ON MULTIDIMENSIONAL ANALOGUE OF MARCHAUD FORMULA FOR FRACTIONAL RIESZ-TYPE DERIVATIVES IN DOMAINS IN \mathbb{R}^{n}

Humberto Rafeiro ${ }^{1}$ and Stefan Samko ${ }^{2}$
Dedicated to Professor H.M. Srivastava, on the occasion of his 65th Birth Anniversary

Abstract

There is given a generalization of the Marchaud formula for one-dimensional fractional derivatives on an interval $(a, b),-\infty<a<b \leq \infty$, to the multidimensional case of functions defined on a region in \mathbb{R}^{n} : $\mathbb{D}_{\Omega}^{\alpha} f(x)=c(\alpha)\left[a_{\Omega}(x) f(x)+\int_{\Omega} \frac{f(x)-f(y)}{|x-y|^{n+\alpha}} d y\right], \quad x \in \Omega, \quad 0<\alpha<1$,

which is the Riesz fractional derivative of the zero continuation of $f(x)$ from Ω to the whole space $\mathbb{R}^{n}, c(\alpha)$ being a certain constant. A special attention is paid to the role of the coefficient $a_{\Omega}(x)$, which in the multidimensional case is estimated in terms of the power of the distance of the point x to the boundary $\partial \Omega$. In the case when Ω is a ball, this function is calculated explicitly in terms of the Gauss hypergeometric function.

It is also shown that the operator $\mathbb{D}_{\Omega}^{\alpha}$ acts boundedly from the range of the Riesz potential operator $I_{\Omega}^{\alpha}\left(L_{p}(\Omega)\right)$ to $L_{p}(\Omega), 1<p<\frac{1}{\alpha}$.

2000 Mathematics Subject Classification: 26A33, 42B20
Key Words and Phrases: hypersingular integrals, fractional Laplacian, Marchaud fractional derivative

1. Introduction

The Marchaud formula

$$
\begin{equation*}
\mathbb{D}^{\alpha} f(x)=\frac{1}{\Gamma(1-\alpha)} \frac{f(x)}{(x-a)^{\alpha}}+\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{x-a} \frac{f(x)-f(x-t)}{t^{1+\alpha}} d t, \quad x>a \tag{1.1}
\end{equation*}
$$

for fractional derivatives of order $0<\alpha<1$, is well known, see [5], Subsection 13.1, which is a "difference form" of the Riemann-Liouville fractional derivative.

We introduce a multidimensional analogue of this formula in domains in \mathbb{R}^{n} adjusted for the Riesz fractional derivatives, see about Riesz fractional derivatives \equiv hypersingular integrals in [5], Section 26.

This generalized Marchaud formula for a domain Ω has the form

$$
\begin{equation*}
\mathbb{D}_{\Omega}^{\alpha} f(x)=c(\alpha)\left[a_{\Omega}(x) f(x)+\int_{\Omega} \frac{f(x)-f(y)}{|x-y|^{n+\alpha}} d y\right], \quad x \in \Omega, \tag{1.2}
\end{equation*}
$$

where $0<\alpha<1$ and
$a_{\Omega}(x)=\int_{R^{n} \backslash \Omega} \frac{d y}{|x-y|^{n+\alpha}} \quad$ and $\quad c(\alpha)=\frac{2^{\alpha} \Gamma\left(1+\frac{\alpha}{2}\right) \Gamma\left(\frac{n+\alpha}{2}\right) \sin \frac{\alpha \pi}{2}}{\pi^{1+\frac{n}{2}}}$.
We prove a property of the function $a_{\Omega}(x)$ important for further applications, namely, that the function $a_{\Omega}(x)$ behaves, generally speaking as $[\delta(x)]^{-\alpha}$, as x approaches the boundary $\partial \Omega$, where $\delta(x)=\operatorname{dist}(x, \partial \Omega)$ is the distance of a point $x \in \Omega$ to the boundary. We also show that in the case of the ball $\Omega=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ the function $a_{\Omega}(x)$ may be explicitly calculated. Finally, we show that the operator $\mathbb{D}_{\Omega}^{\alpha}$ has some features of the operator inverse to the Riesz potential operator over Ω.

2. Definition

As is known([5], Section 26), for functions defined on the whole Euclidean space, the Riesz derivative $\mathbb{D}^{\alpha} f=F^{-1}|\xi|^{\alpha} F f$, where F stands for the Fourier transforms, in the case $0<\alpha<1$ has the form

$$
\mathbb{D}^{\alpha} f=c(\alpha) \int_{\mathbb{R}^{n}} \frac{f(x)-f(x-y)}{|y|^{n+\alpha}} d y
$$

Let now Ω be a domain in \mathbb{R}^{n} and $f(x)$ a function defined in Ω. We introduce the fractional Riesz-type derivative $\mathbb{D}_{\Omega}^{\alpha} f(x)$ of f as a restriction onto Ω of the Riesz derivative of the zero extension of f to the whole space \mathbb{R}^{n}. Namely, let

$$
\mathcal{E}_{\Omega} f(x)=\left\{\begin{array}{ll}
f(x), & x \in \Omega \\
0, & x \in \mathbb{R}^{n} \backslash \Omega
\end{array}=: \tilde{f}(x) .\right.
$$

Then, by definition

$$
\begin{equation*}
\mathbb{D}_{\Omega}^{\alpha} f(x):=r_{\Omega} \mathbb{D}^{\alpha} \mathcal{E}_{\Omega} f(x)=c(\alpha) \int_{\mathbb{R}^{n}} \frac{f(x)-\tilde{f}(x-y)}{|y|^{n+\alpha}} d y, \quad x \in \Omega \tag{2.1}
\end{equation*}
$$

where r_{Ω} stands for the operator of restriction onto Ω. By splitting the integration in (2.1) to $\int_{\Omega}+\int_{\mathbb{R}^{n} \backslash \Omega}$, we easily arrive at (1.2).

In what follows, the convergence of the integral in (1.2) is interpreted as

$$
\begin{equation*}
\int_{\Omega} \frac{f(x)-f(y)}{|x-y|^{n+\alpha}} d y=\lim _{\varepsilon \rightarrow 0} \int_{\substack{y \in \Omega \\|y-x|>\varepsilon}} \frac{f(x)-f(y)}{|x-y|^{n+\alpha}} d y, \quad x \in \Omega . \tag{2.2}
\end{equation*}
$$

Obviously, this integral absolutely converges on functions f satisfying the Hölder condition of order $\lambda>\alpha$ in $\bar{\Omega}$. The integral, defining $a_{\Omega}(x)$ is always convergent, see estimation in (3.3).

3. Boundary behavior

We recall that a domain Ω is said to have the cone property, if for every $x \in \bar{\Omega}$ there exists a finite cone C_{x} centered at the point x, contained in Ω and congruent to a finite cone of fixed aperture centered at the origin (a finite cone C_{0} is the intersection of open ball centered at the origin with the set $\left\{\lambda x ; \lambda>0,\left|x-z_{0}\right|<r\right\}$, where $z_{0} \neq 0$ and $r>0$ are fixed), see for instance, [1], p. 300.

Proposition 3.1. Let Ω be an arbitrary domain in \mathbb{R}^{n}. Then for all $x \in \Omega$

$$
\begin{equation*}
a_{\Omega}(x) \leq \frac{c_{1}}{[\delta(x)]^{\alpha}}, \quad c_{1}=\frac{\left|S^{n-1}\right|}{\alpha}=\frac{2 \pi^{\frac{n}{2}}}{\alpha \Gamma\left(\frac{n}{2}\right)} . \tag{3.1}
\end{equation*}
$$

If the domain $\mathbb{R}^{n} \backslash \bar{\Omega}$ has the cone property, then there exists a constant $c_{2}>0$ such that

$$
\begin{equation*}
\frac{c_{2}}{[\delta(x)]^{\alpha}} \leq a_{\Omega}(x) \leq \frac{c_{1}}{[\delta(x)]^{\alpha}} . \tag{3.2}
\end{equation*}
$$

Proof. For $x \in \Omega$, we have

$$
\begin{equation*}
\int_{\substack{n \\ \mathbb{R}^{n} \backslash \Omega}} \frac{d y}{|x-y|^{n+\alpha}} \leq \int_{\substack{y \in \mathbb{R}^{n} \\|x-y| \geq \delta(x)}} \frac{d y}{|x-y|^{n+\alpha}}=\int_{\substack{\left.y \in \mathbb{R}^{n}\right) \\|y|>\delta(x)}} \frac{d y}{|y|^{n+\alpha}} . \tag{3.3}
\end{equation*}
$$

Passing to polar coordinates, we arrive at the estimate in (3.1).
To prove the left-hand side estimate in (3.2), we choose the boundary point $x_{0} \in \partial \Omega$ (depending on x and not necessarily unique) at which $\mid x-$ $x_{0} \mid=\delta(x)$. Then,

$$
|x-y| \leq\left|x-x_{0}\right|+\left|x_{0}-y\right|
$$

and

$$
a_{\Omega}(x) \geq \int_{R^{n} \backslash \Omega} \frac{d y}{\left[\left|x_{0}-y\right|+\delta(x)\right]^{n+\alpha}} .
$$

Since $\mathbb{R}^{n} \backslash \bar{\Omega}$ has the cone property, there exists a finite cone $\Gamma_{\Omega}\left(x_{0}, \theta\right)$ with vertex at x_{0} and fixed aperture $\theta\left(=\operatorname{arctg} \frac{r}{\left|z_{0}\right|}\right)>0$, such that $\Gamma_{\Omega}\left(x_{0}, \theta\right) \subset$ $\mathbb{R}^{n} \backslash \bar{\Omega}$. Then

$$
\int_{R^{n} \backslash \Omega} \frac{d y}{\left[\left|x_{0}-y\right|+\delta(x)\right]^{n+\alpha}} \geq \int_{B\left(x_{0}, \delta(x)\right) \cap \Gamma_{\Omega}\left(x_{0}, \theta\right)} \frac{d y}{\left[\left|x_{0}-y\right|+\delta(x)\right]^{n+\alpha}} .
$$

After translation to the origin and passing to polar coordinates, we obtain

$$
a_{\Omega}(x) \geq \int_{0}^{\delta(x)} \frac{\rho^{n-1} d \rho}{[\rho+\delta(x)]^{n+\alpha}} \int_{S^{n-1} \cap \Gamma_{\Omega}(0, \theta)} d \sigma=\frac{c_{2}}{[\delta(x)]^{\alpha}},
$$

where
$c_{2}=C(\Omega) \int_{0}^{1} \frac{t^{n-1} d t}{(t+1)^{n+\alpha}}=\frac{C(\Omega)}{n} F(n, n+\alpha ; n+1 ;-1), \quad C(\Omega)=\left|S^{n-1} \cap \Gamma_{\theta}(0)\right|$ where $F={ }_{2} F_{1}$ is the Gauss hypergeometric function.

4. The function $a_{\Omega}(x)$ in the case of the ball

Theorem 4.1. In case Ω is the ball $B(0, R)$, the function $a_{\Omega}(x)$ has the form

$$
\begin{equation*}
a_{B(0, R)}(x)=\frac{\left|S_{n-1}\right|}{\alpha R^{\alpha}} F\left(\frac{\alpha}{2}, \frac{\alpha+n}{2} ; \frac{n}{2} ; \frac{|x|^{2}}{R^{2}}\right), \quad|x|<R . \tag{4.1}
\end{equation*}
$$

It has also the following representation

$$
\begin{equation*}
a_{B(0, R)}(x)=\frac{\mathcal{A}_{R}(|x|)}{\left(R^{2}-|x|^{2}\right)^{\alpha}} \tag{4.2}
\end{equation*}
$$

with $\mathcal{A}_{R}(0)=\frac{1}{R^{\alpha}}\left|S^{n-1}\right|$ and $\mathcal{A}_{R}(R)=(2 R)^{\alpha} \frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{1+\alpha}{2}\right)}{\alpha \Gamma\left(\frac{n+\alpha}{2}\right)}$, where

$$
\begin{gather*}
\mathcal{A}_{R}(r)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{\alpha}{2}\right) \Gamma\left(\frac{n-\alpha}{2}\right)} \int_{0}^{1} s^{\frac{\alpha}{2}-1}(1-s)^{\frac{n-\alpha}{2}-1}\left(R^{2}-r^{2}+s r^{2}\right)^{\frac{\alpha}{2}} d s \tag{4.3}\\
=\frac{\left|S^{n-1}\right|}{\alpha}\left(R^{2}-|x|^{2}\right)^{\frac{\alpha}{2}} F\left(-\frac{\alpha}{2}, \frac{\alpha}{2} ; \frac{n}{2} ;-\frac{|x|^{2}}{R^{2}-|x|^{2}}\right)
\end{gather*}
$$

Proof. The function $a_{B(0, R)}(x)$ depends on $|x|$ only. Let us denote $a(r):=a_{B(0, R)}(x), r=|x|$, for brevity. It suffices to consider the case $R=1$. After passing to polar coordinates and using the Catalan formula

$$
\int_{S^{n-1}} f(x \cdot \sigma) d \sigma=\left|S^{n-2}\right| \int_{-1}^{1} f(|x| t)\left(1-t^{2}\right)^{\frac{n-3}{2}}, \quad x \in \mathbb{R}^{n}
$$

we arrive at

$$
\begin{aligned}
a(r) & =\frac{\left|S_{n-2}\right|}{r^{\alpha}} \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-3}{2}} d t \int_{\frac{1}{r}}^{\infty} \frac{s^{n-1}}{\left(s^{2}-2 s t+1\right)^{\frac{n+\alpha}{2}}} d s \\
& =\frac{\left|S_{n-2}\right|}{r^{\alpha}} \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-3}{2}} d t \int_{0}^{r} \frac{s^{\alpha-1}}{\left(s^{2}-2 s t+1\right)^{\frac{n+\alpha}{2}}} d s
\end{aligned}
$$

Since $\left(1-2 s t+s^{2}\right)^{-\lambda}=\sum_{k=0}^{\infty} C_{k}^{\lambda}(t) s^{k}$, where $C_{k}^{\lambda}(t)$ are the Gegenbauer polynomials, we obtain

$$
\begin{equation*}
a(r)=2\left|S_{n-2}\right| \sum_{k=0}^{\infty} \frac{r^{2 k}}{2 k+\alpha} \int_{0}^{1}\left(1-t^{2}\right)^{\frac{n-3}{2}} C_{2 k}^{\frac{n+\alpha}{2}}(t) d t \tag{4.4}
\end{equation*}
$$

where we took into account that the Gegenbauer polynomials of odd order are odd. The formula

$$
\int_{0}^{1}\left(1-t^{2}\right)^{\frac{n-3}{2}} C_{2 k}^{\frac{n+\alpha}{2}}(t) d t=\frac{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)}{2 k!\Gamma\left(\frac{n}{2}\right)} \frac{\left(\frac{n+\alpha}{2}\right)_{k}\left(\frac{\alpha}{2}+1\right)_{k}}{\left(\frac{n}{2}\right)_{k}}
$$

holds, see 2.21.2.3 in [3]. Making use of this formula, after easy calculations with the duplication formula for the Gamma-function taken into account, we arrive at

$$
a(r)=\frac{1}{\alpha}\left|S_{n-1}\right| \sum_{k=0}^{\infty} \frac{\left(\frac{\alpha}{2}\right)_{k}\left(\frac{\alpha+n}{2}\right)_{k}}{k!\left(\frac{n}{2}\right)_{k}} r^{2 k}
$$

which is nothing else but (4.1) with $R=1$.
To get (4.3) from (4.1), it suffices to make use of the transformation formula for the Gauss hypergeometric function:

$$
F(a, b ; c ; z)=(1-z)^{-a} F\left(a, c-b ; c ; \frac{z}{z-1}\right) .
$$

Corollary 4.2. In the case $n=2 m+1$ is odd, $a_{B(0, R)}(x)$ is an elementary function for any $\alpha \in(0,1)$:
$\left.a_{B(0,1)}(x)\right|_{|x|=r}=d_{n, \alpha}\left(1-r^{2}\right)^{\frac{1-\alpha}{2}} \frac{d^{m}}{d r^{2 m}}\left\{\left(1-r^{2}\right)^{m-\frac{\alpha+1}{2}}\left[(1+r)^{\alpha}+(1-r)^{\alpha}\right]\right\}$
where $d_{n, \alpha}=\frac{\alpha^{-1} \pi^{\frac{n-1}{2}} \Gamma\left(1-\frac{n-\alpha}{2}\right)}{\Gamma\left(\frac{n+\alpha}{2}\right)}$.
In particular, when $n=3$ one has

$$
\begin{gathered}
a_{B(0,1)}(x)=\frac{2 \pi}{\alpha^{2}-1}\left\{\left(2+\frac{1}{\alpha}\right)\left[(1+|x|)^{-\alpha}+(1-|x|)^{-\alpha}\right]\right. \\
\left.+\frac{(1-|x|)^{-\alpha}-(1+|x|)^{-\alpha}}{|x|}\right\} .
\end{gathered}
$$

Proof. When n is odd, we could write $n=2 m+1$, then

$$
a(x)=\frac{1}{\alpha}\left|S_{n-1}\right| F\left(\frac{\alpha}{2}, \frac{\alpha+1}{2}+m ; \frac{1}{2}+m ; r^{2}\right) .
$$

Using the formula

$$
\begin{aligned}
\frac{d^{n}}{d z^{n}} & {\left[(1-z)^{a+n-1} F(a, b ; c ; z)\right] } \\
& =(-1)^{n} \frac{(a)_{n}(c-b)_{n}}{(c)_{n}}(1-z)^{a-1} F(a+n, b ; c+n ; z),
\end{aligned}
$$

see for example, 7.2.1.13 from [4], and the fact that the hypergeometric function is symmetric with respect to a and b, we get

$$
\begin{align*}
& F\left(\frac{\alpha+1}{2}+m, \frac{\alpha}{2} ; \frac{1}{2}+m ; r^{2}\right)=(-1)^{m} \frac{\left(\frac{1}{2}\right)_{m}}{\left(\frac{\alpha+1}{2}\right)_{m}\left(\frac{1-\alpha}{2}\right)_{m}} \\
\times & \left(1-r^{2}\right)^{\frac{1-\alpha}{2}} \frac{d^{m}}{d r^{2 m}}\left[\left(1-r^{2}\right)^{\frac{\alpha-1}{2}+m} F\left(\frac{\alpha+1}{2}, \frac{\alpha}{2} ; \frac{1}{2} ; r^{2}\right)\right] . \tag{4.6}
\end{align*}
$$

Then by the formula

$$
\begin{equation*}
F\left(a, a+\frac{1}{2} ; \frac{1}{2} ; z\right)=\frac{1}{2}\left[(1+\sqrt{z})^{-2 a}+(1-\sqrt{z})^{-2 a}\right] \tag{4.7}
\end{equation*}
$$

see [4], formula 7.3.1.106, after simplifications we arrive at (4.5).
Remark 4.3. When $n=2 m$ is even, the function $a(r)$ may not be expressed in terms of elementary functions, being given by

$$
\begin{gather*}
a(r)=\frac{\left|S_{n-1}\right|}{\alpha} \cdot(-1)^{m-1} \frac{(m-1)!}{\left(\frac{\alpha}{2}+1\right)_{m-1}\left(1-\frac{\alpha}{2}\right)_{m-1}}\left(1-r^{2}\right)^{-\frac{\alpha}{2}} \tag{4.8}\\
\times\left(\frac{d}{d r^{2}}\right)^{m-1}\left\{\left(1-r^{2}\right)^{m-2}\left[P_{-\frac{\alpha}{2}-1}^{0}\left(\frac{1+r^{2}}{1-r^{2}}\right)-\frac{2 r}{\alpha} P_{\frac{\alpha}{2}-1}^{1}\left(\frac{1+r^{2}}{1-r^{2}}\right)\right]\right\}
\end{gather*}
$$

where $P_{-\frac{\alpha}{2}-1}^{0} \equiv P_{-\frac{\alpha}{2}-1}$ and $P_{-\frac{\alpha}{2}-1}^{1}$ are the Legendre polynomials and the associated Legendre function of the 1 st kind. In particular, for $n=2$ one has

$$
\begin{equation*}
a(r)=\frac{2 \pi}{\alpha}\left(1-r^{2}\right)^{-\frac{\alpha}{2}-1}\left[P_{-\frac{\alpha}{2}-1}^{0}\left(\frac{1+r^{2}}{1-r^{2}}\right)-\frac{2 r}{\alpha} P_{-\frac{\alpha}{2}-1}^{1}\left(\frac{1+r^{2}}{1-r^{2}}\right)\right] \tag{4.9}
\end{equation*}
$$

To obtain this, we use

$$
\begin{gathered}
F(a, b ; a-b+2 ; z) \\
=\frac{\Gamma(a-b+2)}{b-1} z^{(b-a-1) / 2}(1-z)^{-b}\left[a P_{-b}^{(b-a-1) / 2}\left(\frac{1+z}{1-z}\right)-\sqrt{z} P_{-b}^{b-a}\left(\frac{1+z}{1-z}\right)\right]
\end{gathered}
$$

see [4], formula 7.3.1.62, and (4.7) formula.

5. The operator $\mathbb{D}_{\Omega}^{\alpha}$ as "quasi"- inverse to the operator I_{Ω}^{α}

Definition 5.1. The function $\mu(x)$ is called a multiplier in the space X , if $\mu f \in X$ and $\|\mu f\|_{X} \leq c\|f\|_{X}$, for all $f \in X$.

Definition 5.2. Let Ω be an open set in \mathbb{R}^{n}. We say that Ω satisfies the Strichartz condition if there exist a coordinate system in \mathbb{R}^{n} and an integer $N>0$ such that almost every line parallel to the axes intersects Ω in at most N components.

The following statement shows that although the operator $\mathbb{D}_{\Omega}^{\alpha}$ is not inverse to the operator I_{Ω}^{α} in the cases where $\Omega \neq \mathbb{R}^{n}$, it possesses some property of the inverse operator.

Theorem 5.3. Let $f=I_{\Omega}^{\alpha} \varphi$ where $\varphi \in L_{p}(\Omega), 1 \leq p<\frac{1}{\alpha}$ and Ω is a bounded domain satisfying the Strichartz condition. Then

$$
\begin{equation*}
\mathbb{D}_{\Omega}^{\alpha} f \in L_{p}(\Omega) \quad \text { and } \quad\left\|\mathbb{D}_{\Omega}^{\alpha} f\right\|_{L_{p}(\Omega)} \leq C\|\varphi\|_{L_{p}(\Omega)} \tag{5.1}
\end{equation*}
$$

where $C>0$ does not depend on f.
Proof. By the definition in (2.1) we have

$$
\begin{equation*}
\mathbb{D}_{\Omega}^{\alpha} I_{\Omega}^{\alpha} \varphi(x)=r_{\Omega} \mathbb{D}^{\alpha} \chi_{\Omega} I^{\alpha} \mathcal{E}_{\Omega} \varphi(x), \quad x \in \Omega \tag{5.2}
\end{equation*}
$$

Then the statement of the theorem is derived from the following three facts:

1) hypersingular integral operator is the left inverse operator to the Riesz potential operator in the case of the whole space \mathbb{R}^{n} :

$$
\mathbb{D}^{\alpha} I^{\alpha} \varphi \equiv \varphi, \quad \varphi \in L_{p}\left(R^{n}\right), \quad 1 \leq p<n / \alpha
$$

see [5], p. 517.
2) the characteristic function χ_{Ω} of the domain Ω satisfying the Strichartz condition is a multiplier in the space $I^{\alpha}\left(L_{p}\right), L_{p}=L_{p}\left(\mathbb{R}^{n}\right)$ (see [6] for the case Bessel potentials and [2] for the case of Riesz potentials):

$$
\begin{equation*}
\left\|\mathbb{D}^{\alpha} \chi_{\Omega} I^{\alpha} \varphi\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leq C\|\varphi\|_{L_{p}\left(\mathbb{R}^{n}\right)}, \quad 1<p<\frac{1}{\alpha} \tag{5.3}
\end{equation*}
$$

3) the condition $\left\|\mathbb{D}^{\alpha} f\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}<\infty$ is sufficient for a function $f \in L_{p}\left(\mathbb{R}^{n}\right)$ to belong to $I^{\alpha}\left(L_{p}\right)$ and $f=I^{\alpha} \mathbb{D}^{\alpha} f$, see [5], Section 26. Observe that here we have used the fact that the domain Ω is bounded: in case Ω is unbounded, the function $f=\mathcal{E}_{\Omega} I_{\Omega}^{\alpha} \varphi$ is not necessarily in $L_{p}\left(\mathbb{R}^{n}\right)$.

Indeed, by (5.2) and (5.3) we have

$$
\left\|\mathbb{D}^{\alpha} \mathcal{E}_{\Omega} I_{\Omega}^{\alpha} \varphi\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}=\left\|\mathbb{D}^{\alpha} \chi_{\Omega} I^{\alpha} \mathcal{E}_{\Omega} \varphi\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\mathcal{E}_{\Omega} \varphi\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}=C\|\varphi\|_{L_{p}(\Omega)}
$$

ON MULTIDIMENSIONAL ANALOGUE OF MARCHAUD ... 401

Therefore, by 3) there exists a function $\psi \in L_{p}\left(\mathbb{R}^{n}\right)$ such that $\mathcal{E}_{\Omega} I_{\Omega}^{\alpha} \varphi(x)=$ $I^{\alpha} \psi(x), x \in \mathbb{R}^{n}$ with $\psi=\mathbb{D}^{\alpha} \mathcal{E}_{\Omega} I_{\Omega}^{\alpha} \varphi$. Observe that $\|\psi\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leq C\|\varphi\|_{L_{p}(\Omega)}$ by (5.3). Then

$$
\left\|\mathbb{D}_{\Omega}^{\alpha} I_{\Omega}^{\alpha} f\right\|_{L_{p}(\Omega)}=\left\|r_{\Omega} \mathbb{D}^{\alpha} \mathcal{E}_{\Omega} I_{\Omega}^{\alpha} \varphi\right\|_{L_{p}(\Omega)}=\left\|r_{\Omega} \mathbb{D}^{\alpha} I^{\alpha} \psi\right\|_{L_{p}(\Omega)} .
$$

Consequently, by 1),

$$
\left\|\mathbb{D}_{\Omega}^{\alpha} I_{\Omega}^{\alpha} \varphi\right\|_{L_{p}(\Omega)}=\|\psi\|_{L_{p}(\Omega)} \leq\|\varphi\|_{L_{p}(\Omega)}
$$

and (5.1) thus having been proved.

References

[1] A. Kufner, O. John, and S. Fučik, Function Spaces. Noordhoff International Publishing (1977).
[2] V.A. Nogin and B.S. Rubin, Boundedness of the operator of multiplication by a characteristic function of the Strichartz domain in spaces of Riesz potentials. Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk. 141, No 2 (1986), 62-66.
[3] A.P. Prudnikov and Yu.A. Brychkov and O.I. Marichev, Integrals and Series. Vol. 2: Special Functions. Gordon \& Breach Science Publishers, New York, 2nd Ed. (1988); Translated from the Russian Ed.
[4] A.P. Prudnikov and Yu.A. Brychkov and O.I. Marichev, Integrals and Series. Vol. 3: More Special Functions. Gordon and Breach Science Publishers, New York (1990); Translated from the Russian Ed., by G. G. Gould.
[5] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon \& Breach. Sci. Publ., London-New-York (1993); Russian Ed.: Fractional Integrals and Derivatives and Some of Their Applications. Nauka i Tekhnika, Minsk (1987).
[6] R.S. Strichartz, Multipliers on fractional Sobolev spaces. J. Math. Mech., 16 (1967), 10311060.

Universidade do Algarve
Received: May 11, 2005
Faculdade de Ciências e Tecnologia
Campus de Gambelas, Faro 8000 - PORTUGAL
e-mails: ${ }^{1}$ hrafeiro@ualg.pt , http://w3.ualg.pt/ $h r a f e i r o /$
${ }^{2}$ ssamko@ualg.pt , http://w3.ualg.pt/~ssamko/

