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Abstract

In this paper we prove that the partial Dunkl integral ST (f) of f con-
verges to f , as T → +∞ in L∞(νµ) and we show that the Dunkl transform
Fµ(f) of f is in L1(νµ) when f belongs to a suitable Besov-Dunkl space.
We also give sufficient conditions on a function f in order that the Dunkl
transform Fµ(f) of f is in a Lp-space.

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30
Key Words and Phrases: Dunkl transform, Bochner-Riesz means, par-

tial Dunkl integrals, Besov-Dunkl spaces

1. Introduction

Dunkl operators are differential-difference operators introduced in 1989,
by C. Dunkl [3]. On the real line, these operators, which are denoted by
Λµ, depend on a real parameter µ > −1

2 and they are associated with the
reflection group Z2 on R. For µ > −1

2 , Dunkl kernel Eµ is defined as
the unique solution of a differential-difference equation related to Λµ and
satisfying Eµ(0) = 1. This kernel is used to define Dunkl transform Fµ

which was introduced by C. Dunkl in [4]. More complete results concerning
this transform were later obtained by M.F.E de Jeu [2]. Rösler in [9] shows
that Dunkl kernels verify a product formula. This allows us to define Dunkl
translation operators τx , x ∈ R. As a result we have a Dunkl convolution.
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If α > 0, p ≥ 1 and 1 ≤ r < +∞ a Besov-Dunkl space, denoted by
BDp,r

µ,α is a subspace of functions f ∈ Lp(νµ) satisfying∫ +∞

0

(
wp,µ(f)(t)

tα

)r dt

t
< +∞,

where wp,µ(f, t) is the Lp(νµ) norm ‖τt(f) + τ−t(f)− 2f‖p,µ, t ∈ R (see [7]).
The goal of this paper is to prove that the partial Dunkl integral ST (f)

of f defined by

ST (f)(x) =
∫ T

−T
Eµ(ixy)Fµ(f)(y)dνµ(y), x ∈ R, T > 0,

converges to f, as T → +∞, in L∞(νµ) and to show that the Dunkl trans-
form Fµ(f) of f on R, is in L1(νµ), when f belongs to Besov-Dunkl space
BDp,1

µ,
2(µ+1)

p

for 4(µ+1)
2µ+3 < p ≤ 2.

The contents of this paper are as follows.
In Section 2, we collect some results about harmonic analysis associated

with Dunkl operator. In Section 3, we study some properties of partial
Dunkl integral ST , that will be useful to establish the uniform convergence
of ST (f) to f . In Section 4, using a Hardy-Littlewood inequality for Dunkl
transform we prove the absolute integrability of Fµ(f).

Analogous results have been obtained by Giang and Móricz in [6] for
a classical Fourier transform on R. Later, Betancor and Rodŕıguez-Mesa
in [1] have established similar results in Lipshitz-Hankel spaces involving
Hankel transform on (0,∞).

In the sequel c represents a suitable positive constant which is not nec-
essarily the same in each occurrence.

2. Preliminaries

We consider the differential-difference operator defined for a C∞ func-
tion f , on R, by

Λµf(x) =
df

dx
(x) +

2µ + 1
x

[
f(x)− f(−x)

2

]
,

called Dunkl operator.
For λ ∈ C, the initial problem

Λµf(x) = λf(x), f(0) = 1, x ∈ R ,

has a unique solution Eµ(λ .) called Dunkl kernel given by

Eµ(λx) = jµ(iλx) +
λx

2(µ + 1)
jµ+1(iλx), x ∈ R,



ON THE UNIFORM CONVERGENCE OF PARTIAL DUNKL . . . 45

where jµ is the normalized Bessel function of the first kind and order µ,
given by

jµ(λx) =

{
2µΓ(µ + 1)Jµ(λx)

(λx)µ if λx 6= 0
1 if λx = 0

,

where Jµ is the Bessel function of first kind and order µ (see [13]).
We have for x ∈ R and λ ∈ R

|Eµ(−iλx)| ≤ 1. (1)

Let νµ the weighted Lebesgue measure on R, given by

dνµ(x) =
|x|2µ+1

2µ+1Γ(µ + 1)
dx

For every 1 ≤ p ≤ ∞, we denote by Lp(νµ) the space of complex-valued
functions f , measurable on R such that

‖f‖p,µ =
(∫

R
|f(x)|pdνµ(x)

)1/p

< +∞, if p < +∞

and
‖f‖∞,µ = ess sup

x∈R
|f(x)| < +∞.

The Dunkl transform Fµ which was introduced by C. Dunkl in [4], is
defined for f ∈ L1(νµ) by :

Fµ(f)(x) =
∫

R
Eµ(−ixy)f(y)dνµ(y), x ∈ R,

and we have (see [2])
‖Fµ(f)‖∞,µ ≤ ‖f‖1,µ. (2)

For all x, y, z ∈ R, consider

Wµ(x, y, z) =
(Γ(µ + 1))2

2µ−1
√

πΓ(µ + 1
2)

(1− bx,y,z + bz,x,y + bz,y,x)∆µ(x, y, z)

where

bx,y,z =

{
x2+y2−z2

2xy if x, y ∈ R− {0}, z ∈ R
0 otherwise
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and

∆µ(x, y, z) =

{
([(|x|+|y|)2−z2][z2−(|x|−|y|)2])µ−1/2

|xyz|2µ if |z| ∈ Ax,y

0 otherwise

where Ax,y = [||x| − |y||, |x|+ |y|].
The kernel Wµ (see [9]), is even and we have

Wµ(x, y, z) = Wµ(y, x, z) = Wµ(−x, z, y) = Wµ(−z, y,−x). (3)

In the sequel we consider the signed measure γx,y, on R, given by

dγx,y(z) =





Wµ(x, y, z)dνµ(z) if x, y ∈ R \ {0}
dδx(z) if y = 0
dδy(z) if x = 0

.

According to [9], the Dunkl kernel Eµ, satisfies the following product formula

Eµ(ixt)Eµ(iyt) =
∫

R
Eµ(itz)dγx,y(z), t ∈ R. (4)

The Dunkl translation operator τx (see [8], [10], [11]), given by

τx(f)(y) =
∫

R
f(z)dγx,y(z), x, y ∈ R,

satisfies the following properties

τx(f)(y) = τy(f)(x) ; τ0(f)(x) = f(x), (5)

‖τxf‖p,µ ≤ 3‖f‖p,µ, f ∈ Lp(νµ), (6)

Fµ(τx(f))(y)) = Fµ(f)(y)Eµ(ixy). (7)

The Dunkl convolution f ∗ g (see [9]), of the measurable functions f and g
on R, is defined by

(f ∗ g)(x) =
∫

R
τx(f)(−y)g(y)dνµ(y), x ∈ R.

Let T ∈]0, +∞], 1 < p ≤ 2 and f ∈ Lp(νµ). For β > µ + 1
2 , the

Bochner-Riesz mean σβ
T (f) of f is defined by:
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σβ
T (f)(x) =

∫ T

−T
Eµ(ixy)(1− y2

T 2
)βFµ(f)(y)dνµ(y), x ∈ R.

According to [7, (15)], we can write

ST (f)(x) = (f ∗ ϕT )(x) =
∫

R
τx(f)(−y)ϕT (y)dνµ(y), x ∈ R,

where

ϕT (x) =
T 2(µ+1)

2µ+1Γ(µ + 2)
jµ+1(xT ), x ∈ R.

By Proposition 4 and Remark 2, § 3.1 of [7], for β > µ + 1
2 , we have

σβ
T (x) = (f ∗ φT,β(x) =

∫

R
τx(f)(−y)φT,β(y)dνµ(y), x ∈ R,

where

φT,β(x) =
Γ(β + 1)T 2(µ+1)

2µ+1Γ(µ + β + 2)
jµ+β+1(xT ), x ∈ R.

3. Uniform convergence of partial Dunkl integrals

In this section we establish that ST (f) → f , as T → +∞ in L∞(νµ),
provided that f ∈ BDp,1

µ,
2(µ+1)

p

. Before proving this result we need establish

some useful lemmas.
Lemma 1. If f ∈ Lp(νµ) for some 1 < p ≤ 2 and β > µ + 1

2 then for
every 0 < T ≤ T1 < ∞, we have

ST (ST1(f))(x) = ST1(ST (f))(x) = ST (f)(x), x ∈ R, (8)

and
σβ

T (ST1(f))(x) = σβ
T (f)(x), x ∈ R. (9)

P r o o f. Let 0 < T ≤ T1 < ∞. Define

h(z) = χ[−T,T ](z) and g(z) = χ[−T1,T1](z)Eµ(iyz), y, z ∈ R,

then

Fµ(h)(z) =
∫ T

−T
Eµ(−izt)dνµ(t) =

∫ T

−T
jµ(zt)dνµ(t) = ϕT (z),
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and

Fµ(g)(z) =
∫ T1

−T1

Eµ(−izt)Eµ(iyt)dνµ(t),

by (3), (4) and using Fubini’s theorem, we get

Fµ(g)(z) =
∫

R

∫ T1

−T1

Eµ(itx)dνµ(t)dγy,−z(x)

=
∫

R
ϕT1(x)dγy,−z(x)

= τy(ϕT1)(−z)

thus, Parseval’s formula gives∫

R
Fµ(g)(z)Fµ(h)(z)dνµ(z) =

∫

R
g(z)h(z)dνµ(z)

it follows that
∫

R
τy(ϕT1)(−z)ϕT (z)dνµ(z) =

∫ T

−T
Eµ(iyz)dνµ(z)

we conclude by (5) that

(ϕT1 ∗ ϕT )(z) = ϕT (z), 0 < T ≤ T1

since the convolution product is associative and commutative (see [9]) we
have

ST (ST1(f)) = f ∗ (ϕT1 ∗ ϕT ) = ST1(ST (f)) = f ∗ ϕT = ST (f),

so (8) is established.
From [7, (21)], we have

σβ
T (f)(x) =

2β

T 2β

∫ T

0
(T 2 − t2)β−1tSt(f)(x)dt, x ∈ R,

so using (8), we obtain

σβ
T (ST1(f))(x) = σβ

T (f)(x), x ∈ R
hence (9) follows.

Lemma 2. If f ∈ Lp(νµ) for some 4(µ+1)
2µ+3 < p < 4(µ+1)

2µ+1 and β > µ + 1
2 ,

then
‖ST (f)‖p,µ ≤ c‖f‖p,µ, T > 0

and
lim

T→+∞
‖ST (f)− f‖p,µ = 0. (10)
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P r o o f. Since f ∈ Lp(νµ), according to [7, Proposition 6] and (9), we
have

‖ST (f)− f‖p,µ ≤ c ‖σβ
T (f)− f‖p,µ, (11)

and
‖σβ

T (f)‖p,µ ≤ c ‖f‖p,µ ; ‖ST (f)‖p,µ ≤ c ‖f‖p,µ. (12)

In [11], it was proved that σβ
T (f)(x) → f(x) as T → +∞, almost everywhere

x ∈ R. By taking into account (11) and (12) we have ‖ST (f)− f‖p,µ → 0,
as T → +∞.

Lemma 3. If f ∈ Lp(νµ) for some 4(µ+1)
2µ+3 < p ≤ 2 and T > 0. Then for

x, δ ∈ R, we have

|τδ(ST (f))(x) + τ−δ(ST (f))(x)− 2ST (f)(x)| ≤ c T
2(µ+1)

p wp,µ(f)(δ). (13)

P r o o f. By using Fubini’s theorem we obtain:

τδ(ST (f))(x) =
∫

R

∫ T

−T
Eµ(iyz)Fµ(f)(y)dνµ(y)dγδ,x(z)

=
∫ T

−T
Fµ(f)(y)

∫

R
Eµ(iyz)dγδ,x(z)dνµ(y)

=
∫ T

−T
Fµ(f)(y)Eµ(iδy)Eµ(ixy)dνµ(y)

by (7), we get

τδ(ST (f))(x) =
∫ T

−T
Eµ(ixy)Fµ(τδ(f))(y)dνµ(y) = ST (τδ(f))(x).

Put

k(x) = [τδ(f) + τ−δ(f)− 2f ](x), x ∈ R,

we can write from (1)

|ST (k)(x)| = |[τδ(ST (f))(x) + τ−δ(ST (f))− 2ST (f)](x)|

≤ c

∫ T

−T
|Fµ(k)(y)||y|2µ+1dy.

Moreover, by invoking the Hölder inequality we have

|ST (k)(x)| ≤ c

(∫ T

−T
|y|2µ+1dy

)1/p (∫ T

−T
|Fµ(k)(y)|q|y|2µ+1dy

)1/q

,
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where 1
p + 1

q = 1.
Hence we obtain

|ST (k)(x)| ≤ c T
2(µ+1)

p ‖Fµ(k)‖q,µ,

according to (2) and Plancherel’s Theorem for Dunkl transform (see [2]),
we can assert by the Marcinkiewicz interpolation theorem (see [12]), that

|ST (k)(x)| ≤ c T
2(µ+1)

p ‖k‖p,µ,

which proves (13).

Lemma 4. If f ∈ BDp,1

µ,
2(µ+1)

p

for some 4(µ+1)
2µ+3 < p ≤ 2 and β > µ + 1

2 ,

then there exist A ∈]1,∞[ such that for every 0 < T ≤ T1 ≤ AT ,

‖ST1(f)− ST (f)‖∞,µ ≤ c

∫ A
T

1
T

wp,µ(f(t))

t
2(µ+1)

p

dt

t
. (14)

P r o o f. Define

L(x) = ST1(f)(x)− ST (f)(x), x ∈ R,

by (9) we have
σβ

T (L)(x) = 0, x ∈ R.

According to [5, (19) p. 49], we have

∫

R
φT,β(t)dνµ(t) = 1,

hence we can write

2L(x) =
∫

R
[2L(x)− (τt(L)(x) + τ−t(L)(x))]φT,β(t)dνµ(t)

=
∫

|t|≤ 1
T

+
∫

1
T
≤|t|≤A

T

+
∫

A
T
≤|t|

= I1 + I2 + I3.

(15)

Since

|φT,β(t)| ≤ Γ(β + 1)T 2(µ+1)

2µ+1Γ(µ + β + 2)
, t ∈ R,
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by (6), we get

|I1| ≤ 8
Γ(β + 1)T 2(µ+1)

2µ+1Γ(µ + β + 2)
‖L‖∞,µ

∫ 1/T

−1/T
dνµ(t)

≤ 8
Γ(β + 1)T 2(µ+1)2

22(µ+1)Γ(µ + 1)Γ(µ + β + 2)
‖L‖∞,µ

∫ 1/T

0
t2µ+1dt

≤ 8
Γ(β + 1)

22(µ+1)Γ(µ + 2)Γ(µ + β + 2)
‖L‖∞,µ.

In the other hand, we have

|I3| ≤ 8‖L‖∞,µ
2βΓ(β + 1)T 2(µ+1)

Tµ+β+12µ+1Γ(µ + 1)

∫
A
T
≤|t|

|Jµ+β+1(tT )|
|t|β−µ

dt.

Since there exists a constant C0 > 0 such that

|Jµ+β+1(tT )| ≤ C0

|tT |1/2
, t 6= 0,

we obtain

|I3| ≤ 8C0‖L‖∞,µ
2βΓ(β + 1)T 2(µ+1)

Tµ+β+3/22µ+1Γ(µ + 1)

∫

A/T≤|t|

dt

|t|β−µ+ 1
2

≤ 8C0‖L‖∞,µ
2β+1Γ(β + 1)

2µ+1Γ(µ + 1)T β−(µ+ 1
2
)

∫ +∞

A/T

dt

tβ+ 1
2
−µ

≤ 8C0
2β+1Γ(β + 1)Aµ+ 1

2
−β

2µ+1Γ(µ + 1)(β − µ− 1
2)
‖L‖∞,µ.

If we choose A ∈]1, +∞[ such that

8Γ(β + 1)
22(µ+1)Γ(µ + 2)Γ(µ + β + 2)

+8C0
2β+1Γ(β + 1)Aµ+ 1

2
−β

2µ+1Γ(µ + 1)(β − µ− 1
2)

= ρ < 2, (16)

then
|I1|+ |I3| ≤ ρ‖L‖∞,µ. (17)

To estimate I2, we can see that

|I2|≤
∫

1
T
≤|t|≤A

T

|2ST1(f)(x)−[τt (ST1(f)) (x)+τ−t (ST1(f)) (x)]| |φT,β(t)|dνµ(t)
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+
∫

1
T
≤|t|≤A

T

|2ST (f)(x)− [τt (ST (f)) (x) + τ−t (ST (f)) (x)]||φT,β(t)|dνµ(t),

by (13)

|I2| ≤ c

∫
1
T
≤|t|≤A

T

[T
2(µ+1)

p

1 + T
2(µ+1)

p ]wp,µ(f)(t)|φT,β(t)|dνµ(t)

≤ c

∫
1
T
≤|t|≤A

T

T
2(µ+1)

p wp,µ(f)(t)|φT,β(t)|dνµ(t)

≤ c

∫ A/T

1/T
T

2(µ+1)
p wp,µ(f)(t)|φT,β(t)|t2µ+1dt

≤ c

∫ A/T

1/T
T

2(µ+1)
p T 2(µ+1)wp,µ(f)(t)t2(µ+1) dt

t

≤ c

∫ A/T

1/T
A2(µ+1)T

2(µ+1)
p wp,µ(f)(t)

dt

t
≤ c

∫ A/T

1/T

wp,µ(f)(t)

t
2(µ+1)

p

dt

t
.

Thus using (15) and (17), we conclude that

‖L‖∞,µ ≤ c

∫ A/T

1/T

wp,µ(f)(t)

t
2(µ+1)

p

dt

t
,

so (14) is established.

Theorem 1. If f ∈ BDp,1

µ,
2(µ+1)

p

for some 4(µ+1)
2µ+3 < p ≤ 2 and β > µ + 1

2 ,

then

‖ST (f)− f‖∞,µ → 0, as T →∞.

P r o o f. Let 0 < T ≤ T1 and n a nonnegative integer for which
AnT ≤ T1 ≤ An+1T where A is the positive constant given by (16).

By (14) we can write

‖ST1(f)− ST (f)‖∞,µ ≤ ‖ST1(f)− SAnT (f)‖∞,µ

+
n−1∑

k=0

‖SAk+1T (f)− SAkT (f)‖∞,µ ≤ c

∫ +∞

0

wp,µ(f)(t)

t
2(µ+1)

p

dt

t
.
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If we replace f by ST1(f)− ST (f) and apply (8), we find that

‖ST1(f)− ST (f)‖∞,µ ≤ c

∫ +∞

0

wp,µ(ST1(f)− ST (f))(t)

t
2(µ+1)

p

dt

t
,

since

wp,µ(ST1(f)− ST (f))(t) ≤ ‖τt(ST1(f)− f)‖p,µ + ‖τ−t(ST1(f)− f)‖p,µ

+ 2‖ST1(f)− f‖p,µ

+ ‖τt(ST (f)− f)‖p,µ + ‖τ−t(ST (f)− f)‖p,µ

+ 2‖ST (f)− f‖p,µ

≤ 8[‖ST1(f)− f‖p,µ + ‖ST (f)− f‖p,µ],

by (10) for any t ∈ R+, we get

lim
T,T1→+∞

wp,µ(ST1(f)− ST (f))(t) = 0,

the dominated convergence theorem implies that

‖ST1(f)− ST (f)‖∞,µ → 0 as T1, T →∞.

Hence we conclude that

‖ST (f)− f‖∞,µ → 0 as T →∞,

which proves the result.

4. Absolute integrability of Dunkl transform of functions
in Besov-Dunkl spaces

We now prove that the Dunkl transform Fµ(f) of f is in L1(νµ) when
f belongs to a suitable Besov-Dunkl space. Before proving this result we
need establish a useful lemma.

Lemma 5. If f ∈ Lp(νµ) for some 1 < p ≤ 2, then∫

R
|t|2(µ+1)(p−2)|Fµ(f)(t)|pdνµ(t) ≤ c

∫

R
|f(t)|pdνµ(t). (18)
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P r o o f. To see (18) we will make use of the Marcinkiewicz interpolation
theorem (see [12]).

Consider the operator

T (f)(x) = |x|2(µ+1)Fµ(f)(x), x ∈ R.

For every f ∈ L2(νµ), we have
(∫

R
|T (f)(x)|2 dνµ(x)

|x|4(µ+1)

)1/2

= ‖Fµ(f)‖2,µ = ‖f‖2,µ, (19)

hence T is an operator of Strong (2,2) type between the spaces (R, dνµ(x)))
and (R,

dνµ(x)

|x|4(µ+1) ). Moreover, according to (2), we can write for λ ∈]0, +∞)

and f ∈ L1(νµ)
∫

{x∈R,|T (f)(x)|>λ}

dνµ(x)
|x|4(µ+1)

≤ 1
2µ+1Γ(µ + 1)

∫

|x|>( λ
‖f‖1,µ

)
1

2(µ+1)

|x|−2µ−3dx

(20)

≤ 1
2µΓ(µ + 1)

∫ +∞

( λ
‖f‖1,µ

)
1

2(µ+1)

x−2µ−3dx ≤ c
‖f‖1,µ

λ
.

Hence T is an operator of weak (1,1) type between the spaces under con-
sideration. By (19), (20) and the Marcinkiewicz interpolation theorem (see
[12]), we can assert that for 1 < p ≤ 2, T is an operator of strong (p, p) type
between the spaces (R, dνµ(x))) and (R,

dνµ(x)

|x|4(µ+1) ). We conclude that
∫

R
|T (f)(x)|p dνµ(x)

|x|4(µ+1)
=

∫

R
|x|2(µ+1)(p−2)|Fµ(f)(x)|pdνµ(x)

≤ c

∫

R
|f(x)|pdνµ(x),

thus we obtain the result.

Theorem 2. If f ∈ BDp,1

µ,
2(µ+1)

p

for some 4(µ+1)
2µ+3 < p ≤ 2, then

Fµ(f) ∈ L1(νµ).

P r o o f. Let f ∈ BDp,1

µ,
2(µ+1)

p

, since f ∈ Lp(νµ) we have

Fµ(τδ(f) + τ−δ(f)− 2f)(t) = Fµ(f)(t)[Eµ(itδ) + Eµ(−itδ)− 2],

δ ∈ (0,∞) and a.e. t ∈ R.
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Then according to (18) it follows that∫

R
|Fµ(f)(t)|p|Eµ(itδ) + Eµ(−itδ)− 2|p|t|2(µ+1)(p−2)dνµ(t)

≤ c

∫

R
|(τδ(f) + τ−δ(f)− 2f)(t)|pdνµ(t) ≤ c [wp,µ(f)(δ)]p.

Moreover there exist a, b ∈ (0,∞), such that |jµ(tδ) − 1| ≥ a(tδ)2 for each
0 < |tδ| < b. Hence we can write

|Eµ(−itδ) + Eµ(itδ)− 2| ≥ 2|jµ(tδ)− 1|
≥ 2a(tδ)2 for each 0 < |tδ| < b,

it follows that

δ2p

∫

|t|≤ b
δ

|t|2(µ+1)(p−2)+2p|Fµ(f)(t)|pdνµ(t) ≤ c [wp,µ(f)(δ)]p.

By Hölder’s inequality, for q such that
1
p

+
1
q

= 1, we have
∫

|t|≤ b
δ

|t||Fµ(f)(t)|dνµ(t) ≤
(∫

|t|≤ b
δ

|t|2(µ+1)(p−2)+2p|Fµ(f)(t)|pdνµ(t)
)1/p

×
(∫

|t|≤ b
δ

|t|(2µ+1)(q−2)−2dνµ(t)
)1/q

≤ c
wp,µ(f)(δ)

δ2
× 1

δ
2(µ+1)

p
−1

≤ c
wp,µ(f)(δ)

δ
2(µ+1)

p

× 1
δ
.

Integrating with respect to δ over R+ and applying Fubini’s theorem, it
yields ∫

R
|Fµ(f)(t)|dνµ(t) ≤ c

∫ ∞

0

wp,µ(f)(δ)

δ
2(µ+1)

p

dδ

δ
< ∞,

by the definition of BDp,1

µ,
2(µ+1)

p

. Thus, we obtain the desired result.
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