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Abstract

The classical Cauchy-Hadamard, Abel and Tauber theorems provide
useful information on the convergence of the power series in complex plane.
In this paper we prove analogous theorems for series in the generalized
Lommel-Wright functions with 4 indices. Results for interesting special
cases of series involving Bessel, Bessel-Maitland, Lommel and Struve func-
tions, are derived.We provide also a new asymptotic formula for the gener-
alized Lommel-Wright functions in the case of large values of the index ν
that are used in the proofs of the Cauchy-Hadamard, Abel and Tauber type
theorems for the considered series.
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1. Introduction

The Bessel, Lommel and Struve functions and their generalizations, as
the Bessel-Maitland and generalized Lommel-Wright functions have origi-
nated from concrete problems in mechanics and astronomy. Recently they
have proved themselves as some of the most frequently used special func-
tions in mathematical analysis and its applications in physics, mechanics
and engineering.

1This work is partially supported by National Science Research Fund - Bulgarian
Ministry of Education and Science, under Grant MM 1305/2003
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As it is known, investigation of the properties of the functions which are
holomorphic in a certain domain of the complex plane, is often based on the
possibility of their representation in series by particular countable systems
of functions, holomorphic in the given region. The Taylor systems are the
most frequently used in circular domains which leads to expansion in power
series. Classical orthogonal polynomials and some special functions are used
in the other regions. That is why it is useful to study the convergence of such
series and to prove Cauchy-Hadamard, Abel and Tauber type theorems.

The classical Abel and Tauber type theorems give some important prop-

erties for the convergence of the power series
∞∑

n=0
anzn on the boundary of

their domain of convergence. Namely:

Theorem (Abel). If the power series f(z) =
∞∑

n=0
anzn is convergent at

a point z0 of the boundary of the disk of convergence, then there exists the
limit lim

z→z0

f(z) = f(z0), when z belongs to the angle domain gϕ with size

2ϕ < π and with a vertex at the point z = z0, which is symmetric in the
straight line defined by the points 0 and z0.

The example with the geometrical series 1
1+z = 1− z + z2− z3 + . . . at

the point z0 = 1 ([15], p.92) shows that the inverse proposition is not true in
general. That is, the existence of this limit does not imply the convergence

of the power series
∞∑

n=0
anzn

0 without additional conditions on the growth of

the coefficients. The corresponding result in this direction is given by the
following theorem.

Theorem (Tauber). If the coefficients of the power series satisfy the
condition lim

n→∞nan = 0 and if lim
z→1

f(z) = S (z → 1 radially), then the series
∞∑

n=0
an is convergent and

∞∑
n=0

an = S.

It turns out that the Abel theorem fails even for series of the kind∞∑
k=1

ank
znk , where (n1, n2, . . . , nk, . . . ) is a suitable permutation of the non-

negative integers [15], p.92. Therefore, it is interesting to know if for series in
a given sequence of holomorphic functions a statement like the Abel theorem
is available. A positive answer to this question is given for series in Laguerre
and Hermite polynomials by Rusev [13], §11.3; [14], Ch.4, §4; and by Boy-
adjiev [1], and resp. for series in Bessel and generalized Bessel-Maitland
functions - by Paneva-Konovska [7], [10].
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Let Jµ, m
ν,λ (z) be the generalized Lommel-Wright function, introduced and

studied by de Oteiza, Kalla & Conde [6] as a further (4-indices) generaliza-
tion of the Bessel and Besel-Maitland (Wright) functions:

Jµ,m
ν,λ (z) = (z/2)ν+2λ

∞∑

k=0

(−1)k(z/2)2k

(Γ(λ + k + 1))m Γ(ν + kµ + λ + 1)
(1)

= (z/2)ν+2λ
1Ψm+1 [(1, 1); (λ + 1, 1), ..., (λ + 1, 1), (ν + λ + 1, µ);−z2/4]

z ∈ C \ (−∞, 0] , µ > 0, m ∈ N, ν, λ ∈ C,

where pΨq denotes the Wright generalization of the hypergeometric function
pFq (see [2]):

pΨq [(a1, A1), ..., (ap, Ap); (b1, B1), ..., (bq, Bq); z]

=
∞∑

k=0

Γ(a1 + A1k)...Γ(ap + Apk) zk

Γ(b1 + B1k)...Γ(bq + Bqk) k!
,

Aj > 0 (j = 1, ..., p); Bj > 0 (j = 1, ..., q); 1 +
q∑

j=1

Bj −
p∑

j=1

Aj ≥ 0,

for suitably bounded values of |z|.
These functions and their special cases Jµ

ν (z), Jµ
ν,λ(z), as depending on

the arbitrary ”fractional” parameter µ > 0, present a fractional order exten-
sion of the Bessel function Jν(z) and as such, are closely related to fractional
order analogues of the Bessel operators and fractional order equations and
systems modeling numerous real world phenomena arising in applied sci-
ence. For some results related to fractional calculus’ operators of functions
(1), see for example A.I. Prieto, S.S. de Romero and H.M. Srivastava [12].

In this paper, first we obtain an asymptotic formula for the special
functions (1) for large values of the index ν. Then, our main objective is to
study series of the form:

∞∑

n=0

anJ µ, m
n−2λ, λ(z), z ∈ C, µ > 0, m ∈ N, λ ∈ C, (2)

with complex coefficients an (n=0, 1, 2, ...). For such series we prove the-
orems, corresponding to the classical Cauchy-Hadamard, Abel and Tauber
theorems.

In particular, our results lead to corresponding convergence theorems for
series in the Bessel, Bessel-Maitland, generalized Bessel-Maitland (Wright),
Lommel and Struve functions.
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2. An index-asymptotic formula

Theorem 1. Let µ > 0. Then for the generalized Lommel-Wright
functions (1) the following asymptotic formula

Jµ,m
ν,λ (z) =

(z/2)ν+2λ

(Γ(λ + 1))m Γ(ν + λ + 1)
(1 + θµ,m

ν,λ (z)), z ∈ C \ (−∞, 0], (3)

with θµ,m
ν,λ (z) → 0 as Re ν →∞,

holds. The functions θµ,m
ν,λ (z) are holomorphic functions of z in C. The

convergence is uniform on the compact subsets of the complex plane C.

P r o o f. For the sake of brevity, denote

wk(ν, λ, µ, m) = uk(ν, λ, µ,m) ·
(

Γ(λ + 2)
Γ(λ + k + 1)

)m

, (4)

uk(ν, λ, µ, m) =
Γ(λ + ν + µ + 1)
Γ(λ + ν + µk + 1)

, k ∈ N ;

w0(ν, λ, µ,m) =
(

Γ(λ + 1)
Γ(λ + 2)

)m

· Γ(ν + λ + 1)
Γ(ν + λ + µ + 1)

,

v0(ν, λ, µ) = (Γ(λ + 1))m Γ(λ + ν + 1)).

Then (1) gets the form

Jµ,m
ν,λ (z) =

(z/2)ν+2λ

v0(ν, λ, µ,m)
(5)

×
(

1 + w0(ν, λ, µ, m)
∞∑

k=1

(−1)k wk(ν, λ, µ, m)(z/2)2k

)
.

Using the analogues of the Stirling formula (see [2], p.62,(5))

Γ(z + 1) ∼
√

2πz zz exp(−z), Γ(z + α) ∼ zα Γ(z), Re z →∞,

we obtain for large values of ν and for all k = 2, 3, ... :

|uk(ν, λ, µ, m)| =
∣∣∣∣

Γ(λ + ν + µ + 1)
Γ(λ + ν + µ + 1) + µ(k − 1)

∣∣∣∣

∼
∣∣∣∣

1
(λ + ν + µ + 1)µ(k−1)

∣∣∣∣ ≤
1

|(λ + ν + µ + 1)|µ .
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Since |(λ + ν + µ + 1)|−µ → 0 when Re ν → ∞ and u1 = 1, therefore
there exists a natural number N0 such that for all k ∈ N and ν with Re ν >
N0, the inequalities |uk| ≤ 1 hold, whence we conclude that |wk| ≤ |Γ(λ +

2)/Γ(λ+k+1)|m. But
∞∑

k=1

(−1)k (Γ(λ+2)/Γ(λ+k+1))m (z/2)2k is absolutely

convergent on the complex plane C (and uniformly on the compact subsets
of C). Denoting

θµ,m
ν,λ (z) = w0(ν, λ, µ,m)

∞∑

k=1

(−1)k wk(ν, λ, µ,m)(z/2)2k

the rest immediately follows the same way as in [9].

In particular, for ν = n− 2λ, n ∈ N, the index-asymptotic formula (3)
takes the form:

Jµ,m
n−2λ,λ(z) =

(z/2)n

(Γ(λ + 1))m Γ(n− λ + 1)
(1 + θµ,m

n−2λ,λ(z)); z, λ ∈ C, µ > 0,

(6)
θµ,m
n−2λ,λ(z) → 0 as n →∞ (n ∈ N).

3. A Cauchy-Hadamard type theorem

First, we prove an analogue of the Cauchy-Hadamard theorem.

Theorem 2 (Cauchy-Hadamard type). The domain of convergence
of the series (2), with complex coefficients an (n=0, 1, 2, ...), is the disk
|z| < R with a radius of convergence

R = 1/Λ, Λ = 2−1 lim sup
n→∞

( |an| |(Γ(λ + 1))m Γ(n− λ + 1)|−1)1/n. (7)

The cases Λ = 0 and Λ = ∞ are included in the common case, if 1/Λ is
meant as ∞, respectively as 0.

P r o o f. Let us denote

un(z) = anJµ, m
n−2λ,λ(z), bn = 2−1(|an|| (Γ(λ + 1))m Γ(n− λ + 1)|−1)1/n.

Using the asymptotic formula (6), we get

un(z) = an
(z/2)n

(Γ(λ + 1))mΓ(n− λ + 1)
(1 + θµ, m

n−2λ,λ(z)).

The proof goes separately in the three cases:
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1. Λ = 0. Then lim
n→∞ bn = lim sup

n→∞
bn = 0. Let us fix z 6= 0. Obviously,

there exists a number N1 such that for every n > N1: |1+θµ, m
n−2λ,λ(z)| < 2 and

2bn < 1/|z| which is equivalent to |un(z)| = bn
n|z|n|1 + θµ, m

n−2λ,λ(z)| < 21−n.
The absolute convergence of (2) follows immediately from this inequality.

2. 0 < Λ < ∞. First, let z be inside the domain |z| < R (z ∈ C), i.e
|z|/R < 1. Then lim sup

n→∞
|z|bn < 1. Therefore, it exists a number q < 1 such

that lim sup
n→∞

|z|bn ≤ q, whence |z|nbn
n ≤ qn. By using the asymptotic formula

(6) for the common member un(z) of the series (2), we obtain |un(z)| =
bn
n|z|n|1 + θµ, m

n−2λ,λ(z)| ≤ qn|1 + θµ, m
n−2λ,λ(z)|. Since lim

n→∞ θµ, m
n−2λ,λ(z) = 0 there

exists N2: for every n > N2 |1 + θµ, m
n−2λ,λ(z)| < 2 and hence |un(z)| ≤ 2qn.

Because the series
∞∑

n=0
2qn is convergent, the series (2) is also convergent,

even absolutely.
Now, let z lie outside this domain. Then |z|/R > 1 and lim sup

n→∞
|z|bn >

1. Therefore there exists infinite number of values nk of n: |z|nkbnk
nk

>
1. Since lim

n→∞ θµ, m
n−2λ,λ(z) = 0, there exists N3 so that for nk > N3; |1 +

θµ, m
nk−2λ,λ(z)| ≥ 1/2, i.e. |unk

(z)| ≥ 1/2 for infinite number of values of n.
The necessary condition for convergence is not satisfied. Therefore the series
(2) is divergent.

3. Λ = ∞. Let z ∈ C\{0}. Then bnk
> 1/|z| for infinite number of values

nk of n. But, from here |unk
(z)| = |z|nk bnk

nk
|1 + θµ, m

nk−2λ,λ(z)| ≥ 1/2 and the
necessary condition for the convergence of the series (2) is not satisfied and
we conclude that the series (2) is divergent for every z 6= 0.

4. An Abel type theorem

Let z0 ∈ C, 0 < R < ∞, |z0| = R and gϕ be an arbitrary angle domain
with size 2ϕ < π and with vertex at the point z = z0, which is symmetric
in the straight line defined by the points 0 and z0. The following theorem
is valid.

Theorem 3 (Abel type). Let {an}∞n=0 be a sequence of complex
numbers, the real number 0 < R < ∞ be defined by (7) and K be the circle
domain |z| < R. If f(z) is the sum of the series (2) on the disk K and this
series is convergent at the point z0 of the boundary of K, then

lim
z→z0

f(z) =
∞∑

n=0

anJµ, m
n−2λ,λ(z0), when |z| < R, z ∈ gϕ. (8)
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P r o o f. Let us consider the difference

∆(z) =
∞∑

n=0

anJµ, m
n−2λ,λ(z0)− f(z) =

∞∑

n=0

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z)) (9)

and represent it in the form

∆(z)=
k∑

n=0

an(Jµ, m
n−2λ,λ(z0)−Jµ, m

n−2λ,λ(z))+
∞∑

n=k+1

an(Jµ, m
n−2λ,λ(z0)−Jn−2λ,λ,µ,m(z)).

Let p > 0. Using the denotations

βq =
q∑

n=k+1

anJµ, m
n−2λ,λ(z0), q > k, βk = 0,

γn(z) = 1− Jµ, m
n−2λ,λ(z)/Jµ, m

n−2λ,λ(z0),

and the Abel transformation (see [5], Vol.1, p.32, eq. (3.4:7) ), we obtain
consequently:

k+p∑

n=k+1

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z)) =
k+p∑

n=k+1

(βn − βn−1)γn(z)

= βk+pγk+p(z)−
k+p−1∑

n=k+1

βn(γn+1(z)− γn(z)),

i.e.
k+p∑

n=k+1

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z))

=
(
1− Jµ, m

k+p−2λ,λ(z)/Jµ, m
k+p−2λ,λ(z0)

) k+p∑

n=k+1

anJµ, m
n−2λ,λ(z0)

−
k+p−1∑

n=k+1

(
n∑

s=k+1

asJ
µ, m
s−2λ,λ(z0)

)(
Jµ, m

n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

−
Jµ, m

n+1−2λ,λ(z)

Jµ, m
n+1−2λ,λ(z0)

)
.

From asymptotic formula (6) it follows that there exists a natural number
M such that Jµ, m

n−2λ,λ(z0) 6= 0 when n > M . Let k > M . Then, for every
natural n > k:

Jµ, m
n−2λ,λ(z)/Jµ, m

n−2λ,λ(z0)− Jµ, m
n+1−2λ,λ(z)/Jµ, m

n+1−2λ,λ(z0) = (z/z0)n× (10)
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(1+θµ, m
n−2λ,λ(z))(1+θµ, m

n+1−2λ,λ(z0))−(z/z0)(1+θµ, m
n+1−2λ,λ(z))(1+θµ, m

n−2λ,λ(z0))

(1+θµ, m
n−2λ,λ(z0))(1+θµ, m

n+1−2λ,λ(z0))
.

For the right hand side of (10) we apply the Schwarz lemma. Then we get
that there exists a constant C:

|Jµ, m
n−2λ,λ(z)/Jµ, m

n−2λ,λ(z0)− Jµ, m
n+1−2λ,λ(z)/Jµ, m

n+1−2λ,λ(z0)| ≤ C|z − z0||z/z0|n.

Analogously, there exists a constant B:

|1− Jµ, m
k+p−2λ,λ(z)/Jµ, m

k+p−2λ,λ(z0)| ≤ B|z − z0| ≤ 2B|z0|.

Let ε be an arbitrary positive number and choose N(ε) so large that for
k > N(ε) the inequality

|
n∑

s=k+1

asJ
µ, m
s−2λ,λ(z0)| < min(ε cosϕ/(12B|z0|), ε cosϕ/(6C|z0|))

holds for every natural n > k. Therefore, for k > max(M, N(ε)):

|
∞∑

s=k+1

asJ
µ, m
s−2λ,λ(z0)| ≤ min(ε cosϕ/(12B|z0|), ε cosϕ/(6C|z0|),

and

|
∞∑

n=k+1

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z))|

≤ (ε cosϕ/6)(1 +
∞∑

n=k+1

|z0|−1|z − z0||z/z0|n)

≤ (ε cosϕ/6)(1 + |z − z0|/(|z0| − |z|)).
But near the vertex of the angle domain gϕ in the part dϕ closed between
the angle’s arms and the arc of the circle with center at the point 0 and
touching the arms of the angle, we have |z − z0|/(|z0| − |z|) < 2/ cosϕ, i.e.
|z − z0| cosϕ < 2(|z0| − |z|). That is why the inequality

|
∞∑

n=k+1

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z))| < (ε cosϕ)/6 + ε/3 ≤ ε/2 (10)

holds for z ∈ dϕ and k > max(M, N(ε)). Fix some k > max(M, N(ε)) and
after that choose δ(ε) such that if |z − z0| < δ(ε) then the inequality
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|
k∑

n=0

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z))| < ε/2 (11)

holds inside dϕ. We get

|∆(z)| = |
∞∑

n=0

an(Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z))|

for the module of the difference (9). From (10) and (11) it follows that the
equality (8) is satisfied.

5. A Tauber type theorem

We consider the series
∞∑

n=0
an, an ∈ C and let

z0 ∈ C, |z0| = R, 0 < R < ∞, Jµ,m
n−2λ,λ(z0) 6= 0 for n = 0, 1, 2, ... .

For shortness, denote

J∗n,λ,µ,m(z; z0) =
J µ,m

n−2λ,λ(z)

J µ,m
n−2λ,λ(z0)

.

Let the series
∞∑

n=0
anJ∗n,λ,µ,m(z; z0) be convergent for |z| < R and

F (z) =
∞∑

n=0

anJ∗n,λ,µ,m(z; z0), |z| < R.

Theorem 4 (Tauber type). If {an}∞n=0 is a sequence of complex
numbers with

lim
n→∞nan = 0, (12)

and there exists

lim
z→z0

F (z) = S (|z| < R, z → z0 radially),

then the series
∞∑

n=0
an is convergent and

∞∑

n=0

an = S.
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P r o o f. For a point z of the segment [0, z0] we have
k∑

n=0

an − F (z) =
k∑

n=0

an −
∞∑

n=0

anJ∗n,λ,µ,m(z; z0)

=
k∑

n=0

an

Jµ, m
n−2λ,λ(z0)

Jµ, m
n−2λ,λ(z0)

−
∞∑

n=0

an

Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

=
k∑

n=0

an

Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

−
∞∑

n=k+1

anJ∗n,λ,µ,m(z; z0),

and therefore,

|
k∑

n=0

an − F (z)| ≤
k∑

n=0

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ (13)

+
∞∑

n=k+1

|an|
∣∣J∗n,λ,µ, m(z; z0)

∣∣ .

By using the asymptotic formula (6) for the generalized Lommel-Wright
functions, we obtain:

an

Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

=an

(
z

z0

)n 1+θµ, m
n−2λ,λ(z)

1+θµ
n−2λ,λ(z0)

=an

(
z

z0

)n (
1+θ̃n,λ,µ, m(z; z0)

)
.

Let ε be an arbitrary positive number. We choose a number N1 so large
that the inequalities |1 + θ̃k,λ,µ(z; z0)| < 2, |kak| < ε

6 hold as k ≥ N1. If
k > N1 and z is on the segment [0, z0], then for the second summand in (13)
the following estimate is valid:

∞∑

n=k+1

|an|
∣∣J∗n,λ,µ,m(z; z0)

∣∣ =
∞∑

n=k+1

|an|
∣∣∣∣
z

z0

∣∣∣∣
n

|1 + θ̃n,λ,µ,m(z; z0)| (14)

≤ 2
∣∣∣∣
z

z0

∣∣∣∣
k+1 ∞∑

n=k+1

|an|
∣∣∣∣
z

z0

∣∣∣∣
n−k−1

≤ 2
∞∑

n=0

|an+k+1|
∣∣∣∣
z

z0

∣∣∣∣
n

= 2
∞∑

n=0

|(n + k + 1)an+k+1|
n + k + 1

∣∣∣∣
z

z0

∣∣∣∣
n

< 2
∞∑

n=0

ε/6
n + k + 1

∣∣∣∣
z

z0

∣∣∣∣
n

<
2
k

ε

6
1

1− |z/z0| =
ε

3
1
k

|z0|
|z0| − |z| .
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Now let us consider the first summand in (13). We have:

k∑

n=0

|an|
∣∣∣∣∣
Jµ,m

n−2λ,λ(z0)− Jµ,m
n−2λ,λµ,m(z)

Jµ,m
n−2λ,λ(z0)

∣∣∣∣∣

=
q∑

n=0

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣+
k∑

n=q+1

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ .

According to Schwarz’s lemma, there exists a constant C such that
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ < C|z − z0|.

Moreover, there exists a number N2 such that the following inequality

q∑

n=0

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ ≤ C |z − z0| k

q∑
n=0

|an|
k

(15)

< C |z − z0| k ε

3RC
= |z − z0| k ε

3R
.

holds as k > N2. It remains to estimate the sum

k∑

n=q+1

|an|
∣∣∣∣∣
Jµ

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ .

To this end, using asymptotic formula (6), we find consequently:

Jµ, m
n−2λ,λ(z0)− Jµ, m

n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

=
(z0)n(1 + θµ, m

n−2λ,λ(z0))− zn(1 + θµ, m
n−2λ,λ(z))

zn
0 (1 + θµ, m

n−2λ,λ(z0))

= 1−
(

z

z0

)n 1 + θµ, m
n−2λ,λ(z)

1 + θµ, m
n−2λ,λ(z0)

= 1−
(

z

z0

)n
[
1 +

θµ, m
n−2λ,λ(z)− θµ, m

n−2λ,λ(z0)

1 + θµ, m
n−2λ,λ(z0)

]

= 1−
(

z

z0

)n

−
(

z

z0

)n θµ, m
n−2λ,λ(z)− θµ, m

n−2λ,λ(z0)

1 + θµ, m
n−2λ,λ(z0)

.

Therefore, ∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ (16)
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≤
∣∣∣∣1−

(
z

z0

)n∣∣∣∣ +
∣∣∣∣
z

z0

∣∣∣∣
n

∣∣∣∣∣
θµ, m
n−2λ,λ(z)− θµ, m

n−2λ,λ(z0)

1 + θµ, m
n−2λ,λ(z0)

∣∣∣∣∣ .

We obtain the following inequalities
∣∣∣∣1−

(
z

z0

)n∣∣∣∣ =
∣∣∣∣1−

z

z0

∣∣∣∣
∣∣∣∣∣1 +

z

z0
+

(
z

z0

)2

+ · · ·+
(

z

z0

)n−1
∣∣∣∣∣ ≤ n

∣∣∣∣1−
z

z0

∣∣∣∣

for the first summand of (16). According to Schwarz’s lemma, there exists
a constant ρ such that

∣∣∣∣∣
θµ, m
n−2λ,λ(z)− θµ, m

n−2λ,λ(z0)

1 + θµ, m
n−2λ,λ(z0)

∣∣∣∣∣ ≤ 1 as |z − z0| < ρ.

Then, for such |z|, we obtain for the second summand of (16):

∣∣∣∣
z

z0

∣∣∣∣
n

∣∣∣∣∣
θµ, m
n−2λ,λ(z)− θµ, m

n−2λ,λ(z0)

1 + θµ, m
n−2λ,λ(z0)

∣∣∣∣∣ ≤
∣∣∣∣
z

z0

∣∣∣∣
n

|z − z0|.

From (12) it follows that

lim
n→∞ an = 0, lim

k→∞

k∑
n=1

n|an|
k

= 0, lim
k→∞

k∑
n=1

|an|
k

= 0.

Then a number N3 exists such that

k∑
n=q+1

n|an|

k
<

ε

3(1 + R)
and

k∑
n=q+1

|an|

k
<

ε

3(1 + R)
as k > N3.

Therefore,

k∑

n=q+1

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ ≤
k∑

n=q+1

n|an|
∣∣∣∣1−

z

z0

∣∣∣∣ (17)

+
k∑

n=q+1

|an|
∣∣∣∣
z

z0

∣∣∣∣
n

|z − z0| ≤ k
|z − z0|

R

k∑
n=q+1

n|an|

k
+ k |z − z0|

k∑
n=q+1

|an|

k

< k |z − z0| 1 + R

R

ε

3(1 + R)
= k |z − z0| ε

3R
.
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Finally, let us note that
∣∣∣∣∣

k∑

n=0

an − F (z)

∣∣∣∣∣ ≤
q∑

n=0

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣

+
k∑

n=q+1

|an|
∣∣∣∣∣
Jµ, m

n−2λ,λ(z0)− Jµ, m
n−2λ,λ(z)

Jµ, m
n−2λ,λ(z0)

∣∣∣∣∣ +
∞∑

n=k+1

|an|
∣∣J∗n,λ,µ,m(z; z0)

∣∣ .

Let N = max(N1, N2, N3), k > N and |z − z0| < ρ. Then by using (14),
(15), (17), we can conclude that

∣∣∣∣∣
k∑

n=0

an − F (z)

∣∣∣∣∣ < |z − z0| k ε

3R
+ k |z − z0| ε

3R
+

ε

3
1
k

|z0|
|z0| − |z|

=
ε

3

[
2k

R
|z − z0|+ 1

k

|z0|
|z0| − |z|

]
.

If we substitute z by z0(1− 1
k ), then

∣∣∣∣∣
k∑

n=0

an − F

(
z0(1− 1

k
)
)∣∣∣∣∣ <

ε

3
3 = ε.

This proves that lim
k→∞

k∑
n=0

an exists and equals lim
k→∞

F
(
z0(1− 1

k )
)
, i.e.

∞∑

n=0

an = lim
k→∞

F

(
z0(1− 1

k
)
)

= S.

Thus the theorem is proved.

6. Special cases

Obviously for m = 1, special function (1) turns into the generalization
of the Bessel function Jν(z), introduced by Pathak [11] (for details see [3],
p.353 and [4], eq.(8.2)):

Jµ, 1
ν, λ (z) = Jµ

ν, λ(z) = (z/2)ν+2λ
∞∑

k=0

(−1)k(z/2)2k

Γ(λ + k + 1)Γ(ν + kµ + λ + 1)
. (18)
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Then Theorem 1 gives the asymptotic formula, given in [9]. Theorems 2,
3, 4 provide analogues of the classical Cauchy-Hadamard, Abel and Tauber
theorems for the functions (18).

Fixing m = 1, for particular choices of the other parameters λ and µ we
obtain results for more special cases of series of the form (2).

i. Let λ = 0, then special functions (1), (18) give the generalization of
the Bessel-Clifford function Cν(z) = z−ν/2 Jν(2

√
z), introduced by E. M.

(Maitland) Wright [16], and called Wright function or Bessel-Maitland func-
tion (see Marichev [4], p.109; Kiryakova [3], p.336):

Jµ
ν (z) =

∞∑

k=0

(−z)k

k! Γ(ν + µk + 1)
, µ > −1. (19)

Namely,
Jµ,1

ν,0 (z) = (z/2)νJµ
ν (z2/4), (20)

therefore our results, for m = 1 and λ = 0, yield the corresponding theorems
from Paneva-Konovska [10]. Additionally, if µ = 1, then J1,1

ν,0 (z) = Jν(z)
and we get the theorems for convergence of series in Bessel functions, see
Paneva-Konovska [7], [8].

ii. Let now µ = 1, then (see Marichev [4], p.109; Kiryakova [3], p.336)

J1,1
ν,λ(z) =

22−2λ−ν

Γ(λ)Γ(λ + ν)
s2λ+ν−1, ν(z), (21)

where sα,ν(z), α, ν ∈ C denotes the Lommel function, [2, Vol.2, p.50,(69)]:

sα,ν(z) =
zα+1

(α− ν + 1)(α + ν + 1) 1F2

(
1;

α− ν + 3
2

;
α + ν + 3

2
;−z2

4

)
.

(22)
For ν = n + 1− 2λ, relation (21) becomes

J1,1
n+1−2λ,λ(z) =

21−n

Γ(λ)Γ(n + 1− λ)
sn,n+1−2λ(z),

and Theorems 2, 3, 4 provide, as special cases, results on the convergence
of series in Lommel functions (ãn := cnan):

∞∑

n=0

ãnJ1,1
n+1−2λ,λ(z) =

∞∑

n=0

ansn,n+1−2λ(z). (23)
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Additionally, let us take λ = 1/2, then we obtain the Struve functions
([2, Vol.2, p.51,(84)]):

Hn(z) =
21−ν

√
πΓ(ν + 1/2)

sν,ν(z) (24)

and our results turn into Cauchy-Hadamard, Abel and Tauber type theo-
rems for series in Struve functions (ãn := cna∗n = dnan):

∞∑

n=0

ãnJ1,1
n,1/2(z) =

∞∑

n=0

a∗nsn,n(z) =
∞∑

n=0

anHn(z). (25)
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[2] A. Erdélyi et al. (Ed-s), Higher Transcendental Functions, Vols. 1 – 3.
McGraw-Hill, New York-Toronto-London (1953).

[3] V. Kiryakova, Generalized Fractional Calculus and Applications. Long-
man & J. Wiley, Harlow and N. York (1994).

[4] O. I. Marichev, Method of Evaluation of Integrals of Special Functions
(In Russian). Nauka i Technika, Minsk (1978); Engl. translation: O.I.
Marichev, Handbook of Integral Transforms of Higher Transcendental
Functions: Theory and Algorithmic Tables. Ellis Horwood Ltd., N.
York etc.; Halsted Press (1983).

[5] A. Markushevich, Theory of Analytic Functions. Vol. 1, 2. Nauka,
Moscow (1967/68) (In Russian).

[6] M.B.M. de Oteiza, S. Kalla and S. Conde, Un estudio sobre la función
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