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Abstract

In this paper we study the g-heat and g-Poisson’s operators associated
with the g-operator A, (see[5]). We begin by summarizing some state-
ments concerning the g-even translation operator 7 4, defined by Fitouhi
and Bouzeffour in [5]. Then, we establish some basic properties of the g-
heat semi-group such as boundedness and positivity. In the second part,
we introduce the g-Poisson operator P!, and address its main properties.
We show in particular how these operators can be used to solve the initial
and boundary value problems related to the g-heat and g-Laplace equation
respectively.
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1. Introduction and preliminaries

1.1. Introduction

Let us recall the initial value problem for the classical heat equation
62

associated with the second order derivative operator W:
x

2
%:%, xRt >0, u(z,0) = f(x),zr € R
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which has a solution of the form

T'f(x) = u(z,t) = (f * G(,, 1)) (),

where G(.,t) is the Gaussian kernel. The operator T is a bounded positive
operator, and {T"};>¢ form a semi-group. Our aim in this paper is to
give the g-analogue of some well-known results associated to the heat and
Poisson’s operators as done in the classical case by Achour and Trimeche in
[1] and by Stein in [14]. So we will turn our attention to the second order
g-difference operator A, . defined by

Ngof = (D2f)(g '), (1)

which has the g-cosine cos(Az;q?) and the g-sine sin(Ax;q?) as eigen-
functions with eigenvalue (—\2) (see [5]). We shall prove some facts about
the g-even translation operator 7, , such that the z-continuity of 7, ,f for
f in appropriate spaces.

In a second part we study the g-heat equation

Agzu(z,t) = Dpyu(z,t). (2)

We prove some properties of the g-Gaussian kernel G(.,t;¢?) defined in
[5], which enable us to establish some basic facts such as boundedness and
positivity for the g-heat operator T*, with methods similar to the ones used
in [1, 4, 14]. Next, we construct the g-analogue of the Poisson operator
P!, we find the g-Poisson kernel, its expansion and its g-cosine Fourier
transform. We give a g-integral representation of u(x,t) = P!f(z) and
show that it is a solution of a g-difference equation analogous to the classical
Laplace equation
(Agt + Agz)u(z,t) =0. (3)
Finally, we give the g-analogue of some estimates given in [1, 4] for the
function u(x,t) and some of its g-derivatives.
1.2. Preliminaries
Let ¢ be a positive real in (0,1). We recall some notations and notions

important in g-analysis (for more information the reader can consult [7, 9]):
The g-shifted factorials are defined for any a € C, by

1, if n=0
(av(I)n_{ Z;é(l—aqk), if n=1,2,...,00 @)
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and we have
(ag ¥ ), = (~1)Fq *ED 26k (ga Vg, k=1,2,.... (5)

The g-trigonometric functions (see [5, 10]), are defined by

oo yn n(n—1)1 _ \2n oo
cos(z; ¢%) = Z( DA (1=q) g = Z(—l)"bn(:c;qz), (6)

o (¢ 9)2n —~
—+o00
S N n 1—gq .2
Sln(ﬂj,q ) _Z(_l) 1_q2n+1bn($7q ).ﬁU (7)
n=0

There are two g-analogues of the exponential function, given by

oo _ 2\n,n(n—1)
E(x;¢%) = (=(1 - ¢);1¢%)o0 = Y (1=a)"

z", zeR (8)

2. 42
= (%5
1 = (1—g)"
2 n
e(r;q°) = = g -~
() (1=¢Hz:6%)e = (¢%¢%)n

the last series converges for |z| < 1/(1—¢?); however, because of its product
representation e(z;¢?) has an analytic continuation to C\{%, k € N}.
They satisfy the relation e(x; ¢?) E(—x;¢?) = 1.

Let Cpe [[m, y]] be the complex associative algebra with 1 of formal power
series Zz,?io Ck,l y'zF, with arbitrary complex coefficients ¢k, and where z
and y are two g?-commuting variables, i.e., 7y = ¢*yr. Koornwinder [8]
proves that the relation

e(y; %) e(a; ¢°) = e(x + y; ¢°), (9)

holds in the algebra C [[z,y]].
The g-derivative D, f of a function f on R, is defined by

f(z) — f(gz)
(1-qz
and D, f(0) = f/(0), provided f’(0) exists.

The g-Jackson integrals from 0 to a and from 0 to .00 with a,vy € R,
are defined by

(Dyf)(x) = x#0 (10)

a too ~.00 +oo
/0 f@)dgr = 1)y flag™)ag™, /0 gz =(1-a) S FOa"a™
n=0

n=—oo
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provided the sums converge absolutely. Then, we have the g-Chasles relation

400 a +00
/0 f(z)dgx :/0 f(x)dqx+/a f(z)dqz, a€Ry4 (11)

where R, 4 will be lately defined by (13).
The g-integration by parts is given for suitable functions f and g by

/;OO f(2)Dyg(x)dgz = [f(2)g(x)]g> — /;oo Dy(f(g " x)) g(x) dga. (12)
Let us now consider the sets

R, = {+¢" ke ZyU {0}, Ry;={d"keZ}, (13)

and recall that S, 4(R) is the space of even and indefinitely g-differentiable

fast decreasing functions f, together with their g-derivatives, i.e., such that

Vn,m eN, Pynmq(f)= sup |(1+ x2)mD§f(x)| < 400, (see [12])

zeR
0<k<n

and S, 4(R,) is the space of skeletons fof f on Ry, for fin S, 4(R). We
equip Si4(R) with the topology defined by the sequence of semi norms
Py,.m.q, and the topology in S, 4(R,) is induced by the one of S, 4(R).

In the following we suppose that log(1 — ¢q)/log(q) € Z, and we recall
some basic definitions useful for the remainder (see [5]).

We begin with the g-translation operator 7, , defined for f € S, 4(Ry),

by +oo

T, of(y) = /0 FOdn(w;9)(8), 2y € Ry s, (14)
with NSNS

dgp(z;y) = > D(z,4:¢°)q°8yqs,  (see [5]). (15)

The g-convolution product of two suitable functions f and g is given by

—1\1/2 oo
) =G [ T, Ry (9

Finally, the g-cosine Fourier transform [5] is defined as
(1 + q—l)l/Q 400

Fo(f)(N) = T2 (1/2) (z) cos(Az; ¢°) dex, A€Ry4, (17)
and satisfies !
Folf %4 9)(N) = Fg(£)N) F(9)(N),  f.g € Siq(Ry)- (18)

We start on giving some interesting properties of the g-translation operator.
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2. The g-Translation operator

PROPOSITION 1. If f € S, 4(Ry), then T, of € Sy q(Ry).

P r oo f. Werecall that the g-Fourier transform F, is an isomorphism
from S, 4(R4) into the same space (see [6]). So it suffices to show that

FoToqf)N) = cos(A; ¢ Fy(f)(N), A €Rgy (see [5]).  (19)
belongs to S, 4(Ry), which is easy to prove. [

PROPOSITION 2. For f € L}(Rg ) and z,y € Ry we have

(g )2
T,2(1/2)

P r oo f. It suffices to consider f € S, 4(Ry), then by the above propo-
sition T 4 f is in S q(Ry). The result follows from the formula (19) by using
the g-Fourier inversion formula (see [5]). (]

We denote by Cp4(Ry) the space of even functions f defined on R,
continuous at 0, such that for all m € N and some € > 0, we have

(DI f)(£q7")| = O(¢""T9F), |k — +o0. (21)

+oo
Togf(y) = /0 cos(Ax; qQ)fq(f)(/\) cos(Ay; ¢%) dgA.  (20)

Notice that sup |f(g")| < +oo for f in Co4(Ry).
keZ
PROPOSITION 3. For f € Cyq(Ry), the function v — T 4 f is continu-
ous at zero for the norm |\.|, , defined by

[fllooq = EU%If(qk)l- (22)
S

P roof Recall that (Tpqf — f)(y) = D pey br(a; qQ)Afjf(y) (see [5]).
By (21), there exist a strictly negative integer ng and a constant M; > 0,
such that Vn < ng, we have |A§(f)(q")\ <M, VkeN.

So Ja; > 0,/Vx < ai, we have  sup |7, ,f(¢") — f(¢")| <e.

ne(—oo,no)

Using the inequality 7.4 (¢") — f(q")| < |Taqf(¢") — f(@)] + | f(2) —
F(0)| + [£(0) — f(q™)|, the fact that the function f is continuous at 0, and
lin_% T2.qf (") = f(z), we show that

n

Ve > 0,3az > 0,n" >0,/Vz < az,we have sup |T,,f(¢")—f(¢")] < €.
ne(n’,+o00)

Since the supremum over [ng,n’] is attained, we deduce the result. m
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REMARK 1. For f € Cpq4(Ry), we have

+oo
1Tl =sup| D Dix,¢"¢")¢" f(g*)| (23)
ke s— oo
< llo.g 5P l1dgt(; 6°) [ - (24)
kel

But for any z,y € R, 4 we have that

2(—q; )%
dopu(: < A8V _ g 25
s 9)lvar (1—a)(4:9) (25)
thus
1720 | o.q < Kl flloo.q- (26)

For 1 < p < 400, we denote by L}(R,,+), the Banach space of functions
f which are restrictions on R, 4 of functions f such that

/ @) P dyr < oo, (27)
0

this space is equipped with the p.g-norm ||.|| :

110 = ( [ +°O |f<x>|pdqx)l/p (28)

PROPOSITION 4. For f € LY(Ry+), 1 < p < +o0, the function x —
Ty,4f is continuous at zero for the norm |||, -

P r o o f. It suffices to take the proof for f € S, ,(R,) since the later
space is dense in L (R, +). By Proposition 1 we have that 7, ,f belongs

ko
to Siq(Ryg), so, Ve > 0,3k < 0, such that Z Toof(d") — £ " <
k=—00
p
h. So the proof follows in the same manner as Proposition 3. ™
—q

Finally, let us recall the following result concerning the positivity of the
g-translation operator, proven by Fitouhi-Dhaouadi-El Kamel in [6].

THEOREM 1. The operator 7T, , is positive if and only if q belongs to
the (non empty) subset I, of (0,1) defined by

Iy ={q € (0,1)\ 191(0;¢;¢,q) > 0}. (29)
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3. g-Gaussian kernel and g-heat semi-group
3.1. The g-Gaussian kernel
We recall that the function G(.,t;¢?),t > 0 is defined by
Fo(G(t:a%)(N) = e(=Nt:¢°)

and is given explicitly by (see [5])

1 —z?
G 7t7 H = ; 2 ) t> 07
(@ 60) A(t;qQ)e(q(l T )
where (- (1-q) _ (1+q)d’t, )
_ T+q)t’ 1—q) 24 /o©
Alt;¢*) = ¢ (1 — g)'/? ((:f;)) (i-i-q?f)lg’t. 2
(_(1+q)qt’_ T—q) 4 Joo

Now we shall prove the following proposition.
PROPOSITION 5.
1. G(z,t;¢%) and T, ,G(y,t; ¢*) are positive for all q in .
2. G(.,t;¢?) belongs to S, ,(R,) and its 1.g-norm is given by
'2(1/2)
Gt q*) ]y = i
(1+q7")
3. If ty,ty are two q*>-commuting variables, then
(G t1;6%)*4G (., t2; %)) () = G(, 2 + t15 ¢°)
in the algebra Cp|[t1,t2]].

Proof.

1. Since A(t;¢?) and e(q(ljrix:

271

2 q?) are strictly positive, the same holds

for G(x,t; ¢*). By Theorem 1 the g-translation function 7, ,G(y,t; ¢*)

inherits the same property.

2. We have

too 2(1/2)
.2 _ .2 —
16t = | Glata)de = m ‘

Fo(G(,t:6))(0).

By the formula (30) and the fact that e(0;¢?) = 1, we obtain the

result.
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3. Using (18) and (30), we get

Fo(G(1136%) % G t2:6°) (V) = Fo(G( 1154%) N Fo (G 123 6%)) (N)
= e(=Nt1; %) e(—Nto; ¢°) = e(=N(ta + t1); ¢°)

= Fy(G( 12 +t1;4%))(N) (35)

in the algebra C2 [[t1,12]], where in the thirst equality we have used

the formula (9), since G(.,t;¢?) is in S, 4(R,) then we can use the
g-Fourier inversion formula, and get the result.

[
LEMMA 1. Fora € R, andt > 0, we have
+00
Jim, Gy, t;¢%)dgy = 0. (36)

P r o o f. If we replace G(.,t;q?) by its expansion (31) and use the
g-Jackson integral definition [9], we obtain

+o0 (1 _ q>a -1 qk
Gy, t;4°) dgy = s > —
a A(t; ¢2)( q((lH?)t 140 koo (—7(1(1(&{,)% $a%) -k

Replacing A(t; ¢?) by its expansion (32), we find, for ¢ tending to zero:

(1=q) . 2
1 ~ q2(1 = )12 (_(1+Q)qt’q oo
1—q)a? 1— 1—q)a? ’
At ) (— S5 %) oo (— L 0o (— U725 7)o
H(q,t)
7 (1+ =22
where  H(g,t) = lim = (It+a)gt = .
T (U (™) (L + gz gee™)
Then by a simple computatlon, we get that H (g, t) is a bounded function
q

=0.

of t, so it suffices to prove that th—n}o Z - e 2)
k=—00 q(i+qt 94—k
This is obtained by the change of variables ¥’ = —k and the use of the
formula (5) with ¢ instead of q. [
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PROPOSITION 6. (q-Holder’s inequality) Let p and p’ be two conjugate
reals with p,p' > 1. Then for f € L}(R, +) and g € L} (R, +), we have

+oo
‘A £(@) 9() dgz | < I£1L oIl (37)

P r o o f. We replace the g-Jackson integral in the left-hand side by its
expansion in a g-series form. Then, using the classical Holder’s inequality
relative to sums, we get the result. ]

As a consequence, we obtain the following corollary.

COROLLARY 1. If f € LY (Rgy) and g € Ly(Ry 1), then fx,g € Ly(Rq 1),

with
(1+¢7)"

P r o o f. In fact, we have
(1+q 2 ’

+o0o
£+l = [

By the g-Holder’s inequality and the fact that (see [5])

+00 11
T,2(1/2) /0 (Toaf )77 g(y)dgy | dyz.

1Tz f Nl q < I f111g (39)
we deduce the result. ]

3.2. The g-heat semi-group

For any f € LH(R, 1), 1 < p < 400, we introduce the operator 7%, ¢ > 0,
by
T'f(z) = (G(.,; ¢*)*e f) (@) (40)

REMARK 2. From the last corollary, we note that T%f € LE(R,+),
and we have

t
1T fllp.g < N F1lp.q0 (41)
Thus T is a contraction in Lj(R,+), 1 < p < +o0.

PROPOSITION 7. For f € Cyq(Ry), we have

. t o
Jim ([T ~ fll,.., = 0. (42)
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P roof. It follows from (16), (33) and (40), that

15w) - 5@ = S [ Gy )Tt ) — fa)
x) = f(@)] = 75— Y, t;q af (@) = f(z)}day)| -
Lp2(1/2) 1o - !
(43)
By the use of relation (11), and after simple computation, we obtain
14 1)"?
T'f = fllooy < Gta )
I7'5 = flloca < 7

—+00

X(s%p} 1Tyqf — f\oo,q/O Gy, t; ¢*)dgy+2K | o 4 Gy, t;q%)dqy),
ye€|0,a a

where K is given in the formula (25). Now the result is a consequence from
the last lemma and Proposition 3. [ ]

PROPOSITION 8. If f € LY(R,4),1 < p < +oo, then the function
t — T*f is continuous at zero for the norm ||.||,, .-

P roof. Replacing [T f(z)— f(z)| by its expansion (43) and using the
definition of the p.g-norm to get | Tt f — pr_q.

Then after the use of the g-Hoélder’s inequality, the exchange of the
g-integral signs and using the 1.¢g-norm of G(.,t; ¢?) given by (33), we get

p—p/p’
14+ ¢ 1)1/2 +o0
It - 2, < (M / 1Ty0f — FI2.Gly t:%)day.

Now, we proceed as above by using the relation (11) and the fact that
17y fll,q < KN g (44)

where K’ is a constant. To complete the proof, we use the previous lemma
and Proposition 4. [ ]

PROPOSITION 9. Let u(x,t) = T" f(x), where f € LY(Rg),t > 0 and
x € R,. Then u(x,t) satisfies the following statements:

1. u(z,t) has the g-integral representation

(1+q7)

[ AR 0) costar: ) dy
Ta(2) Jo e 1q7)Fy cos(Ax; %) dg .

(45)

u(x,t) =
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2. i) The function v — u(x,t) is an even infinitely g-derivable func-
tion from R, into R.

ii) The function t — u(x,t) is infinitely ¢*-derivable from (0, +00)
into R.

Proof.
1. Using (18), (30) and (40), we get
Fou(,1)(A) = e(=N*t:¢3) F4(f)(A), A€ Rgq. (46)

Since F, = F 1 then by applying the g-Fourier inversion formula (see
theorem 1 in [5]), we get that

u(@, t) = Fale(=Nt: ¢°) Fo(f)) (). (47)

2. Applying Dy, and [Dg2 ;for ¢t > tg > 0] to the last expansion (45) of
u(z,t), and since we have the following estimates (see [5])

1
k

then, for all ¢ > tg, we have | D2 u(z,t)] < ¢ f0+oo Ne(=N2to; ¢%)dg A,
where ¢’ is a constant depending on ¢. So to show i) and i) we need
to verify that for any n € N, we have

+oo
/ e(—N2t; ¢*)A" d )\ < +o0. (49)
0
To this end, we use the Ramanujan’s identity [9]. n

THEOREM 2. (g-heat semi-group) The operators T* defined for t > 0
by the formula (40), satisfy the following properties:

1. Each T" is a positive operator for all ¢ € I,, a bounded operator on
LY(Ry+),p>1, and T'1 = 1.

2. For every f in Lé(Rq7+) the F,(T" f) is given by formula (46) and each
Tt is a self-adjoint operator on Lg(Rq’_f_).
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3. Ift; and ty are two ¢?>-commuting variables, then T T"? = Tttt jn

the algebra Cp [[t1,12]].

4. If f € LY(Ry+),p > 1, then {Tt} is strongly continuous, i.e., the

function t — T" f is continuous from [0, +oc) into LY(R, 4 ).

5. For f € Coq(Rg) N L(Ryg,y), the functions

i) © — u(x,t) is an even infinitely g-derivable function from R,
into R,

ii) t — wu(z,t) is an infinitely ¢*-derivable from [0, +o00) into R,
and u(x,t) is a solution of the g-system

{ Agzu(x,t) = Dgu(x,t), € Ryt >0, (50)

u(zx,0) = f(x).

Proof.

1. The fact that 7" is a positive operator for all ¢ in I, follows from the

positivity of 7, ,G(y,t;¢*) (see Proposition 5). The boundedness of
the operator T* follows from Remark 2, and it is easy to show that
T!1 =1.

. For f,g € L2(Ry ), we have

(T, 0)] = S [ U™ TGy 5 ) F ()t g )y

Applying the g-Hélder’s inequality (37), we obtain [(Ttf,g)| < +oo,
which enables us to exchange the g-integral signs and to get the result.

. The definition (40) gives that T T2 f = (G(.,t1; ¢?)*;G(., t2; ¢*))*4 f,
f € LY(Ry4),p > 1, therefore the result follows by formula (34).

. The continuity of the mapping t — T f at 0 for the norm [-1l,., has
been proved in Proposition 8. For the continuity at ¢g, to > 0, we have

0oeP  _ (1+q_1)1/2 ’
T f =T fl3., = (1“2(1/2)>

+oo +oo 9 p
\ / Gyt ) — Glystos ) F(y)day| dya
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Applying the g-Holder’s inequality and after simple computations, we

get | T f — TtOszq < +o0. Thus, we can exchange the g-integral signs

and the limit as ¢t — .

So to achieve the proof we need to show the t-continuity of G(y,t; ¢?)
n (0,400). In fact, this is true on any interval |7, +00),7 > 0. We

replace G(y, t; ¢*) by its expression obtained by inverting formula (30).

Then, for all t > 7, we have, using (48) and (49):

1 +00 ) )
72)2 o 6(—)\ T,q )qu < Q.

\/ (—A%t;¢%) cos(Az; ¢°)dgA| <
(a:q

5. The result is a direct consequence from Propositions 7, 9. |

4. The g-Poisson’s operator

Let 2’ and v two g-commuting (formal) variables belonging for example
to some non commutative algebra and such that z’ possesses an inverse
denoted by (2/)~!. We define the sets

R, ={+d"2' . keZ}u{o}, (51)
Ry, += {qka?',k: S Z}, (52)
Ry (2)-1 and Ry (;y-1 4 are defined similarly. These sets generalize the sets

R, and R, ; obtained for 2/ = 1, 2/ real. Then we define the more general
g-Jackson integral

/(f'oof( D= (-0 S fig (53)

k=—00

provided the sum in the right hand side converges absolutely.
Let Lj(Rya +), 1 < p < +o0, be the space of functions f such that

||f||p.q.xf=</0. |f(ac)|pdqa:> < +oo. (54)

For f € Lé(Rq@/#), we define the 2’ g-cosine Fourier transform by

(1 + q—1)1/2

/0 f(x) cos(Az; ¢*)dyw, € Ry ()1 4

(55)
Exactly as in [6], we can show the following proposition.
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PROPOSITION 10. The 2’ g-cosine Fourier transform Fqz 1S an iso-
morphism from S 4(Ry ) into Skq(Ry (5)-1), with inverse ]:;wl, given for
xr € Ry, 4 by

n—1
. (1+q—1)1/2 /(a:) oo N
/ == A A5 q%) dg A 56
Here S, 4(R, ) is the space of even, indefinitely g-differentiable functions
f on Ry ./, such that for any n,m € N, we have
Pomq(f) = sup [(1+a%)" Dyf(x)| < +oc. (57)

T e a,z!
0<k<n

It holds then

]:q.x’(G:L"('?t; q2))()‘) = 6(—)\21':; q2)7 NS Rq,(x’)_l,Jrv (58)
where
Gt ) = ———e(— v ), zeR (59)
T y0547) = Am/(t;qz) q(1+q)2t7q 3 q,x’ 4>
and ’
Ay (t;q%) = 2’ A(—5:¢°). (60)
x/

For f and ¢ in L; (Rga+), we define their 2’ g-convolution by

e )@ = S [ g ) o), 7 € Ry (01

* ! — T 4 ey x ) X z’ .

q.x gNzx Fq2(1/2) 0 qJ\Y) g\Y) Gqy q,x’,+

Then, we define the g-heat operator T%, on L§(Rg . +), 1 < p < +00, by
Ty f(2) = (frqwGu (- 1:6%))(@), t>0. (62)

ProrosiTiON 11.

1. The g-norm of Gy(.,t;q*) is given by

T.2(1/2)
1Gar (ot )y g = m- (63)
2. For f € Lj(Ryu +), p > 1, we have
”Txt’pr_q.x’ < ||f||pqa:’ (64)

P r o o f. The proof is similar to that of Proposition 5 and Remark 2. m
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DEFINITION 1. For z € Ry, 4+ and ¢ > 0, the g-Poisson operator is
obtained from the g-heat semi-group by the formula

. .2 +2
1 /'yoo e(_uvq )Tq(1+q)§u
0

Ptf(x) =Z A (u ) o f(x)dqzu, fe LZ(Rq,m/’Jr), (65)

C

with

70 e(—us %)
— 8759 4w 66
¢ /o Ay (u; 2) ‘" (66)

Let us now introduce as previously the space Cy.4(Ry,/) of even functions
f continuous at 0, such that for all m € N, we have

(D f)(£q ") = O(q+*), &k — +oo, (67)

for some € > 0.
The following proposition is a consequence from the properties of the
g-heat semi-group.

PROPOSITION 12.

1. The operator P! is a positive operator for all ¢ € I, and is bounded
on LY(R, . 1), 1 < p < +o0.

2. P! is a self-adjoint operator on Lg(Rq@/’Jr).

3. If f € Co.q(Ry), then P'f converges uniformly to f ast tends to 0.

Proof
1. Using (54) and (65), we have for f € Lj(Ry . 4) :

x’ .00
1P, = /

Applying the g-Holder’s inequality to the second integral, we obtain

p

2
1 .00 e(—U'q2) 1,1 t .
s A i S d dgx.
6/0 [Ax'(u§q2)] e R

12" f g0 < +o00-

Now, since 2’y = qyz’, then if we exchange the g-integral signs, we get
a factor % (see [8]). Taking account of the estimation (64), we obtain

1
1P £l .0 < ;HfHZq,xw (68)

The positivity is deduced from the positivity of the g-heat operator.
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2. By the q—H('jlder’s inequality, we have that for f,g € Lg(Rq7x/7+)
(P g) = | fy (P ) (@)g(@) dg] < ([P flly g 0019l g 0 < +00-
After two exchanges of the q—integral signs, taking account of the fact

that 2’y = ¢z’ and using the self-adjointness of the g-heat operator,
we deduce the result.

3. By the same arguments as in Proposition 7, we get that T? f con-
verges uniformly to f, as ¢t tends to 0. Then the result follows from
the expression (65) of P!f.

]
THEOREM 3. Let p; be the function given for x € Ry, and t > 0 by
q (7 e(~u;q°) 2 2
pe(z) = = — Gy, —5—;¢°) d,2u, 69
@=L A g ) )
where c is given by (66). Then we have the following statements:

1. The g-norm of p; is given by

T2 (1/2)

Pells g0 = = (70)
2. The q-Poisson’s operator has the form
P'f(x) = (prgar f)(2). (71)
The p; is therefore called the g-Poisson kernel.
Proof.
1. Using (69) and (54), we get [|pell; , o < |Gar (- ,m,q )|| < 00.

So we can exchange the g-integral signs, and after sunple computa—
tions, we obtain the result.

2. Using (69) and definition (61), we get the expansion of |(pi*q.. f)(2)].
Moreover, we can easily prove that

(4
Hpt*q.x’f”l.qw/ S Wnptul,qm’uful,qm’ < +o00. (72)

So the result follows by exchanging the g-integral signs in the expan-
sion of |(pe*q.. f)(x)], and by using the expression (62) of the g-heat
semi-group. ]
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PRroPOSITION 13. For every x € Ry, + and t € R, we have
t
pe(z) = Koy 22 4 12

where
q 1
Koty =

¢ A (1) Aw (ot )

REMARK 3. Note that when ¢ — 17, we obtain the classical Poisson
2
kernel associated with the second order operator % (see [4]), namely

pi(z) = \/zxgj_tg (74)

P r oo f. If we replace the g-Gaussian kernel by the formula (59) in the

4 proo elcug?) el Fud?) d

c JO A, (u;q?) Az,(ﬁ;qz)

since (z'%7).7 = ¢*v.(z'*7), then by the g-addition formula (9), we get
2 2

e(—ui ) e(—5uiq?) = e(~(55 + Dus @), (75)

expansion of p; we obtain: p(z) = 21,

q

in the algebra C [[x’2'y, 7]
Now using the definition of the g-Jackson integral (see [8]) and the fact
that for any k € Z and any formal variable w,
A (@™ ¢%) = ¢* Aw (w; %),
we obtain
_l’_
q (1-4% f >
2 1. 2
¢ Aa (73 %) A (Grgyey 490 220 (—(1 — ) (% + 1)g%y; qz)oo

pe(z) =

The result follows then by use of the well-known Ramanujan identity [9]. m

LEMMA 2. Let
.00 1
Co = /0 m dq.’L' < 4-00. (76)

Then the solution g(«a;q) of the following g-problem

D, g(e;q) = g(agq), (E)
(54 dim glag™q) = co, (s1) (77)
Jm glag™q) = 0, (s2)
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is given by
1
9(0:9) = B (~g7V2(1 — g)a), (78)
1

where the function ESQ) is defined by (see [2])

1 too k2/4
By (@) =) ot (79)

= (@9

P r o of. We shall proceed by using the standard method given in [11].
(3), (3), _
Let fi(a) = E.% (=¢72(1 — q)a), and fola) = E;> (¢~ V2(1 - q)a).
First we verify that fi and fo are solutions of the g-difference equation (E}).

1

Using the properties of the g-exponential function EéQ) (see [2]), we
show then that the q-Wronskian W, (f1, f2) is not identically zero. Thus
any solution g of the g-difference equation (F7) can be written in the form

g(a;q) = p1(a) fi(a) + p2(a) f2(a), (80)

where p; and po are two g-periodic functions (see [11]). Moreover we have
the following limits:

1
im B (731 - gag ™) = +oc, (81)
1
o Jim By (¢ V(1= gag™) =0, (82)

where the last statement (82) can be derived from the relation between the

)

1
g-exponential function EéQ
properties (see [3, 10]).

By using (81), (82) and the initial condition (s2), we obtain that g(a; q) =

(3

p1(a) Eq )(—q_1/2(1 —q)a). So to finish the proof it suffices to use the other

and the g-hypergeometric function 1®; and its

1
initial condition (s;), and the limit lini EC(IQ)(—qfl/Z(l —q)aq")=1. =
n—--—r0oo
PROPOSITION 14. The 2’ g-cosine Fourier transform of the q-Poisson
kernel p; is given, for A € Ry (,n-1 4 by

(1+¢HY2

S GOV

Foa (P)(A) =

P r o o f. By using the definition (55) and replacing p; by its expansion
(73), we have

—1\1/2 z’.co
Frap(y = S

Ky, cos(Az; ¢?) dyz. (84)
Fp(1/2) " Jo !

2 4 ¢2
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The change of variables = 7 gives us

Foa(pt)(A) = = cos(\tT; ¢°) d, T

(1+q—1)1/2K /:E’.OO
Lp(1/2) 7

It is not difficult to show that the function

Y —>/ cos()\tx %) dx

verifies the g-system (51). So the result follows from Lemma 2.

283

PROPOSITION 15. For f € Lj(Ry 4w +), p > 1,0 € Ry and t € Ry ¢

we have

1. The function P'f(x) has the g-integral representation

(1+q7Y

P'f(x) = W colyr

@)oo (1 —1/2 2
[ ER - DM F (D) o

(86)

2. The function P'f(x) is an even function in z and satisfies the q-

difference equation

(Aga + Agt) P f(2) = 0.

Proof.

(87)

1. Applying the g-Fourier transform (55) to both sides of the formula
(71), we get Fy o (PTf)(N) = Faar(p)(X) Fyar(f)(A). So the result

follows from (83) and the g-Fourier inversion formula (56).

2. Since the g-derivative operators A, , and A,; permute with the g-

integral sign in (86), we can deduce the result.

LEMMA 3. Fort € R, 1, there exists a constant M > 0, such that

Htht(pt) H 1,q_x/ S M2

(83)
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q(1+q)?

w—u in formula (69) and

P r o o f. By the change of variables u =
by use of the following relation (see [13])

Ao 1 A=l oo
| mrGda= [ @ acc (59)

we obtain the expansion of p;(x), which we apply the g-derivative D,; and
after simple computation, we get
2

2 -t 22
Dyelpe(ar)) = 1 | > g 1)
v c(I+q2(—aq)t Jo Aw (gt )

t2
X E {Gm'(‘rau; q2) - G:E’(m7 QQU; q2)} dq2u'

On the other hand, we have [[tDg.+(p¢)ll; , .» = fow/'oo t|Dg.+(pe)(x)|dgx.

Since v~ 'z’ = ga’y~!, then the exchange of the g-integral signs in the above

formula produces a factor ¢ (see [8]) and gives us

2U.

2 - 2 .2
2!\Gx/<.,t;q2)|1.q.x//mv ot el )

tD , <
H q.t(pt)||14q,z qfl(]_ + q)2(1 — q)c u2 Ax/( q

)
preEmETil )

Next, we use formula (89) and after simple computation we obtain the result
2¢°T 2(1/2)

with My = (EIE=TeE (]
LEMMA 4. If f € Sy 4(Ry4), then the function
u(z,t) = P'f(x) (90)
verifies for all x € Ry ;v 4 and all t € R, 1 the following estimation
la(Dg.au(z, ) (g™ 2)| < 1 Agfll; 40 (91)

P r o o f. By a g-integration by parts and taking account of the fact
that the function x — u(z,t) is even, we get:

‘/w Agyuly, t)dgy| = lg(Dgzu(z, 1)) (g~ 2)| < +oo. (92)
0

Replacing u(y,t) by (71), to get | [{Aqyu(y,t)dgy| which is finite by (92).
Then by the exchange of the q—integral signs, we obtain

—1\1/2 z
/ Agyuly, t)dgy = (1+?1/i) /0 ()] /0 Ay Tyoaf (2)dgy}dyz.



g-HEAT OPERATOR AND ¢-POISSON’S OPERATOR 285

Using the fact that Ay 7. f(y) = T.,4(Aqyf(y)), and since the g-Jackson
integral is invariant under the g-translation, then we can deduce the result
from (70). [

LEMMA 5. For f € S, 4y(Ry.),x € Ry +,t € Ry andn = 1,2, there

exists a constant Ko > 0, such that

| Dy pu(, )| + | Dy pu(z,t)| < K. (93)

P roof Applying the g-derivative Dy, n = 1,2 to the formula (86).

So any g-derivative D;L_xu(x, t) can be written in a g-series form, and by the
majorization (48). We find that, for n = 1,2, |Dg ,u(z,t)| is bounded by

RSB (—g7 (1 = (@) ) Fyw () (@) gF) () Py,
g1+

(4:¢%)3.%(1/2)
In same manner, for n = 1,2, we have that |Dy,u(x,t)| is majorized by

where K = (1-9q) |co K g |-

= 1 n—1
B Y 1B (=" (1= @) ') Fpar (1)) ) (@) 7 M),

k=—o00

Therefore, it suffices to prove that

“+o00 1
S B (g2 (1-g)(2!) k) Fyrar ())((2) 7 gF) () ~Lgb) s fimite.

k=—o00
1
To this end, we need to use the limits i lim E(EQ)(—q_1/2(1—q)(x')_1qkt) =
——00

1
0, and i lini EéQ)(—q_lﬂ(l —q)(z')71¢*t) = 1, and the fact that F, . (f)
belongs to S ¢(Ryg, (z1y-1)- ]
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