
q-HEAT OPERATOR AND q-POISSON’S OPERATOR

Hanène Mabrouk

Dedicated to Professor Khalifa Trimèche,
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Abstract

In this paper we study the q-heat and q-Poisson’s operators associated
with the q-operator ∆q (see[5]). We begin by summarizing some state-
ments concerning the q-even translation operator Tx,q, defined by Fitouhi
and Bouzeffour in [5]. Then, we establish some basic properties of the q-
heat semi-group such as boundedness and positivity. In the second part,
we introduce the q-Poisson operator P t, and address its main properties.
We show in particular how these operators can be used to solve the initial
and boundary value problems related to the q-heat and q-Laplace equation
respectively.
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1. Introduction and preliminaries

1.1. Introduction

Let us recall the initial value problem for the classical heat equation

associated with the second order derivative operator
∂2

∂x2
:

∂2u

∂x2
=

∂u

∂t
, x ∈ R, t > 0, u(x, 0) = f(x), x ∈ R
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which has a solution of the form

T tf(x) = u(x, t) = (f ∗G(., t))(x),

where G(., t) is the Gaussian kernel. The operator T t is a bounded positive
operator, and {T t}t≥0 form a semi-group. Our aim in this paper is to
give the q-analogue of some well-known results associated to the heat and
Poisson’s operators as done in the classical case by Achour and Trimèche in
[1] and by Stein in [14]. So we will turn our attention to the second order
q-difference operator ∆q.x defined by

∆q.xf = (D2
qf)(q−1x), (1)

which has the q-cosine cos(λx; q2) and the q-sine sin(λx; q2) as eigen-
functions with eigenvalue (−λ2) (see [5]). We shall prove some facts about
the q-even translation operator Tx,q such that the x-continuity of Tx,qf for
f in appropriate spaces.

In a second part we study the q-heat equation

∆q.x u(x, t) = Dq2.t u(x, t). (2)

We prove some properties of the q-Gaussian kernel G(., t; q2) defined in
[5], which enable us to establish some basic facts such as boundedness and
positivity for the q-heat operator T t, with methods similar to the ones used
in [1, 4, 14]. Next, we construct the q-analogue of the Poisson operator
P t, we find the q-Poisson kernel, its expansion and its q-cosine Fourier
transform. We give a q-integral representation of u(x, t) = P tf(x) and
show that it is a solution of a q-difference equation analogous to the classical
Laplace equation

(∆q.t + ∆q.x) u(x, t) = 0. (3)

Finally, we give the q-analogue of some estimates given in [1, 4] for the
function u(x, t) and some of its q-derivatives.

1.2. Preliminaries

Let q be a positive real in (0, 1). We recall some notations and notions
important in q-analysis (for more information the reader can consult [7, 9]):

The q-shifted factorials are defined for any a ∈ C, by

(a; q)n =
{

1, if n = 0∏n−1
k=0(1− aqk), if n = 1, 2, . . . ,∞ (4)
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and we have

(a q−k; q)k = (−1)kq−k(k+1)/2ak(qa−1; q)k, k = 1, 2, . . . . (5)

The q-trigonometric functions (see [5, 10]), are defined by

cos(x; q2) =
+∞∑

n=0

(−1)nqn(n−1)(1− q)2n

(q; q)2n
x2n =

+∞∑

n=0

(−1)nbn(x; q2), (6)

sin(x; q2) =
+∞∑

n=0

(−1)n 1− q

1− q2n+1
bn(x; q2) x. (7)

There are two q-analogues of the exponential function, given by

E(x; q2) = (−(1− q2)x; q2)∞ =
+∞∑

n=0

(1− q2)nqn(n−1)

(q2; q2)n
xn, x ∈ R (8)

e(x; q2) =
1

((1− q2)x; q2)∞
=

+∞∑

n=0

(1− q2)n

(q2; q2)n
xn,

the last series converges for |x| ≤ 1/(1−q2); however, because of its product
representation e(x; q2) has an analytic continuation to C\{ q−2k

(1−q2)
, k ∈ N}.

They satisfy the relation e(x; q2) E(−x; q2) = 1.
Let Cq2

[
[x, y]

]
be the complex associative algebra with 1 of formal power

series
∑+∞

k,l=0 ck,l y
lxk, with arbitrary complex coefficients ck,l and where x

and y are two q2-commuting variables, i.e., xy = q2yx. Koornwinder [8]
proves that the relation

e(y; q2) e(x; q2) = e(x + y; q2), (9)

holds in the algebra Cq2

[
[x, y]

]
.

The q-derivative Dqf of a function f on R, is defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0 (10)

and Dqf(0) = f ′(0), provided f ′(0) exists.
The q-Jackson integrals from 0 to a and from 0 to γ.∞ with a, γ ∈ R,

are defined by
∫ a

0
f(x)dqx = (1−q)

+∞∑

n=0

f(aqn)aqn,

∫ γ.∞

0
f(x)dqx = (1−q)

+∞∑
n=−∞

f(γqn)γqn,
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provided the sums converge absolutely. Then, we have the q-Chasles relation
∫ +∞

0
f(x)dqx =

∫ a

0
f(x)dqx +

∫ +∞

a
f(x)dqx, a ∈ Rq,+ (11)

where Rq,+ will be lately defined by (13).
The q-integration by parts is given for suitable functions f and g by

∫ +∞

0
f(x)Dqg(x)dqx = [f(x)g(x)]+∞0 −

∫ +∞

0
Dq(f(q−1x)) g(x) dqx. (12)

Let us now consider the sets

Rq = {±qk, k ∈ Z} ∪ {0}, Rq,+ = {qk, k ∈ Z}, (13)

and recall that S∗.q(R) is the space of even and indefinitely q-differentiable
fast decreasing functions f, together with their q-derivatives, i.e., such that

∀n,m ∈ N, Pn,m,q(f) = sup
x∈R
0≤k≤n

|(1 + x2)mDk
q f(x)| < +∞, (see [12])

and S∗.q(Rq) is the space of skeletons f̃ of f on Rq, for f in S∗.q(R). We
equip S∗.q(R) with the topology defined by the sequence of semi norms
Pn,m,q, and the topology in S∗.q(Rq) is induced by the one of S∗.q(R).

In the following we suppose that log(1 − q)/ log(q) ∈ Z, and we recall
some basic definitions useful for the remainder (see [5]).

We begin with the q-translation operator Tx,q defined for f ∈ S∗.q(Rq),
by

Tx,qf(y) =
∫ +∞

0
f(t)dqµ(x; y)(t), x, y ∈ Rq,+, (14)

with
dqµ(x; y) =

+∞∑
s=−∞

D(x, y; qs)qsδyqs , (see [5]). (15)

The q-convolution product of two suitable functions f and g is given by

(f ∗q g)(x) =
(1 + q−1)1/2

Γq2(1/2)

∫ +∞

0
Tx,qf(y)g(y)dqy, x ∈ Rq,+. (16)

Finally, the q-cosine Fourier transform [5] is defined as

Fq(f)(λ) =
(1 + q−1)1/2

Γq2(1/2)

∫ +∞

0
f(x) cos(λx; q2) dqx, λ ∈ Rq,+, (17)

and satisfies
Fq(f ∗q g)(λ) = Fq(f)(λ)Fq(g)(λ), f, g ∈ S∗.q(Rq). (18)

We start on giving some interesting properties of the q-translation operator.
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2. The q-Translation operator

Proposition 1. If f ∈ S∗.q(Rq), then Tx,qf ∈ S∗.q(Rq).

P r o o f. We recall that the q-Fourier transform Fq is an isomorphism
from S∗.q(Rq) into the same space (see [6]). So it suffices to show that

Fq(Tx,qf)(λ) = cos(λx; q2)Fq(f)(λ), λ ∈ Rq,+ (see [5]). (19)

belongs to S∗.q(Rq), which is easy to prove.

Proposition 2. For f ∈ L1
q(Rq,+) and x, y ∈ Rq we have

Tx,qf(y) =
(1 + q−1)1/2

Γq2(1/2)

∫ +∞

0
cos(λx; q2)Fq(f)(λ) cos(λy; q2) dqλ. (20)

P r o o f. It suffices to consider f ∈ S∗.q(Rq), then by the above propo-
sition Tx,qf is in S∗.q(Rq). The result follows from the formula (19) by using
the q-Fourier inversion formula (see [5]).

We denote by C0.q(Rq) the space of even functions f defined on Rq

continuous at 0, such that for all m ∈ N and some ε > 0, we have

|(Dm
q f)(±q−k)| = O(q(1+ε)k), k −→ +∞. (21)

Notice that sup
k∈Z

|f(qk)| < +∞ for f in C0.q(Rq).

Proposition 3. For f ∈ C0.q(Rq), the function x −→ Tx,qf is continu-
ous at zero for the norm ‖.‖∞.q defined by

‖f‖∞.q = sup
k∈Z

|f(qk)|. (22)

P r o o f. Recall that (Tx,qf − f)(y) =
∑∞

k=1 bk(x; q2)∆k
qf(y) (see [5]).

By (21), there exist a strictly negative integer n0 and a constant M1 > 0,
such that ∀n ≤ n0, we have |∆k

q (f)(qn)| < M1, ∀k ∈ N.

So ∃a1 > 0, / ∀x < a1, we have sup
n∈(−∞,n0)

|Tx,qf(qn)− f(qn)| < ε.

Using the inequality |Tx,qf(qn) − f(qn)| ≤ |Tx,qf(qn) − f(x)| + |f(x) −
f(0)| + |f(0) − f(qn)|, the fact that the function f is continuous at 0, and

lim
n−→+∞ Tx,qf(qn) = f(x), we show that

[∀ε > 0, ∃ a2 > 0, n′ > 0, / ∀x < a2,we have sup
n∈(n′,+∞)

|Tx,qf(qn)−f(qn)| < ε].

Since the supremum over [n0, n
′] is attained, we deduce the result.
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Remark 1. For f ∈ C0.q(Rq), we have

‖Tx,qf‖∞.q = sup
k∈Z

|
+∞∑

s=−∞
D(x, qk; qs)qsf(qs+k)| (23)

≤ ‖f‖∞.q sup
k∈Z

‖dqµ(x; qk)‖var. (24)

But for any x, y ∈ Rq,+ we have that

‖dqµ(x; y)‖var ≤
2(−q; q)2∞

(1− q)(q; q)∞
= K, (25)

thus
‖Tx,qf‖∞.q ≤ K‖f‖∞.q. (26)

For 1 ≤ p < +∞, we denote by Lp
q(Rq,+), the Banach space of functions

f̃ which are restrictions on Rq,+ of functions f such that
∫ +∞

0
|f(x)|p dqx < +∞, (27)

this space is equipped with the p.q-norm ‖.‖ :

‖f‖p.q =
(∫ +∞

0
|f(x)|p dqx

)1/p

(28)

Proposition 4. For f ∈ Lp
q(Rq,+), 1 ≤ p < +∞, the function x −→

Tx,qf is continuous at zero for the norm ‖.‖p.q.

P r o o f. It suffices to take the proof for f ∈ S∗.q(Rq) since the later
space is dense in Lp

q(Rq,+). By Proposition 1 we have that Tx,qf belongs

to S∗.q(Rq), so, ∀ε > 0, ∃k0 < 0, such that
k0∑

k=−∞
|Tx,qf(qk)− f(qk)|pqk <

εp

2(1− q)
. So the proof follows in the same manner as Proposition 3.

Finally, let us recall the following result concerning the positivity of the
q-translation operator, proven by Fitouhi-Dhaouadi-El Kamel in [6].

Theorem 1. The operator Tx,q is positive if and only if q belongs to
the (non empty) subset Iq of (0, 1) defined by

Iq = {q ∈ (0, 1)\ 1Φ1(0; q; q, q) ≥ 0}. (29)
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3. q-Gaussian kernel and q-heat semi-group

3.1. The q-Gaussian kernel

We recall that the function G(., t; q2), t > 0 is defined by

Fq(G(., t; q2))(λ) = e(−λ2t; q2) (30)

and is given explicitly by (see [5])

G(x, t; q2) =
1

A(t; q2)
e(

−x2

q(1 + q)2t
; q2), t > 0, (31)

where

A(t; q2) = q−1/2(1− q)1/2
(− (1−q)

(1+q)t ,−
(1+q)q2t
(1−q) ; q2)∞

(− (1−q)
(1+q)qt ,−

(1+q)q3t
(1−q) ; q2)∞

. (32)

Now we shall prove the following proposition.

Proposition 5.

1. G(x, t; q2) and Tx,qG(y, t; q2) are positive for all q in Iq.

2. G(., t; q2) belongs to S∗.q(Rq) and its 1.q-norm is given by

‖G(., t; q2)‖1.q =
Γq2(1/2)

(1 + q−1)1/2
. (33)

3. If t1, t2 are two q2-commuting variables, then

(G(., t1; q2)∗qG(., t2; q2))(x) = G(x, t2 + t1; q2) (34)

in the algebra Cq2

[
[t1, t2]

]
.

P r o o f.

1. Since A(t; q2) and e( −x2

q(1+q)2t
; q2) are strictly positive, the same holds

for G(x, t; q2). By Theorem 1 the q-translation function Tx,qG(y, t; q2)
inherits the same property.

2. We have

‖G(., t; q2)‖1.q =
∫ +∞

0
G(x, t; q2) dqx =

Γq2(1/2)
(1 + q−1)1/2

Fq(G(., t; q2))(0).

By the formula (30) and the fact that e(0; q2) = 1, we obtain the
result.
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3. Using (18) and (30), we get

Fq(G(., t1; q2) ∗q G(., t2; q2))(λ) = Fq(G(., t1; q2))(λ)Fq(G(., t2; q2))(λ)

= e(−λ2t1; q2) e(−λ2t2; q2) = e(−λ2(t2 + t1); q2)

= Fq(G(., t2 + t1; q2))(λ) (35)

in the algebra Cq2

[
[t1, t2]

]
, where in the thirst equality we have used

the formula (9), since G(., t; q2) is in S∗.q(Rq) then we can use the
q-Fourier inversion formula, and get the result.

Lemma 1. For a ∈ Rq,+ and t > 0, we have

lim
t−→0

∫ +∞

a
G(y, t; q2)dqy = 0. (36)

P r o o f. If we replace G(., t; q2) by its expansion (31) and use the
q-Jackson integral definition [9], we obtain

∫ +∞

a
G(y, t; q2) dqy =

(1− q)a

A(t; q2)(−(1−q)a2

q(1+q)t ; q2)∞

−1∑

k=−∞

qk

(− (1−q)a2q2k

q(1+q)t ; q2)−k

.

Replacing A(t; q2) by its expansion (32), we find, for t tending to zero:

1

A(t; q2)(− (1−q)a2

q(1+q)t ; q
2)∞

∼ q1/2(1− q)−1/2
(− (1−q)

(1+q)qt ; q
2)∞

(− (1−q)
(1+q)t ; q

2)∞(− (1−q)a2

q(1+q)t ; q
2)∞︸ ︷︷ ︸

H(q,t)

,

where H(q, t) = lim
j−→+∞

j∏

k=0

(1 + (1−q)
(1+q)qtq

2k)

(1 + (1−q)
(1+q)tq

2k)(1 + (1−q)
q(1+q)ta

2q2k)
.

Then by a simple computation, we get that H(q, t) is a bounded function

of t, so it suffices to prove that lim
t−→0

−1∑

k=−∞

qk

(− (1−q)a2q2k

q(1+q)t ; q2)−k

= 0.

This is obtained by the change of variables k′ = −k and the use of the
formula (5) with q2 instead of q.
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Proposition 6. (q-Hölder’s inequality) Let p and p′ be two conjugate

reals with p, p′ > 1. Then for f ∈ Lp
q(Rq,+) and g ∈ Lp′

q (Rq,+), we have

∣∣∣∣
∫ +∞

0
f(x) g(x) dqx

∣∣∣∣ ≤ ‖f‖p.q‖g‖p′.q. (37)

P r o o f. We replace the q-Jackson integral in the left-hand side by its
expansion in a q-series form. Then, using the classical Hölder’s inequality
relative to sums, we get the result.

As a consequence, we obtain the following corollary.

Corollary 1. If f ∈ L1
q(Rq,+) and g ∈ Lp

q(Rq,+), then f∗q g ∈ Lp
q(Rq,+),

with

‖f∗q g‖p.q ≤
(1 + q−1)1/2

Γq2(1/2)
‖f‖1.q‖g‖p.q. (38)

P r o o f. In fact, we have

‖f∗q g‖p
p.q =

∫ +∞

0

∣∣∣∣∣
(1 + q−1)1/2

Γq2(1/2)

∫ +∞

0
(Tx,qf(y))

1
p
+ 1

p′ g(y)dqy

∣∣∣∣∣
p

dqx.

By the q-Hölder’s inequality and the fact that (see [5])

‖Tx,qf‖1.q ≤ ‖f‖1.q, (39)

we deduce the result.

3.2. The q-heat semi-group

For any f ∈ Lp
q(Rq,+), 1 ≤ p < +∞, we introduce the operator T t, t > 0,

by
T tf(x) = (G(., t; q2)∗qf)(x). (40)

Remark 2. From the last corollary, we note that T tf ∈ Lp
q(Rq,+),

and we have
‖T tf‖p.q ≤ ‖f‖p.q. (41)

Thus T t is a contraction in Lp
q(Rq,+), 1 ≤ p < +∞.

Proposition 7. For f ∈ C0.q(Rq), we have

lim
t−→0

‖T tf − f‖∞.q = 0. (42)
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P r o o f. It follows from (16), (33) and (40), that

|T tf(x)− f(x)| = (1 + q−1)1/2

Γq2(1/2)

∣∣∣∣
∫ +∞

0
G(y, t; q2)

{Ty,qf(x)− f(x)
}
dqy

∣∣∣∣ .

(43)
By the use of relation (11), and after simple computation, we obtain

‖T tf − f‖∞.q ≤
(1 + q−1)1/2

Γq2(1/2)

×(
sup

y∈[0,a]
‖Ty,qf − f‖∞.q

∫ a

0
G(y, t; q2)dqy+2K‖f‖∞.q

∫ +∞

a
G(y, t; q2)dqy

)
,

where K is given in the formula (25). Now the result is a consequence from
the last lemma and Proposition 3.

Proposition 8. If f ∈ Lp
q(Rq,+), 1 ≤ p < +∞, then the function

t −→ T tf is continuous at zero for the norm ‖.‖p.q.

P r o o f. Replacing |T tf(x)− f(x)| by its expansion (43) and using the
definition of the p.q-norm to get ‖T tf − f‖p.q.

Then after the use of the q-Hölder’s inequality, the exchange of the
q-integral signs and using the 1.q-norm of G(., t; q2) given by (33), we get

‖T tf − f‖p
p.q ≤

(
(1 + q−1)1/2

Γq2(1/2)

)p−p/p′ ∫ +∞

0
‖Ty,qf − f‖p

p.qG(y, t; q2)dqy.

Now, we proceed as above by using the relation (11) and the fact that

‖Ty,qf‖p.q ≤ K ′‖f‖p.q, (44)

where K ′ is a constant. To complete the proof, we use the previous lemma
and Proposition 4.

Proposition 9. Let u(x, t) = T tf(x), where f ∈ L1
q(Rq,+), t > 0 and

x ∈ Rq. Then u(x, t) satisfies the following statements:

1. u(x, t) has the q-integral representation

u(x, t) =
(1 + q−1)1/2

Γq2(1/2)

∫ +∞

0
e(−λ2t; q2)Fq(f)(λ) cos(λx; q2) dqλ.

(45)
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2. i) The function x −→ u(x, t) is an even infinitely q-derivable func-
tion from Rq into R.

ii) The function t −→ u(x, t) is infinitely q2-derivable from (0, +∞)
into R.

P r o o f.

1. Using (18), (30) and (40), we get

Fq(u(., t))(λ) = e(−λ2t; q2)Fq(f)(λ), λ ∈ Rq,+. (46)

Since Fq = F−1
q , then by applying the q-Fourier inversion formula (see

theorem 1 in [5]), we get that

u(x, t) = Fq(e(−λ2t; q2)Fq(f))(x). (47)

2. Applying Dq.x and [Dq2.t; for t ≥ t0 > 0] to the last expansion (45) of
u(x, t), and since we have the following estimates (see [5])

|Fq(f)(λ)| ≤ 1
[q(1− q)]1/2(q; q)∞

‖f‖1.q, f ∈ L1
q(Rq,+),

|Dk
q.x cos(λx; q2)| ≤ λk

(q; q2)2∞
, k ∈ N, (48)

then, for all t ≥ t0, we have |Dq2.tu(x, t)| ≤ c′
∫ +∞
0 λ2e(−λ2t0; q2)dqλ,

where c′ is a constant depending on q. So to show i) and ii) we need
to verify that for any n ∈ N, we have

∫ +∞

0
e(−λ2t; q2)λn dqλ < +∞. (49)

To this end, we use the Ramanujan’s identity [9].

Theorem 2. (q-heat semi-group) The operators T t defined for t > 0
by the formula (40), satisfy the following properties:

1. Each T t is a positive operator for all q ∈ Iq, a bounded operator on
Lp

q(Rq,+), p ≥ 1, and T t1 = 1.

2. For every f in L1
q(Rq,+) the Fq(T tf) is given by formula (46) and each

T t is a self-adjoint operator on L2
q(Rq,+).
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3. If t1 and t2 are two q2-commuting variables, then T t1T t2 = T t2+t1 in
the algebra Cq2

[
[t1, t2]

]
.

4. If f ∈ Lp
q(Rq,+), p ≥ 1, then

{
T t

}
is strongly continuous, i.e., the

function t −→ T tf is continuous from [0, +∞) into Lp
q(Rq,+).

5. For f ∈ C0.q(Rq) ∩ L1
q(Rq,+), the functions

i) x −→ u(x, t) is an even infinitely q-derivable function from Rq

into R,

ii) t −→ u(x, t) is an infinitely q2-derivable from [0, +∞) into R,
and u(x, t) is a solution of the q-system

{
∆q.xu(x, t) = Dq2.tu(x, t), x ∈ Rq, t > 0,
u(x, 0) = f(x).

(50)

P r o o f.

1. The fact that T t is a positive operator for all q in Iq follows from the
positivity of Tx,qG(y, t; q2) (see Proposition 5). The boundedness of
the operator T t follows from Remark 2, and it is easy to show that
T t1 = 1.

2. For f, g ∈ L2
q(Rq,+), we have

|〈T tf, g〉| = (1+q−1)
1/2

Γq2 (1/2)

∣∣∣
∫ +∞
0 {∫ +∞

0 Tx,qG(y, t; q2)f(y)dqy}g(x)dqx
∣∣∣ .

Applying the q-Hölder’s inequality (37), we obtain |〈T tf, g〉| < +∞,
which enables us to exchange the q-integral signs and to get the result.

3. The definition (40) gives that T t1T t2f = (G(., t1; q2)∗qG(., t2; q2))∗qf,
f ∈ Lp

q(Rq,+), p ≥ 1, therefore the result follows by formula (34).

4. The continuity of the mapping t −→ T tf at 0 for the norm ‖.‖p.q has
been proved in Proposition 8. For the continuity at t0, t0 > 0, we have

‖T tf − T t0f‖p
p.q =

(
(1 + q−1)1/2

Γq2(1/2)

)p

×
∫ +∞

0

∣∣∣∣
∫ +∞

0
Tx,q

(
G(y, t; q2)−G(y, t0; q2)

)
f(y)dqy

∣∣∣∣
p

dqx.
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Applying the q-Hölder’s inequality and after simple computations, we
get ‖T tf − T t0f‖p

p.q < +∞. Thus, we can exchange the q-integral signs
and the limit as t −→ t0.
So to achieve the proof we need to show the t-continuity of G(y, t; q2)
on (0, +∞). In fact, this is true on any interval [τ, +∞), τ > 0. We
replace G(y, t; q2) by its expression obtained by inverting formula (30).
Then, for all t ≥ τ, we have, using (48) and (49):

∣∣
∫ +∞

0
e(−λ2t; q2) cos(λx; q2)dqλ

∣∣ ≤ 1
(q; q2)2∞

∫ +∞

0
e(−λ2τ ; q2)dqλ < ∞.

5. The result is a direct consequence from Propositions 7, 9.

4. The q-Poisson’s operator

Let x′ and γ two q-commuting (formal) variables belonging for example
to some non commutative algebra and such that x′ possesses an inverse
denoted by (x′)−1. We define the sets

Rq,x′ =
{± qkx′, k ∈ Z

} ∪ {0}, (51)

Rq,x′,+ =
{
qkx′, k ∈ Z

}
, (52)

Rq,(x′)−1 and Rq,(x′)−1,+ are defined similarly. These sets generalize the sets
Rq and Rq,+ obtained for x′ = 1, x′ real. Then we define the more general
q-Jackson integral

∫ x′.∞

0
f(x)dqx = (1− q)x′

+∞∑

k=−∞
f(qkx′)qk (53)

provided the sum in the right hand side converges absolutely.
Let Lp

q(Rq,x′,+), 1 ≤ p < +∞, be the space of functions f such that

‖f‖p.q.x′ =

(∫ x′.∞

0
|f(x)|pdqx

) 1
p

< +∞. (54)

For f ∈ L1
q(Rq,x′,+), we define the x′ q-cosine Fourier transform by

Fq.x′(f)(λ) =
(1 + q−1)1/2

Γq2(1/2)

∫ x′.∞

0
f(x) cos(λx; q2)dqx, λ ∈ Rq,(x′)−1,+.

(55)
Exactly as in [6], we can show the following proposition.
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Proposition 10. The x′ q-cosine Fourier transform Fq.x′ is an iso-
morphism from S∗.q(Rq,x′) into S∗.q(Rq,(x′)−1), with inverse F−1

q.x′ given for
x ∈ Rq,x′,+ by

F−1
q.x′(f)(x) =

(1 + q−1)1/2

Γq2(1/2)

∫ (x′)−1.∞

0
f(λ) cos(λx; q2) dqλ. (56)

Here S∗.q(Rq,x′) is the space of even, indefinitely q-differentiable functions
f on Rq,x′ , such that for any n, m ∈ N, we have

Pn,m,q(f) = sup
x∈Rq,x′
0≤k≤n

|(1 + x2)m Dk
q f(x)| < +∞. (57)

It holds then

Fq.x′(Gx′(., t; q2))(λ) = e(−λ2t; q2), λ ∈ Rq,(x′)−1,+, (58)
where

Gx′(x, t; q2) =
1

Ax′(t; q2)
e(− x2

q(1 + q)2t
; q2), x ∈ Rq,x′,+, (59)

and
Ax′(t; q2) = x′A(

t

x′2
; q2). (60)

For f and g in L1
q(Rq,x′,+), we define their x′ q-convolution by

(f∗q.x′ g)(x) =
(1 + q−1)1/2

Γq2(1/2)

∫ x′.∞

0
Tx,qf(y) g(y) dqy, x ∈ Rq,x′,+. (61)

Then, we define the q-heat operator T t
x′ on Lp

q(Rq,x′,+), 1 ≤ p < +∞, by

T t
x′f(x) = (f∗q.x′Gx′(., t; q2))(x), t > 0. (62)

Proposition 11.

1. The q-norm of Gx′(., t; q2) is given by

‖Gx′(., t; q2)‖1.q.x′ =
Γq2(1/2)

(1 + q−1)1/2
. (63)

2. For f ∈ Lp
q(Rq,x′,+), p ≥ 1, we have

‖T t
x′f‖p.q.x′ ≤ ‖f‖p.q.x′ . (64)

P r o o f. The proof is similar to that of Proposition 5 and Remark 2.
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Definition 1. For x ∈ Rq,x′,+ and t > 0, the q-Poisson operator is
obtained from the q-heat semi-group by the formula

P tf(x) =
1
c

∫ γ.∞

0

e(−u; q2)
Ax′(u; q2)

T
t2

q(1+q)2u

x′ f(x)dq2u, f ∈ Lp
q(Rq,x′,+), (65)

with

c =
∫ γ.∞

0

e(−u; q2)
Ax′(u; q2)

dq2u. (66)

Let us now introduce as previously the space C0.q(Rq,x′) of even functions
f continuous at 0, such that for all m ∈ N, we have

|(Dm
q f)(±q−kx′)| = O(q(1+ε)k), k −→ +∞, (67)

for some ε > 0.
The following proposition is a consequence from the properties of the

q-heat semi-group.

Proposition 12.

1. The operator P t is a positive operator for all q ∈ Iq and is bounded
on Lp

q(Rq,x′,+), 1 ≤ p < +∞.

2. P t is a self-adjoint operator on L2
q(Rq,x′,+).

3. If f ∈ C0.q(Rq,x′), then P tf converges uniformly to f as t tends to 0.

P r o o f.

1. Using (54) and (65), we have for f ∈ Lp
q(Rq,x′,+) :

‖P tf‖p
p.q.x′ =

∫ x′.∞

0

∣∣∣∣∣
1
c

∫ γ.∞

0

[ e(−u; q2)
Ax′(u; q2)

] 1
p
+ 1

p′ T
t2

q(1+q)2u

x′ f(x)dq2u

∣∣∣∣∣
p

dqx.

Applying the q-Hölder’s inequality to the second integral, we obtain

‖P tf‖p
p.q.x′ < +∞.

Now, since x′γ = qγx′, then if we exchange the q-integral signs, we get
a factor 1

q (see [8]). Taking account of the estimation (64), we obtain

‖P tf‖p
p.q.x′ ≤

1
q
‖f‖p

p.q.x′ . (68)

The positivity is deduced from the positivity of the q-heat operator.
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2. By the q-Hölder’s inequality, we have that for f, g ∈ L2
q(Rq,x′,+)

|〈P tf, g〉| = | ∫ x′.∞
0 (P tf)(x)g(x) dqx| ≤ ‖P tf‖2.q.x′‖g‖2.q.x′ < +∞.

After two exchanges of the q-integral signs, taking account of the fact
that x′γ = qγx′ and using the self-adjointness of the q-heat operator,
we deduce the result.

3. By the same arguments as in Proposition 7, we get that T t
x′f con-

verges uniformly to f, as t tends to 0. Then the result follows from
the expression (65) of P tf.

Theorem 3. Let pt be the function given for x ∈ Rq,x′,+ and t > 0 by

pt(x) =
q

c

∫ γ.∞

0

e(−u; q2)
Ax′(u; q2)

Gx′(x,
t2

q(1 + q)2u
; q2) dq2u, (69)

where c is given by (66). Then we have the following statements:

1. The q-norm of pt is given by

‖pt‖1.q.x′ =
Γq2(1/2)

(1 + q−1)1/2
. (70)

2. The q-Poisson’s operator has the form

P tf(x) = (pt∗q.x′f)(x). (71)

The pt is therefore called the q-Poisson kernel.

P r o o f.

1. Using (69) and (54), we get ‖pt‖1.q.x′ ≤ ‖Gx′(., t2

q(1+q)2u
; q2)‖

1.q.x′
< ∞.

So we can exchange the q-integral signs, and after simple computa-
tions, we obtain the result.

2. Using (69) and definition (61), we get the expansion of |(pt∗q.x′f)(x)|.
Moreover, we can easily prove that

‖pt∗q.x′f‖1.q.x′ ≤
(1 + q−1)1/2

Γq2(1/2)
‖pt‖1.q.x′‖f‖1.q.x′ < +∞. (72)

So the result follows by exchanging the q-integral signs in the expan-
sion of |(pt∗q.x′f)(x)|, and by using the expression (62) of the q-heat
semi-group.
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Proposition 13. For every x ∈ Rq,x′,+ and t ∈ Rq,+ we have

pt(x) = Kx′,γ
t

x2 + t2
, (73)

where
Kx′,γ =

q

c

1
Ax′(γ; q2)Ax′( 1

q(1+q)2γ
; q2)

.

Remark 3. Note that when q −→ 1−, we obtain the classical Poisson
kernel associated with the second order operator ∂2

∂x2 (see [4]), namely

pt(x) =

√
2
π

t

x2 + t2
. (74)

P r o o f. If we replace the q-Gaussian kernel by the formula (59) in the

expansion of pt we obtain: pt(x) = q
c

∫ γ.∞
0

e(−u;q2)
Ax′ (u;q2)

e(−x2

t2
u;q2)

Ax′ (
t2

q(1+q)2u
;q2)

dq2u,

since (x′2γ).γ = q2γ.(x′2γ), then by the q-addition formula (9), we get

e(−u; q2) e(−x2

t2
u; q2) = e(−(

x2

t2
+ 1)u; q2), (75)

in the algebra Cq2

[
[x′2γ, γ]

]
.

Now using the definition of the q-Jackson integral (see [8]) and the fact
that for any k ∈ Z and any formal variable ω,

Ax′(ω q2k; q2) = qkAx′(ω; q2),

we obtain

pt(x) =
q

c

(1− q2)
Ax′(γ; q2)Ax′( 1

q(1+q)2γ
; q2)t

+∞∑

k=−∞

q2kγ(
−(1− q2)(x2

t2
+ 1)q2kγ; q2

)
∞

.

The result follows then by use of the well-known Ramanujan identity [9].

Lemma 2. Let

c0 =
∫ x′.∞

0

1
1 + x2

dqx < +∞. (76)

Then the solution g(α; q) of the following q-problem

(S1)





D2
q.α g(α; q) = g(αq; q), (E1)
lim

n−→+∞g(αqn; q) = c0, (s1)

lim
n−→+∞g(αq−n; q) = 0, (s2)

(77)
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is given by

g(α; q) = c0E
( 1
2
)

q (−q−1/2(1− q)α), (78)

where the function E
( 1
2
)

q is defined by (see [2])

E
( 1
2
)

q (x) =
+∞∑

k=0

qk2/4

(q; q)k
xk. (79)

P r o o f. We shall proceed by using the standard method given in [11].

Let f1(α) = E
( 1
2
)

q (−q−1/2(1− q)α), and f2(α) = E
( 1
2
)

q (q−1/2(1− q)α).
First we verify that f1 and f2 are solutions of the q-difference equation (E1).

Using the properties of the q-exponential function E
( 1
2
)

q (see [2]), we
show then that the q-Wronskian Wq(f1, f2) is not identically zero. Thus
any solution g of the q-difference equation (E1) can be written in the form

g(α; q) = p1(α)f1(α) + p2(α)f2(α), (80)

where p1 and p2 are two q-periodic functions (see [11]). Moreover we have
the following limits:

lim
n−→+∞E

( 1
2
)

q (q−1/2(1− q)αq−n) = +∞, (81)

lim
n−→+∞E

( 1
2
)

q (−q−1/2(1− q)αq−n) = 0, (82)

where the last statement (82) can be derived from the relation between the

q-exponential function E
( 1
2
)

q and the q-hypergeometric function 1Φ1 and its
properties (see [3, 10]).

By using (81), (82) and the initial condition (s2), we obtain that g(α; q) =

p1(α)E
( 1
2
)

q (−q−1/2(1−q)α). So to finish the proof it suffices to use the other

initial condition (s1), and the limit lim
n−→+∞E

( 1
2
)

q (−q−1/2(1− q)αqn) = 1.

Proposition 14. The x′ q-cosine Fourier transform of the q-Poisson
kernel pt is given, for λ ∈ Rq,(x′)−1,+ by

Fq.x′(pt)(λ) =
(1 + q−1)1/2

Γq2(1/2)
c0Kx′,γ E

( 1
2
)

q (−q−1/2(1− q)λt). (83)

P r o o f. By using the definition (55) and replacing pt by its expansion
(73), we have

Fq.x′(pt)(λ) =
(1 + q−1)1/2

Γq2(1/2)
Kx′,γ

∫ x′.∞

0

t

x2 + t2
cos(λx; q2) dqx. (84)
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The change of variables x̃ = x
t gives us

Fq.x′(pt)(λ) =
(1 + q−1)1/2

Γq2(1/2)
Kx′,γ

∫ x′.∞

0

1
1 + x̃2

cos(λtx̃; q2) dqx̃. (85)

It is not difficult to show that the function

λt −→
∫ x′.∞

0

1
1 + x2

cos(λtx; q2) dqx,

verifies the q-system (S1). So the result follows from Lemma 2.

Proposition 15. For f ∈ Lp
q(Rq,x′,+), p ≥ 1, x ∈ Rq,x′ and t ∈ Rq,+

we have

1. The function P tf(x) has the q-integral representation

P tf(x) =
(1 + q−1)
Γ2

q2(1/2)
c0Kx′,γ

×
∫ (x′)−1.∞

0
E

( 1
2
)

q (−q−1/2(1− q)λt)Fq.x′(f)(λ) cos(λx; q2)dqλ.

(86)

2. The function P tf(x) is an even function in x and satisfies the q-
difference equation

(∆q.x + ∆q.t)P tf(x) = 0. (87)

P r o o f.

1. Applying the q-Fourier transform (55) to both sides of the formula
(71), we get Fq.x′(P tf)(λ) = Fq.x′(pt)(λ)Fq.x′(f)(λ). So the result
follows from (83) and the q-Fourier inversion formula (56).

2. Since the q-derivative operators ∆q.x and ∆q.t permute with the q-
integral sign in (86), we can deduce the result.

Lemma 3. For t ∈ Rq,+, there exists a constant M2 > 0, such that

‖tDq.t(pt)‖1.q.x′ ≤ M2. (88)
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P r o o f. By the change of variables ũ = q(1+q)2

t2
u in formula (69) and

by use of the following relation (see [13])
∫ A.∞

0

1
x2

f(
1
x

) dqx =
∫ A−1.∞

0
f(x) dqx, A ∈ C, (89)

we obtain the expansion of pt(x), which we apply the q-derivative Dq.t and
after simple computation, we get

Dq.t(pt(x)) =
1

c(1 + q)2(1− q)
1
t

∫ t2

q(1+q)2
γ−1.∞

0

e(− t2

q(1+q)2u
; q2)

Ax′( t2

q(1+q)2u
; q2)

× t2

u2

{
Gx′(x, u; q2)−Gx′(x, q2u; q2)

}
dq2u.

On the other hand, we have ‖tDq.t(pt)‖1.q.x′ =
∫ x′.∞
0 t|Dq.t(pt)(x)|dqx.

Since γ−1x′ = qx′γ−1, then the exchange of the q-integral signs in the above
formula produces a factor q (see [8]) and gives us

‖tDq.t(pt)‖1.q.x′ ≤
2‖Gx′(., t; q2)‖1.q.x′

q−1(1 + q)2(1− q)c

∫ t2

q(1+q)2
γ−1.∞

0

t2

u2

e(− t2

q(1+q)2u
; q2)

Ax′( t2

q(1+q)2u
; q2)

dq2u.

Next, we use formula (89) and after simple computation we obtain the result

with M2 =
2q2 Γq2 (1/2)

(1−q)(1+q−1)1/2 .

Lemma 4. If f ∈ S∗.q(Rq,x′), then the function

u(x, t) = P tf(x) (90)

verifies for all x ∈ Rq,x′,+ and all t ∈ Rq,+ the following estimation

|q(Dq.xu(x, t))(q−1x)| ≤ ‖∆qf‖1.q.x′ . (91)

P r o o f. By a q-integration by parts and taking account of the fact
that the function x −→ u(x, t) is even, we get:

|
∫ x

0
∆q.yu(y, t)dqy| = |q(Dq.xu(x, t))(q−1x)| < +∞. (92)

Replacing u(y, t) by (71), to get | ∫ x
0∆q.yu(y, t)dqy| which is finite by (92).

Then by the exchange of the q-integral signs, we obtain
∫ x

0
∆q.yu(y, t)dqy =

(1 + q−1)1/2

Γq2(1/2)

∫ x′.∞

0
pt(z)

{∫ x

0
∆q.yTy,qf(z)dqy

}
dqz.
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Using the fact that ∆q.yTz,qf(y) = Tz,q(∆q.yf(y)), and since the q-Jackson
integral is invariant under the q-translation, then we can deduce the result
from (70).

Lemma 5. For f ∈ S∗.q(Rq,x′), x ∈ Rq,x′,+, t ∈ Rq,+ and n = 1, 2, there
exists a constant K2 > 0, such that

|Dn
q.xu(x, t)|+ |Dn

q.tu(x, t)| ≤ K2. (93)

P r o o f. Applying the q-derivative Dn
q.x, n = 1, 2 to the formula (86).

So any q-derivative Dn
q.xu(x, t) can be written in a q-series form, and by the

majorization (48). We find that, for n = 1, 2, |Dn
q.xu(x, t)| is bounded by

K̂
+∞∑

k=−∞
|E( 1

2
)

q (−q−1/2(1− q)(x′)−1qkt)Fq.x′(f)((x′)−1qk)((x′)−1qk)n+1|,

where K̂ = (1− q)
q−1(1 + q−1)

(q; q2)2∞Γ2
q2(1/2)

|c0Kx′,γ |.
In same manner, for n = 1, 2, we have that |Dn

q.tu(x, t)| is majorized by

K̂

+∞∑

k=−∞
|E( 1

2
)

q (−q
n−1

2 (1− q)(x′)−1qkt)Fq.x′(f)((x′)−1qk)((x′)−1qk)n+1|.

Therefore, it suffices to prove that

+∞∑

k=−∞
|E( 1

2
)

q (−q−1/2(1−q)(x′)−1qkt)Fq.x′(f)((x′)−1qk)((x′)−1qk)n+1| is finite.

To this end, we need to use the limits lim
k−→−∞

E
( 1
2
)

q (−q−1/2(1−q)(x′)−1qkt) =

0, and lim
k−→+∞

E
( 1
2
)

q (−q−1/2(1− q)(x′)−1qkt) = 1, and the fact that Fq.x′(f)

belongs to S∗.q(Rq,(x′)−1).
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