕn >,

Tϕ =
∞∑

n=1

λncnϕn.

If ψ is a continuous function on R, then

ψ(T )ϕ =
∞∑

n=1

ψ(λn)cnϕn, (3.1)
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provided
∑∞

n=1 |ψ(λn)cn|2 < ∞. Hence if the eigenvalue problem for T can
be solved explicitly, then Problem 1 can be easily solved as shown by the
following examples, where ψ(t) = t

α
2 .

Example 1. Solve the following one dimensional space fractional dif-
fusion equation with given initial and boundary-value conditions

∂ϕ

∂t
= −κ(−4)

α
2 ϕ, 0 < x < L, (3.2)

ϕ(0, t) = ϕ(L, t) = 0, (3.3)
ϕ(x, 0) = g(x). (3.4)

First we obtain the spectral representation of the operator T by solving
the eigenvalue problem:

−4y = λy,

y(0) = 0, y(L) = 0.

The eigenvalues are λn = n2π2

L2 for n = 1, 2, · · · , and the corresponding
eigenfunctions are nonzero constant multiples of yn(x) = sin(nπx

L ).

Next set ϕ(x, t) =
∑∞

n=1 cn(t) sin(nπx
L ), which automatically satisfies the

boundary condition (3.3). Using equation (3.1) and substituting ϕ(x, t) into
equation (3.2), we obtain

∞∑

n=1

[
dcn

dt
+ κ(

n2π2

L2
)

α
2 cn] sin(

nπx

L
) = 0.

The problem for cn becomes

dcn

dt
+ κ(

n2π2

L2
)

α
2 cn = 0,

which has the general solution

cn(t) = cn(0) exp(−κ(
n2π2

L2
)

α
2 t).

To obtain cn(0) we use the initial condition (3.4)

ϕ(x, 0) =
∞∑

n=1

cn(0) sin(
nπx

L
) = g(x).
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This gives

cn(0) =
2
L

∫ L

0
g(ξ) sin(

nπξ

L
)dξ = bn.

With this choice of the coefficients, we have the solution for the distribution
function:

ϕ(x, t) =
∞∑

n=1

bn sin(
nπx

L
) exp(−κ(

n2π2

L2
)

α
2 t).

Example 2. Solve the following fractional-in-space diffusion equation
with radiating end (BC)3 in one dimension:

∂ϕ

∂t
= −κ(−4)

α
2 ϕ, 0 < x < 1, (3.5)

ϕ(0, t) = 0, ϕ′(1, t) + ϕ(1, t) = 0, t > 0, (3.6)
ϕ(x, 0) = g(x). (3.7)

The operator T , defined by

Ty = −d2y

dx2
, y(0) = 0, y′(1) + y(1) = 0

has the eigenvalues λn, n = 1, 2, · · · , which are the roots of the equation

sin(
√

λ) +
√

λ cos(
√

λ) = 0,

and can be found using a numerical method [6]. The corresponding normal-
ized eigenfunctions are

ϕn(x) =
√

2 sin(
√

λnx)

(1 + cos2
√

λn)
1
2

, n = 1, 2, · · · .

Next set ϕ(x, t) =
∑∞

n=1 cn(t)ϕn(x) and substitute into Eq. (3.5) to
obtain ∞∑

n=1

[
dcn

dt
+ κλ

α
2
n cn]ϕn(x) = 0.

Solving the resulting ODE for cn(t) using the initial condition, we obtain

ϕ(x, t) =
∞∑

n=1

cn

√
2 sin(

√
λnx)

(1 + cos2
√

λn)
1
2

exp(−λ
α
2
n κt),
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where

cn =
∫ 1

0
g(x)

√
2 sin(

√
λnx)

(1 + cos2
√

λn)
1
2

dx.

Remark 1. For numerical calculations, an infinite series is typically
approximated by a finite sum. That is, we set

ϕ̄ =
n∑

i=1

ciϕi.

It is still true that

T ϕ̄ =
n∑

i=1

λiciϕi,

and

ψ(T )ϕ̄ =
n∑

i=1

ψ(λi)ciϕi.

One can think of this as working on a finite-dimensional invariant subspace
Xn = Span {ϕ1, · · · , ϕn} ⊂ H, with the operator T |Xn , which is the re-
striction of T to Xn. The difficulties arise when we don’t know invariant
subspaces of T and we have to work with noninvariant subspaces, for exam-
ple, when diffusivity is nonconstant or geometry is not simple.

4. Matrix representation

Whereas bounded operators readily admit matrix representation on a
separable Hilbert space, for unbounded, symmetric and closed operators like
differential operators, care is required [1], but there do exist bases for matrix
representation of such operators. If {ϕn}∞n=1 is the eigenfunction orthonor-
mal basis for H as discussed in Section 3, then we have the representation

ϕ ∈ H ↔ c = (c1, · · · , cn, · · · )T ∈ `2,

i.e. m(ϕ) = c, where m is the “coordinate” isomorphism. In this case,

m(T ) = Λ = diag(λi) and m(ψ(T )) = ψ(Λ) or m(ψ(T )) = diag(ψ(λi)).
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Let Xn = Span {ϕ1, · · · , ϕn} be a finite-dimensional subspace of H. Then
Xn ⊂ Xn+1 and

⋃∞
n=1 Xn is dense in H. Since Xn is an invariant subspace

of T , we have for ϕ̄ ∈ Xn, m(ϕ̄) = c = (c1, · · · , cn)T ,

m(T ) = Λ =




λ1

λ2

. . .
λn


 ,

and

m(ψ(T )) = ψ(Λ) =




ψ(λ1)
ψ(λ2)

. . .
ψ(λn)


 .

In general, if Xn is invariant and m(T ) = A on Xn, then m(ψ(T )) = ψ(A)
on Xn. The reason for this is that T |Xn and A have the same eigenval-
ues. Knowledge of invariant subspaces is equivalent to solving eigenvalue
problems. Unfortunately, for practical problems, the analytic eigenvalue
problem is intractable. Eigenvalue problems for differential operators are
generally solved by constructing a finite difference approximation of the
exact differential equation as shown by the following example.

Example 3. Consider the eigenvalue problem for T, i.e.,

y′′ + λ2y = 0, y(0) = 0, y(1) = 0.

As discussed in the Introduction, a finite difference approximation is

AY = µY, µ = h2λ2,

where A is defined after Eq. (1.6) and Y = (y1, · · · , yN−1)T , yi = y(ih).
The eigenvalues of A are [9]:

µk = 4 sin2(
kπ

2N
), k = 1, 2, · · · , N − 1,

which gives the approximate eigenvalues of T to be

Nλ2
k = 4N2 sin2(

kπ

2N
), k = 1, 2, · · · , N − 1.
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Clearly limN→∞(Nλ2
k) = k2π2 = λ2

k which are the eigenvalues of T as found
in Section 3. Agreement of eigenvalues of T and limiting A gives us the con-
fidence that the method has merit. In practical situations when N is large
(say in hundreds) and k small (say in tens), there is a good agreement be-
tween Nλ2

k and λ2
k. This indicates that there is a finite-dimensional invariant

subspace Xk spanned by the first k eigenfunctions of T . The restriction of T
to Xk, T |Xk

, is represented by the restriction of A to m(Xk), the discretized
representation of Xk. This implies that the matrix representation of T

α
2 |Xk

is the restriction of A
α
2 to m(Xk). Comparison of the analytical solution

and the numerical results obtained by this method shows good agreement.

We illustrate the general procedure by the following simple example.

Example 4. Use the finite difference method to solve the one dimen-
sional fractional-in-space diffusion equation with initial and boundary-value
conditions:

∂ϕ

∂t
= −κ(−4)

α
2 ϕ, 0 < x < 1, (4.1)

ϕ(0, t) = ϕ(1, t) = 0, (4.2)
ϕ(x, 0) = g(x). (4.3)

First we apply the finite difference method to the standard BVP:

∂ϕ

∂t
= κ4ϕ, 0 < x < 1,

ϕ(0, t) = ϕ(1, t) = 0,
ϕ(x, 0) = g(x).

by approximating the space derivatives, but not the time derivative, by a
difference expression. The above equations can be written in the following
matrix form:

dΦ
dt

= −ηAΦ, (4.4)

where η = κ
h2 and A is as given after Eq. (1.6). Assuming that 1

h2 A is a
good approximation of the differential operator T , then m(T

α
2 ) ≈ 1

hα A
α
2

and Eq.(4.1) is approximated by the equation

dΦ
dt

= −η̄A
α
2 Φ, (4.5)
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where η̄ = κ
hα and Φ(0) is as given in Eq.(1.7). The solution of Eq.(4.5) is

given by
Φ(t) = exp(−η̄A

α
2 t)Φ(0).

For reasonably small values of N , diagonalization is the simplest option for
computing the matrix exponential. For A ∈ SPD, there exits a nonsingular
matrix P ∈ R(N−1)×(N−1) so that

A = PΛPT,

where Λ = diag(λ1, λ2, · · · , λN−1) are the eigenvalues of A. The solution
of Eq.(4.5) in this case becomes

Φ(t) = P exp(−η̄Λ
α
2 t)PTΦ(0),

where exp(−η̄Λ
α
2 t) = diag(exp(−η̄λ

α
2
1 t), exp(−η̄λ

α
2
2 t), · · · , exp(−η̄λ

α
2
N−1t)).

Similarly, this technique can be applied to a fractional-in-space diffusion
equation with radiating end, or to a multidimensional problem.

Remark 2. Different boundary conditions and/or different discretisa-
tion methods may result in matrices A that are not SPD. In such cases, the
matrix function approximation would be more challenging and is a topic for
future research.

5. Numerical examples

In this section, we present some numerical results. Numerical solutions
are compared with the analytical solution for various boundary conditions.

Example 5. Consider the fractional-in-space diffusion equation

∂ϕ

∂t
= κDα

xϕ, 0 < x < π, (5.1)

ϕ(0, t) = ϕ(π, t) = 0, (5.2)
ϕ(x, 0) = f(x) = x2(π − x). (5.3)

When α = 2, κ = 0.25 and 0D
α
x =R

0 Dα
x = −(−∆)

α
2 , the analytical

solution of (5.1)-(5.3) is

ϕ(x, t) =
∞∑

n=1

(
8(−1)n+1 − 4

n3
) sin(nx) exp(−n2κt).
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Figure 1: Comparison of the analytical solution (∗ ∗ ∗) and the numerical
solutions (matrix method − − −; fractional Caputo · · · ; fractional Riesz
−·−·) at t = 0.4 for a fractional-in-space diffusion equation with initial and
boundary-value conditions (α = 1.8, κ = 0.25).

When α 6= 2, the analytical solution of (5.1)-(5.3) is

ϕ(x, t) =
∞∑

n=1

(
8(−1)n+1 − 4

n3
) sin(nx) exp(−(n2)

α
2 κt).

The analytical solution is compared with the numerical methods in Figure 1
for t = 0.4, α = 1.8 and κ = 0.25. It is seen that all three numerical methods
perform well, with the matrix method providing the best approximation to
the analytical solution.

Example 6. Consider the fractional-in-space diffusion equation with
radiating end

∂ϕ

∂t
= −κ(−4)

α
2 ϕ, 0 < x < 1, (5.4)

ϕ(0, t) = 0, ϕ′(1, t) + ϕ(1, t) = 0, t > 0, (5.5)
ϕ(x, 0) = f(x) = x. (5.6)

When α = 2 and the analytical solution of (5.4)-(5.6) is

ϕ(x, t) =
∞∑

n=1

4 sin(
√

λn) sin(
√

λnx)
λn(1 + cos2

√
λn)

exp(−λnκt).
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Figure 2: Comparison of the analytical solution (∗ ∗ ∗) and the numerical
solutions (matrix method − − −; fractional Caputo · · · ; fractional Riesz
− · −·) at t = 0.7 for a fractional-in-space diffusion equation with radiating
end (α = 1.8, κ = 1).

When α 6= 2, the analytical solution of (5.4)-(5.6) is

ϕ(x, t) =
∞∑

n=1

4 sin(
√

λn) sin(
√

λnx)
λn(1 + cos2

√
λn)

exp(−λ
α
2
n κt).

The analytical solution and those from the three numerical methods are
plotted in Figure 2 for t = 0.7, α = 1.8 and κ = 1. The Riesz deriva-
tive method performs poorly in this example, while the Caputo derivative
method is quite reasonable; but again the matrix method provides the best
approximation to the analytical solution.

6. Conclusions

This work has seen a new numerical strategy devised for approximating
fractional-in-space diffusion equations. The method is based on solving a
system of ordinary differential equations whose matrix A, which represents
the spatial discretisation of the Laplacian operator, is raised to a fractional
power. The solution of this system presents a matrix function of the form
exp(−βA−α

2 ), β ∈ R, 1 < α < 2 to be approximated. Although in this
work where A was assumed to be SPD and diagonalisation was used to ob-
tain the desired matrix function, future research will see matrix polynomial
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approximations investigated for a wider class of matrices. Finally, a major
benefit of this new method is that it can be generalized to higher dimensions
without altering the overall solution methodology.
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