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Abstract

We consider the generalized shift operator, generated by the Laplace-
Bessel differential operator

∆Bn =
n−1∑

k=1

∂2

∂x2
k

+ Bn, Bn =
∂2

∂x2
n

+
γ

xn

∂

∂xn
, γ > 0.

The Bn-maximal functions and the Bn-Riesz potentials, generated by the
Laplace-Bessel differential operator ∆Bn are investigated. We study the
Bn-Riesz potentials in the Bn-Morrey spaces and Bn-BMO spaces. An
inequality of Sobolev -Morrey type is established for the Bn-Riesz potentials.
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1. Introduction

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The maximal
function, singular integral, potential and related topics associated with the
Laplace-Bessel differential operator
∗) This paper has been partially supported by Grant of Azerbaijan-U.S. Bilateral Grants

Program (Project ANSF Award / 3102)
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∆Bn =
n−1∑

k=1

∂2

∂x2
k

+ Bn, Bn =
∂2

∂x2
n

+
γ

xn

∂

∂xn
, γ > 0

have been investigated by many researchers, see B. Muckenhoupt and E.
Stein [14], I. Kipriyanov [13], K. Trimeche [17], L. Lyakhov [12], K. Stempak
[15,16], A.D. Gadjiev and I.A. Aliev [1,4], I.A. Aliev and S. Bayrakci [2], I.
Ekincioglu and A. Serbetci [10], V.S. Guliyev [5]-[8] and others.

In this paper we consider the generalized shift operator, generated by the
Laplace-Bessel differential operator ∆Bn in terms of which the Bn-maximal
functions and Bn-Riesz potentials are investigated. We study the Bn-Riesz
potential in the Bn-Morrey spaces and Bn-BMO spaces. An inequality of
Sobolev-Morrey type is established for the Bn-Riesz potentials.

The structure of the paper is as follows. In Section 1 we present some
definitions and auxiliary results. In Section 2 we introduce and study some
embeddings into the function spaces, associated with the Laplace-Bessel dif-
ferential operator. In Section 3 the Lp,γ boundedness of the Bn-maximal
operator is proved. In Section 4 the boundedness of the Bn-maximal opera-
tor on Bn-Morrey spaces Lp,λ,γ is proved. The main result of the paper is the
inequality of Sobolev-Morrey type for the Bn-Riesz potentials, established
in Section 5.

2. Definitions, notation and preliminaries

Suppose that Rn is the n-dimensional Euclidean space, x = (x1, . . . , xn)
are vectors in Rn. Let Rn

+ = {x ∈ Rn ; x = (x′, xn), xn > 0}, |x| =(∑n
i=1 x2

i

)1/2, γ > 0, E+(x, r) = {y ∈ Rn
+ : |x − y| < r}. For a measurable

set E ⊂ Rn
+ let |E|γ =

∫
E xγ

ndx, then |E+(0, r)|γ = ω(n, γ)rn+γ , where

ω(n, γ) =
∫

E+(0,1)
xγ

ndx =
π

n−1
2 Γ

(
γ+1

2

)

2Γ
(

n+γ−2
2

) .

Denote by T y the generalized shift operator (Bn-shift operator) acting
according to the law

T yf(x) = Cγ

∫ π

0
f

(
x′ − y′, (xn, yn)β

)
sinγ−1 βdβ,

where (xn, yn)β =
√

x2
n + y2

n − 2xnyn cosβ and Cγ =
Γ( γ+1

2 )√
πΓ( γ

2 )
= 2

πω(2, γ).
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We remark that the generalized shift operator T y is closely connected
with the Bessel differential operator Bn (for example, n = 1 see [11] and
n > 1 [13] for details).

For a fixed parameter γ > 0, let Lp,γ(Rn
+) be the space of measurable

functions on Rn
+ with finite norm

‖f‖Lp,γ = ‖f‖p,γ =

(∫

Rn
+

|f(x)|pxγ
ndx

)1/p

, 1 ≤ p < ∞.

For p = ∞ the spaces L∞,γ(Rn
+) are defined by means of the usual modifi-

cation
‖f‖L∞,γ = ‖f‖L∞ = ess sup

x∈Rn
+

|f(x)|.

The translation operator T y generates the corresponding Bn-convolution

(f ⊗ g)(x) =
∫

Rn
+

f(y)[T yf(x)]yγ
ndy,

for which the Young inequality

‖f ⊗ g‖r,γ ≤ ‖f‖p,γ ‖g‖q,γ , 1 ≤ p, q, r ≤ ∞,
1
p

+
1
q

=
1
r

+ 1

holds.

Lemma 1. ([1]) Let 1 ≤ p ≤ ∞. Then for all y ∈ Rn
+

‖T yf(·)‖Lp,γ
≤ ‖f‖Lp,γ

. (2.1)

Lemma 2. For all x ∈ Rn
+ the following equality is valid

∫

E+(x,t)
g(y)yγ

ndy =
1

2Cγ

∫

B((x,0),t)
g

(
z′,

√
z2
n + z2

n+1

)
|zn+1|γ−1dzdzn+1,

where B((x, 0), t) = {(z, zn+1) ∈ Rn+1 : |(x′ − z′, xn −
√

z2
n + z2

n+1)| < r}.
Lemma 3. For all x ∈ Rn

+ the following equality is valid
∫

E+(0,t)
T yg(x)yγ

ndy =
1
2

∫

E((x,0),t)
g

(
z′,

√
z2
n + z2

n+1

)
|zn+1|γ−1dzdzn+1,

where E((x, 0), t) = {(z, zn+1) ∈ Rn+1 : |(x− z, zn+1)| < r}.
The proof of Lemmas 2, 3 is straightforward via the following substi-

tutions z′ = y′, zn = yn cosβ, |zn+1| = yn sinβ, 0 ≤ β < π, y ∈ Rn
+,

(z, zn+1) ∈ Rn+1.
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3. Function spaces, associated with the Bessel
differential operators Bn

Definition 1. Let 1 ≤ p < ∞. By WLp,γ(Rn
+) we denote the weak

Lp,γ spaces defined as the set of locally integrable functions f(x), x ∈ Rn
+

with the finite norms

‖f‖WLp,γ
= sup

r>0
r
∣∣{x ∈ Rn

+ : |f(x)| > r
}∣∣1/p

γ
.

Definition 2. ([6]) Let 1 ≤ p < ∞, 0 ≤ λ ≤ n + γ, [t]1 = min{1, t}.
We denote by Lp,λ,γ(Rn

+) Morrey spaces, associated with the Bessel differ-
ential operator Bn (≡ Bn-Morrey spaces) and by L̃p,λ,γ(Rn

+) the modified
Morrey spaces, associated with Bn (≡ modified Bn-Morrey spaces) as the
set of locally integrable functions f(x), x ∈ Rn

+, with the finite norms

‖f‖Lp,λ,γ
= sup

t>0, x∈Rn
+

(
t−λ

∫

E+(0,t)
T y |f(x)|p yγ

ndy

)1/p

,

‖f‖eLp,λ,γ
= sup

t>0, x∈Rn
+

(
[t]−λ

1

∫

E+(0,t)
T y |f(x)|p yγ

ndy

)1/p

,

respectively.
Note that

L̃p,0,γ(Rn
+) = Lp,0,γ(Rn

+) = Lp,γ(Rn
+),

Lp,n+γ,γ

(
Rn

+

)
= L∞

(
Rn

+

)
.

L̃p,λ,γ(Rn
+) ⊂Â Lp,γ(Rn

+) and ‖f‖Lp,γ
≤ ‖f‖eLp,λ,γ

. (3.1)

Definition 3. ([6]) Let 1 ≤ p < ∞, 0 ≤ λ ≤ n + γ, [t]1 = min{1, t}.
We denote by WLp,λ,γ(Rn

+) the weak Bn-Morrey spaces and by WL̃p,λ,γ(Rn
+)

the modified weak Bn-Morrey spaces as the set of locally integrable functions
f(x),x ∈ Rn

+ with finite norms

‖f‖WLp,λ,γ
= sup

r>0
r sup

t>0, x∈Rn
+

(
t−λ

∫

{y∈E+(0,t): T y|f(x)|>r}
yγ

ndy

)1/p

,

‖f‖
W eLp,λ,γ

= sup
r>0

r sup
t>0, x∈Rn

+

(
[t]−λ

1

∫

{y∈E+(0,t): T y|f(x)|>r}
yγ

ndy

)1/p

,

respectively.
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Note that

WLp,γ(Rn
+) = WLp,0,γ(Rn

+) = WL̃p,0,γ(Rn
+),

Lp,λ,γ(Rn
+) ⊂ WLp,λ,γ(Rn

+) and ‖f‖WLp,λ,γ
≤ ‖f‖Lp,λ,γ

,

L̃p,λ,γ(Rn
+) ⊂ WL̃p,λ,γ(Rn

+) and ‖f‖
W eLp,λ,γ

≤ ‖f‖eLp,λ,γ
.

4. Lp,γ-boundedness of the Bn-maximal operator

In this section we study the Lp,γ-boundedness of the Bn- maximal op-
erator (see [5])

Mγf(x) = sup
r>0

|E+(0, r)|−1
γ

∫

E+(0,r)
T y|f(x)|yγ

ndy.

Theorem 1.
1. If f ∈ L1,γ

(
Rn

+

)
, then Mγf ∈ WL1,γ(Rn

+) and

‖Mγf‖WL1,γ ≤ C‖f‖L1,γ ,

where C is independent of f .
2. If f ∈ Lp,γ(Rn

+), 1 < p ≤ ∞, then Mγf ∈ Lp,γ(Rn
+) and

‖Mγf‖Lp,γ ≤ Cp,γ‖f‖Lp,γ ,

where Cp,γ depends only on p, γ and n.

P r o o f. The Bn-maximal function may be interpreted as a maximal
function defined on a space of homogeneous type. By this we mean a topo-
logical space X equipped with a continuous pseudometric ρ and a positive
measure µ satisfying

µ(E(x, 2r)) ≤ C1µ(E(x, r)) (4.1)

with a constant C1 independent of x and r > 0. Here E(x, r) = {y ∈ X :
ρ(x, y) < r}, ρ(x, y) = |x − y|. Let (X, ρ, µ) be a space of homogeneous
type. Define

Mµf(x) = sup
r>0

µ(E(x, r))−1

∫

E(x,r)
|f(y)|dµ(y).
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It is well known that the maximal function Mµ is weak type (1, 1) and
is bounded on Lp(X, dµ) for 1 < p < ∞ (see [3]). Here we are concerned
with the maximal operator defined by dµ(x) = xγ

ndx. It is clear that this
measure satisfies the doubling condition (4.1).

We will show that

Mγf(x) ≤ 2n+γC2

ω(n, γ)
Mµf(x), (4.2)

where C2 = 2
γ
2 +1Cγ

γ .
From the definition of the Bn–shift operator it follows that T yχE+(0,r)(x)

is supported in E+(x, r).
Moreover, there exists a constant C2 such that

0 ≤ T yχE+(0,r)(x) ≤ min{1, C2r
γx−γ

n }, ∀y ∈ E+(x, r). (4.3)

In the case xn ≤ r this follows from the inequality 0 ≤ T yχE+(0,r)(x) ≤ 1.

Also

µE(x, r) = |E+(x, r)|γ ≤
n−1∏

i=1

∫

|yi|<r

dyi

∫

{yn>0;|xn−yn|<r}

yγ
ndyn

≤ 2n+γrn−1

{
rxγ

n, r < xn

r1+γ , r ≥ xn
= 2n+γrn+γ

{
(xn/r)γ , r < xn

1, r ≥ xn.

Thus

Mγf(x) ≤ M1,γf(x) + M2,γf(x) = sup
r>xn

|E+(0, r)|−1
γ

×
∫

E+(0,r)

T y|f(x)|yγ
ndy + sup

0<r≤xn

|E+(0, r)|−1
γ

∫

E+(0,r)

T y|f(x)|yγ
ndy.

If r ≥ xn, then µE(x, r) ≤ 2n+γrn+γ , |E+(0, r)|γ = ω(n, γ)rn+γ and
T yχE+(0,r)(x) ≤ 1. Thus yields

M1,γf(x) ≤ sup
r>xn

|E+(0, r)|−1
γ

∫

E+(x,r)
|f(y)|T yχE+(0,r)(x)yγ

ndy

≤ 2n+γ

ω(n, γ)
sup
r>0

1
µE(x, r)

∫

E(x,r)
|f(y)|dµ(y) =

2n+γ

ω(n, γ)
Mµf(x).
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If r < xn, then µE(x, r) ≤ 2n+γrnxγ
n, |E+(0, r)|γ = ω(n, γ)rn+γ and

T yχE+(0,r)(x) ≤ C2r
γx−γ

n . Thus yields

M2,γf(x) ≤ sup
r≤xn

|E+(0, r)|−1
γ

∫

E+(x,r)
|f(y)|T yχE+(0,r)(x)yγ

ndy

≤ 2n+γC2

ω(n, γ)
sup
r>0

1
µE(x, r)

∫

E(x,r)
|f(y)|dµ(y) =

2n+γC2

ω(n, γ)
Mµf(x).

Therefore we get (4.2), which completes the proof.

Remark 1. For the one-dimensional case Theorem 1 was proved earlier
by K. Stempak [16].

5. Lp,λ,γ-boundedness of the Bn-maximal functions

In this section we study the Lp,λ,γ-boundedness of the Bn-maximal op-
erators.

Theorem 2.

1. If f ∈ L1,λ,γ

(
Rn

+

)
, 0 ≤ λ < n + γ, then Mγf ∈ WL1,λ,γ

(
Rn

+

)
and

‖Mγf‖WL1,λ,γ
≤ C‖f‖L1,λ,γ

, (5.1)

where C is independent of f .

2. If f ∈ Lp,λ,γ

(
Rn

+

)
, 1 < p < ∞,0 ≤ λ < n + γ, then Mγf ∈

Lp,λ,γ

(
Rn

+

)
and

‖Mγf‖Lp,λ,γ
≤ Cp,γ‖f‖Lp,λ,γ

, (5.2)

where Cp,γ depends only on p,γ and n.

P r o o f. We need to introduce another maximal function defined on a
space of homogeneous type (Y, d, ν). By this we mean a topological space
Y = Rn+1 equipped with a continuous pseudometric d and a positive mea-
sure ν satisfying

ν(E((x, xn+1), 2r)) ≤ C1ν(E((x, xn+1), r)) (5.3)

with a constant C1 independent of (x, xn+1) and r > 0. Here E((x, xn+1), r)=
{(y, yn+1) ∈ Y : d(((x, xn+1), (y, yn+1))<r}, dν(y, yn+1)= |yn+1|γ−1dydyn+1,
d((x, xn+1), (y, yn+1)) = |(x, xn+1)−(y, yn+1)| ≡ (|x−y|2+(xn+1−yn+1)2)

1
2 .
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Let (Y, d, ν) be a space of homogeneous type. Define

Mνf(x, xn+1) = sup
r>0

ν(E((x, xn+1), r))−1

∫

E((x,xn+1),r)

∣∣f(y, yn+1)
∣∣ dν(y),

where f(x, xn+1) = f
(
x′,

√
x2

n + x2
n+1

)
.

It is well known that the maximal function Mν is of weak type (1, 1)
and is bounded on Lp(Y, dν) for 1 < p < ∞ (see [3]). Here we are concerned
with the maximal operator defined by dν(y, yn+1) = |yn+1|γ−1dydyn+1. It
is clear that this measure satisfies the doubling condition (5.3).

It can be proved that

Mγf

(
z′,

√
z2
n + z2

n+1

)
= Mνf

(
z′,

√
z2
n + z2

n+1, 0
)

, (5.4)

Mγf(x) = Mνf(x, 0). (5.5)

Indeed, Lemma 3,
∫

E+(0,t)
T y

∣∣∣∣f
(

z′,
√

z2
n + z2

n+1

)∣∣∣∣ yγ
ndy

=
1
2

∫

E((z′,
√

z2
n+z2

n+1,0),r)

∣∣f(y, yn+1)
∣∣ dν(y, yn+1)

and

|E+(0, t)|γ = νE

((
z′,

√
z2
n + z2

n+1, 0
)

, r

)

imply (5.4). Furthermore, taking zn+1 = 0 in (5.4) we get (5.5).
Using Lemma 3 and equality (5.4) we have

∫

E+(0,t)
T y (Mγf(x))p yγ

ndy

=
1
2

∫

E((x,0),t)

(
Mγf

(
z′,

√
z2
n + z2

n+1

))p

|zn+1|γ−1dzdzn+1

=
1
2

∫

E((x,0),t)

(
Mνf

(
z′,

√
z2
n + z2

n+1, 0
))p

dν(z, zn+1).
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In [9] there was proved that the analogue of the Fefferman-Stein theorem
for maximal functions defined on a space of homogeneous type is valid, if
condition (5.3) is satisfied. Therefore

∫

E((x,xn+1),t)
(Mνϕ(y, yn+1))

p ψ(y, yn+1)dν(y, yn+1)

≤ C3

∫

E((x,xn+1),t)
|ϕ(y, yn+1)|pMνψ(y, yn+1)dν(y, yn+1). (5.6)

Then taking ϕ(y, yn+1) = f
(
y′,

√
y2

n + y2
n+1, 0

)
and ψ = 1 we obtain

from equality (5.6) and Lemma 3 that
∫

E+(0,t)
T y (Mγf(x))p yγ

ndy

=
1
2

∫

E((x,0),t)

(
Mνf

(
z′,

√
z2
n + z2

n+1, 0
))p

dν(z, zn+1)

≤ C4

∫

E((x,0),t)

∣∣∣∣f
(

z′,
√

z2
n + z2

n+1, 0
)∣∣∣∣

p

dν(z, zn+1)

= C4

∫

E((x,0),t)

∣∣∣∣f
(

z′,
√

z2
n + z2

n+1

)∣∣∣∣
p

dν(z, zn+1)

= 2 C4

∫

E+(0,t)
T y|f(x)|pyγ

ndy ≤ 2 C4 rλ ‖f‖p
Lp,λ,γ

.

Remark 2. Theorem 1 is obtained from Theorem 2 under the choice
λ = 0.

Similarly, we prove the following

Theorem 3.
1. If f ∈ L̃1,λ,γ

(
Rn

+

)
, 0 ≤ λ < n + γ, then Mγf ∈ WL̃1,λ,γ

(
Rn

+

)
and

‖Mγf‖
W eL1,λ,γ

≤ C‖f‖eL1,λ,γ
,

where C is independent of f .
2. If f ∈ L̃p,λ,γ

(
Rn

+

)
, 1 < p < ∞,0 ≤ λ < n + γ, then Mγf ∈

L̃p,λ,γ

(
Rn

+

)
and

‖Mγf‖eLp,λ,γ
≤ Cp,γ‖f‖eLp,λ,γ

,

where Cp,γ depends only on p, γ and n.
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6. Sobolev theorem for the Bn-Riesz potentials

Consider the Bn-Riesz potentials

Iα
γ f(x) =

∫

Rn
+

T y|x|α−n−γf(y)yγ
ndy, 0 < α < n + γ.

For the Bn-Riesz potentials the following generalized Hardy–Littlewood–
Sobolev theorem is valid.

Theorem 4. Let 0 < α < n + γ, 0 ≤ λ < n + γ.
If f ∈ L̃p,λ,γ(Rn

+), 1 < p < n+γ
α , 1

p − 1
q = α

n+γ , then Iα
γ f ∈ L̃q,λ,γ(Rn

+)
and ∥∥Iα

γ f
∥∥eLq,λ,γ

≤ Cp,λ ‖f‖eLp,λ,γ
, (6.1)

where Cp,λ is independent of f .

If f ∈ L̃1,λ,γ(Rn
+), 1− 1

q = α
n+γ , then Iα

γ f ∈ WL̃q,λ,γ(Rn
+) and

∥∥Iα
γ f

∥∥
W eLq,λ,γ

≤ Cλ ‖f‖eL1,λ,γ
, (6.2)

where Cλ is independent of f .

P r o o f. Let f ∈ L̃p,λ,γ

(
Rn

+

)
. Then

Iα
γ f(x) =

(∫

E+(0,t)
+

∫

Rn
+\E+(0,t)

)
T yf(x)|y|α−n−γyγ

ndy ≡ A(x, t) + C(x, t).

(6.3)
For A(x, t) we have

|A(x, t)| ≤
∫

E+(0,t)
T y |f(x)| |y|α−n−γyγ

ndy

≤
−1∑

k=−∞

(
2kt

)α−n−γ
∫

E+(0,2k+1t)\E+(0,2kt)
T y |f(x)| yγ

ndy.

Hence

|A(x, t)| ≤ C5t
αMγf(x) with C5 =

ω(n, γ)2n+γ

2α − 1
. (6.4)

In the second integral by the Hölder inequality and inequality (2.1) we
have

|C (x, t)| ≤ ‖T yf(·)‖Lp,γ

∥∥|y|α−n−γ
∥∥

Lp′,γ(Rn
+\E+(0,t))

≤ C6t
α−n+γ

p ‖f‖Lp,γ .
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Consequently, we use inequality (3.1) and the relation 1
p − 1

q = α
n+γ and

get
|C(x, t)| ≤ C6‖f‖Lp,γ t−(n+γ)/q ≤ C6t

−n+γ
q ‖f‖eLp,λ,γ

. (6.5)

Thus, from (6.4) and (6.5), we have
∣∣Iα

γ f(x)
∣∣ ≤ C5t

αMγf(x) + C6t
−n+γ

q ‖f‖eLp,λ,γ
.

Minimizing with respect to t, at t =
[
(Mγf(x))−1 ‖f‖eLp,λ,γ

]p/(n+γ)
we

have ∣∣Iα
γ f (x)

∣∣ ≤ (C5 + C6) (Mγf(x))p/q ‖f‖1−p/qeLp,λ,γ
.

Hence, by Theorem 3, we have
∫

E+(0,t)
T y

∣∣Iα
γ f(x)

∣∣q yγ
ndy ≤ C7 ‖f‖q−peLp,λ,γ

∫

E+(0,t)
T y (Mγf(y))p yγ

ndy

≤ C8[t]λ1 ‖f‖q−peLp,λ,γ
‖f‖peLp,λ,γ

≤ C8[t]λ1 ‖f‖qeLp,λ,γ
,

which yields (6.1).
Let f ∈ L̃1,λ,γ(Rn

+). It suffices to prove inequality (6.1) with 2β instead
of β on the left–hand of the inequality. So,

∣∣{y ∈ E+(0, t) : T y
∣∣Iα

γ f(x)
∣∣ > 2β

}∣∣
γ

≤ |{y ∈ E+(0, t) : T y|A(x, t)| > β}|γ+|{y ∈ E+(0, t) : T y|C(x, t)| > β}|γ .

Taking into account inequality (6.4) and Theorem 3, we have

|{y ∈ E+(0, t) : T y|A(x, t)| > β}|γ

≤
∣∣∣∣
{

y ∈ E+(0, t) : T y (Mγf(x)) >
β

C5tα

}∣∣∣∣
γ

≤ C9t
α

β
· [t]λ1 ‖f‖eL1,λ,γ

and thus if C6t
−n+γ

q ‖f‖eL1,λ,γ
= β, then |C (x, t)| ≤ β and consequently,

| {y ∈ E+(0, t) : T y |C(x, t)| > β} |γ = 0.
Finally

∣∣{y ∈ E+(0, t) : T y
∣∣Iα

γ f(x)
∣∣ > 2β

}∣∣
γ
≤ C9[t]λ1

(‖f‖eL1,λ,γ

β

)q

,

which proves the theorem.
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Theorem 5. Let 0 < α < n + γ and 0 ≤ λ < n + γ − αp.
If f ∈ Lp,λ,γ(Rn

+), where 1 < p < n+γ
α and 1

p − 1
q = α

n+γ−λ , then
Iα
γ f ∈ Lq,λ,γ(Rn

+) and
∥∥Iα

γ f
∥∥

Lq,λ,γ
≤ Cp,λ ‖f‖Lp,λ,γ

, (6.6)

where Cp,λ is independent of f .
If f ∈ L1,λ,γ(Rn

+), 1− 1
q = α

n+γ−λ , then Iα
γ f ∈ WLq,λ,γ(Rn

+) and

∥∥Iα
γ f

∥∥
WLq,λ,γ

≤ Cλ ‖f‖L1,λ,γ
, (6.7)

where Cλ is independent of f .

P r o o f. Let f ∈ Lp,λ,γ

(
Rn

+

)
. From (6.3), for C(x, t) by the Hölder’s

inequality we have

|C(x, t)| ≤




∫

Rn
+\E+(0,t)

|y|−βT y |f (x)|p yγ
ndy




1
p

×




∫

Rn
+\E+(0,t)

|y|
�

β
p
+α−n−γ

�
p′

yγ
ndy




1
p′

≤ C13t
λ−n−γ

p
+α ‖f‖Lp,λ,γ

. (6.8)

Thus, from (6.4) and (6.8) we have
∣∣Iα

γ f(x)
∣∣ ≤ C14

(
tαMγf(x) + t

λ−n−γ
q ‖f‖Lp,λ,γ

)
.

Minimizing with respect to t, at t =
[
(Mγf(x))−1 ‖f‖Lp,λ,γ

]p/(λ−n−γ)

we arrive at ∣∣Iα
γ f(x)

∣∣ ≤ C14 (Mγf(x))p/q ‖f‖1−p/q
Lp,λ,γ

.

Hence, by Theorem 2, we have
∫

E+(0,t)
T y

∣∣Iα
γ f(x)

∣∣q yγ
ndy ≤ C14 ‖f‖q−p

Lp,λ,γ

∫

E+(0,t)
T y (Mγf(x))p yγ

ndy

≤ C15t
λ ‖f‖q−p

Lp,λ,γ
‖f‖p

Lp,λ,γ
≤ C15t

λ ‖f‖q
Lp,λ,γ

.

Let f ∈ L1,λ,γ(Rn
+). It suffices to prove the inequality (6.7) with 2β

instead of β on the left-hand side of the inequality. So
∣∣{y ∈ E+(0, t) : T y

∣∣Iα
γ f(x)

∣∣ > 2β
}∣∣

γ
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≤ | {y ∈ E+(0, t) : T y|A(x, t)| > β} |γ+| {y ∈ E+(0, t) : T y|C(x, t)| > β} |γ .

Taking into account inequality (6.4) and Theorem 2 we have

| {y ∈ E+(0, t) : T y|A(x, t)| > β} |γ

≤
∣∣∣∣
{

y ∈ E+(0, t) : T y(Mγf(x)) >
β

C5tα

}∣∣∣∣
γ

≤ C16t
α

β
· tλ ‖f‖L1,λ,γ

and thus if C13t
λ−n−γ

q ‖f‖L1,λ,γ
= β, then |C (x, t)| ≤ β and consequently,

| {y ∈ E+(0, t) : T y|C(x, t)| > β} |γ = 0.

Finally,
∣∣{y ∈ E+(0, t) : T y|Iα

γ f(x)| > 2β
}∣∣

γ
≤ C16

β
tλtα ‖f‖L1,λ,γ

= C16t
λ

(‖f‖L1,λ,γ

β

)q

.

The theorem is proved.

Corollary. ([4]) Let 0 < α < n + γ.

If 1 < p < n+γ
α , 1

p − 1
q = α

n+γ , f ∈ Lp,γ(Rn
+), then Iα

γ f ∈ Lq,γ(Rn
+) and

∥∥Iα
γ f

∥∥
Lq,γ

≤ Cp,γ‖f‖Lp,γ , (6.9)

where Cp is independent of f .

If f ∈ L1,γ(Rn
+), 1

q = 1− α
n+γ , then Iα

γ f ∈ WLq,γ(Rn
+) and

∥∥Iα
γ f

∥∥
WLq,γ

≤ Cλ ‖f‖L1,γ
, (6.10)

where Cλ is independent of f .

Theorem 6. Let 0 < α < n + γ.

If 1 < p < n+γ
α , then the condition 1

p−1
q = α

n+γ is necessary for inequality
(6.9) to be valid.

If p = 1, then the condition 1 − 1
q = α

n+γ is necessary for inequality
(6.10) to hold.

P r o o f. Let 1 < p < n+γ
α , f ∈ Lp,γ

(
Rn

+

)
and inequality (6.9) hold.

Define ft(x) =: f(tx). Then

‖ft‖Lp,γ
= t

−n+γ
p ‖f‖Lp,γ
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and ∥∥Iα
γ ft

∥∥
Lq,γ

= t
−α−n+γ

q
∥∥Iα

γ f
∥∥

Lγ
q (Rn

+)
.

By the inequality (6.9),

∥∥Iα
γ f

∥∥
Lq,γ

≤ Cp,qt
α+n+γ

q
−n+γ

p ‖f‖Lp,γ .

If 1
p > 1

q + α
n+γ , then in the case t → 0 we have

∥∥Iα
γ f

∥∥
Lq,γ

= 0 for all
f ∈ Lp,γ(Rn

+).
As well as if 1

p < 1
q + α

n+γ , then at t →∞ we obtain
∥∥Iα

γ f
∥∥

Lq,γ
= 0 for

all f ∈ Lp,γ(Rn
+).

Therefore 1
p = 1

q + α
n+γ .

Now, let f ∈ L1,γ

(
Rn

+

)
and inequality (6.10) hold. We have

∥∥Iα
γ ft

∥∥
WLq,γ

= t
−α−n+γ

q
∥∥Iα

γ f
∥∥

WLq,γ
.

By inequality (6.10)

∥∥Iα
γ f

∥∥
WLq,γ

≤ Cqt
α+n+γ

q
−(n+γ)‖f‖L1,γ .

If 1 > 1
q + α

n+γ , then in the case t → 0 we have
∥∥Iα

γ f
∥∥

WLq,γ
= 0 for all

f ∈ L1,γ(Rn
+).

Similarly, if 1 < 1
q + α

n+γ , then for t →∞ we obtain
∥∥Iα

γ f
∥∥

WLq,γ
= 0 for

all f ∈ L1,γ(Rn
+).

Therefore 1 = 1
q + α

n+γ .
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