# INCLUSION PROPERTIES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS INVOLVING A FAMILY OF FRACTIONAL INTEGRAL OPERATORS 

Jugal Kishore Prajapat


#### Abstract

A known family of fractional integral operators is used here to define some new subclasses of analytic functions in the open unit disk $\mathbb{U}$. For each of these new function classes, several inclusion relationships are established.

2000 Math. Subject Classification: 30C45 Key Words and Phrases: classes of analytic functions, geometric function theory, fractional calculus integral operators, inclusion properties


## 1. Introduction and definitions

Let $\mathcal{A}$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C} ;|z|<1\}$. If $f \in \mathcal{A}$ is given by (1.1) and $g \in \mathcal{A}$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ in $z \in \mathbb{U}$, then the Hadamard product (or convolution) of $f$ and $g$ is defined by $(f * g)(z):=$ $z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$.

Let $P_{k}(\alpha)$ denote the class of functions $h(z)$ analytic in the unit disk $\mathbb{U}$ satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\Re\left(\frac{h(z)-\alpha}{1-\alpha}\right)\right| d \theta \leqq k \pi \quad\left(z=r e^{i \theta} ; 0 \leqq \alpha<1 ; k \geqq 2\right) . \tag{1.2}
\end{equation*}
$$

This class $P_{k}(\alpha)$ has been introduced in [6]. Note that for $\alpha=0$, we obtain the class $P_{k}$ defined and studied in [7] and for $k=2$, we have the class $P(\alpha)$ of functions with positive real part greater then $\alpha$. In particular, $P(0)$ is the class $P$ of functions with positive real part.

From (1.2), we can easily deduce that $h \in P_{k}(\alpha)$, if and only if

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z), \quad h_{1}, h_{2} \in P(\alpha) . \tag{1.3}
\end{equation*}
$$

Following a recent investigation by Noor [5], we define the following function classes:

$$
\begin{gather*}
R_{k}(\alpha)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\alpha), \quad z \in \mathbb{U}\right\},  \tag{1.4}\\
V_{k}(\alpha)=\left\{f \in \mathcal{A}: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\alpha), \quad z \in \mathbb{U}\right\},  \tag{1.5}\\
T_{k}(\beta, \alpha)=\left\{f \in \mathcal{A}: g \in R_{2}(\alpha) \text { and } \frac{z f^{\prime}(z)}{g(z)} \in P_{k}(\beta), \quad z \in \mathbb{U}\right\},  \tag{1.6}\\
T_{k}^{*}(\beta, \alpha)=\left\{f \in \mathcal{A}: g \in V_{2}(\alpha) \text { and } \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \in P_{k}(\beta), \quad z \in \mathbb{U}\right\} . \tag{1.7}
\end{gather*}
$$

We note that the class $R_{2}(\alpha)=\mathcal{S}^{*}(\alpha)$ and $V_{2}(\alpha)=\mathcal{K}(\alpha)$ are, respectively, the subclasses of $\mathcal{A}$ consisting of functions which are starlike of order $\alpha$ and convex of order $\alpha$ in $\mathbb{U}$. The class $T_{2}^{*}(\beta, \alpha)=C^{*}(\beta, \alpha)$ was considered by Noor [3] and $T_{2}^{*}(0,0)=C^{*}$ is the class of quasi-convex univalent functions which was first introduced and studied in [4]. It can be easily seen from the above definitions that

$$
\begin{equation*}
f(z) \in V_{k}(\alpha) \Longleftrightarrow z f^{\prime}(z) \in R_{k}(\alpha) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in T_{k}^{*}(\beta, \alpha) \Longleftrightarrow z f^{\prime}(z) \in T_{k}(\beta, \alpha) \tag{1.9}
\end{equation*}
$$

For $\lambda>0, \mu, \eta \in \mathbb{R}$ and $\min \{\lambda+\eta,-\mu+\eta,-\mu\}>-2$, Srivastava et al. [10] introduced a family of fractional integral operators

$$
J_{0, z}^{\lambda, \mu, \eta} f(z): \mathcal{A} \rightarrow \mathcal{A}
$$

defined by

$$
\begin{equation*}
J_{0, z}^{\lambda, \mu, \eta} f(z)=\frac{\Gamma(2-\mu) \Gamma(2+\lambda+\eta)}{\Gamma(2-\mu+\eta)} z^{\mu} I_{0, z}^{\lambda, \mu, \eta} f(z), \tag{1.10}
\end{equation*}
$$

where $I_{0, z}^{\lambda, \mu, \eta}$ is the hypergeometric fractional integral operator due to Saigo [9] (nowadays known as Saigo operator, see also details in [1]):

$$
\begin{equation*}
I_{0, z}^{\lambda, \mu, \eta} f(z)=\frac{z^{-\lambda-\mu}}{\Gamma(\lambda)} \int_{0}^{z}(z-t)^{\lambda-1}{ }_{2} F_{1}\left(\lambda+\mu,-\eta ; \lambda ; 1-\frac{t}{z}\right) f(t) d t . \tag{1.11}
\end{equation*}
$$

Here the ${ }_{2} F_{1}$-function in the kernel of (1.11) is the Gauss hypergeometric function, the function $f(z)$ is analytic in a simply-connected region of the complex $z$-plane containing the origin, with the order

$$
f(z)=O\left(|z|^{\varepsilon}\right) \quad(z \rightarrow 0 ; \varepsilon>\max \{0, \mu-\eta\}-1)
$$

and the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

If $f(z) \in \mathcal{A}$ is of the form (1.1), then fractional integral operator $J_{0, z}^{\lambda, \mu, \eta}$ has the form (see, [1, p.167, Eq.(25)]):

$$
\begin{equation*}
J_{0, z}^{\lambda, \mu, \eta} f(z)=z+\frac{\Gamma(2-\mu) \Gamma(2+\lambda+\eta)}{\Gamma(2-\mu+\eta)} \sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(n-\mu+\eta+1)}{\Gamma(n-\mu+1) \Gamma(n+\lambda+\eta+1)} a_{n} z^{n} . \tag{1.12}
\end{equation*}
$$

It is easily verified from (1.12) that

$$
\begin{equation*}
z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}=(\lambda+\eta+2) J_{0, z}^{\lambda, \mu, \eta} f(z)-(\lambda+\eta+1) J_{0, z}^{\lambda+1, \mu, \eta} f(z) . \tag{1.13}
\end{equation*}
$$

Let us note that the generalized fractional integral operator $J_{0, z}^{\lambda, \mu, \eta}$, contains such well known operators as the Riemann-Liouville fractional integral operator, the Srivastava-Owa fractional integral operator, the Multiplier transformation operator and the Bernardi-Libera-Livengston operator. One may refer to the papers [1] and [8] for further details and references on these operators.

Using the generalized fractional integral operator $J_{0, z}^{\lambda, \mu, \eta}$, we now define the following subclasses of $\mathcal{A}$ :

Definition 1. Let $f(z) \in \mathcal{A}$. Then $f(z) \in R^{\lambda, \mu, \eta}(k, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in R_{k}(\alpha)$, for $z \in \mathbb{U}$.

Definition 2. Let $f(z) \in \mathcal{A}$. Then $f(z) \in V^{\lambda, \mu, \eta}(k, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in V_{k}(\alpha)$, for $z \in \mathbb{U}$.

Definition 3. Let $f(z) \in \mathcal{A}$. Then $f(z) \in T^{\lambda, \mu, \eta}(k, \beta, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in T_{k}(\beta, \alpha)$, for $z \in \mathbb{U}$.

Definition 4. Let $f(z) \in \mathcal{A}$. Then $f(z) \in T_{*}^{\lambda, \mu, \eta}(k, \beta, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in T_{k}^{*}(\beta, \alpha)$, for $z \in \mathbb{U}$.

In this paper we establish some inclusion relationships for the abovementioned function classes.

## 2. Main inclusion relationships

We recall first the following necessary lemma.
Lemma 1. (see [2]) Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\phi$ be a complex valued function satisfying the following conditions:
(i) $\phi(u, v)$ is continuous in a domain $\mathbb{D} \subset \mathbb{C}^{2}$,
(ii) $(1,0) \in \mathbb{D}$ and $\phi(1,0)>0$,
(iii) $\Re\left(\phi\left(i u_{2}, v_{1}\right)\right) \leqq 0$, whenever $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$ and $v_{1} \leqq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{m=2}^{\infty} b_{m} z^{m}$, is a function analytic in $\mathbb{U}$ such that $(h(z)$, $\left.z h^{\prime}(z)\right) \in \mathbb{D}$ and $\Re\left(\phi\left(h(z), z h^{\prime}(z)\right)\right)>0$ for $z \in \mathbb{U}$, then $\Re(h(z))>0$ for $z \in \mathbb{U}$.

Our first main inclusion relationship is given by the theorem below.
Theorem 1. Let $f \in \mathcal{A}, \lambda>0, \lambda+\eta>-1$ and $\min \{\lambda+\eta,-\mu+$ $\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
R^{\lambda, \mu, \eta}(k, 0) \subset R^{\lambda+1, \mu, \eta}(k, \alpha) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{2}{(\beta+3)+\sqrt{\beta^{2}+6 \beta+17}} \quad \text { with } \quad \beta=2(\lambda+\eta) \tag{2.2}
\end{equation*}
$$

Proof. Let $f \in R^{\lambda, \mu, \eta}(k, 0)$. Then, by setting

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)(z \in \mathbb{U}) \tag{2.3}
\end{equation*}
$$

we see that the function $p(z)$ is analytic in $\mathbb{U}$, with $p(0)=1$ in $z \in \mathbb{U}$. Using identity (1.13) in (2.3) and differentiating with respect to $z$, we get

$$
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} f(z)}=\left(p(z)+\frac{z p^{\prime}(z)}{\lambda+\eta+1+p(z)}\right) \in P_{k} \quad(z \in \mathbb{U})
$$

Let

$$
\phi(z)=\sum_{j=1}^{\infty} \frac{\lambda+\eta+1+j}{\lambda+\eta+2} z^{j}
$$

then

$$
\begin{aligned}
p(z) * \frac{\phi(z)}{z} & =p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\eta+1} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(p_{1}(z) * \frac{\phi(z)}{z}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(p_{2}(z) * \frac{\phi(z)}{z}\right)
\end{aligned}
$$

and this implies that

$$
\begin{equation*}
\left(p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{p_{i}(z)+\lambda+\eta+1}\right) \in P \quad(z \in \mathbb{U} ; i=1,2) \tag{2.4}
\end{equation*}
$$

We want to show that $p_{i}(z) \in P(\alpha)$, where $\alpha$ is given by (2.2) and this will show that $p(z) \in P_{k}(\alpha)$ for $z \in \mathbb{U}$. Let

$$
\begin{equation*}
p_{i}(z)=(1-\alpha) h_{i}(z)+\alpha \quad(z \in \mathbb{U} ; i=1,2) . \tag{2.5}
\end{equation*}
$$

Then in view of (2.4) and (2.5), we obtain for $z \in \mathbb{U}, i=1,2$ :

$$
\begin{equation*}
\Re\left((1-\alpha) h_{i}(z)+\alpha+\frac{(1-\alpha) z h_{i}^{\prime}(z)}{(1-\alpha) z h_{i}(z)+\alpha+\lambda+\eta+1}\right)>0 . \tag{2.6}
\end{equation*}
$$

We now form a function $\phi(u, v)$ by choosing $u=h_{i}(z)$ and $v=z h_{1}^{\prime}(z)$ in (2.6). Thus

$$
\begin{equation*}
\phi(u, v)=(1-\alpha) u+\alpha+\frac{(1-\alpha) v}{(1-\alpha) u+\alpha+\lambda+\eta+1} \tag{2.7}
\end{equation*}
$$

We can easily see that the first two conditions of Lemma 1, are easily satisfied as $\phi(u, v)$ is continuous in $\mathbb{D}=\mathbb{C}-\left(-\frac{\alpha+\lambda+\eta+1}{1-\alpha}\right) \times \mathbb{C},(1,0) \in \mathbb{D}$ and $\Re(\phi(1,0))>0$. Now for $v_{1} \leqq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we obtain

$$
\begin{aligned}
& \Re\left(\phi\left(i u_{2}, v_{1}\right)\right)=\alpha+\frac{(1-\alpha)(\alpha+\lambda+\eta+1) v_{1}}{(\alpha+\lambda+\eta+1)^{2}+(1-\alpha)^{2} u_{2}^{2}} \\
& \leqq \alpha-\frac{1}{2} \frac{(1-\alpha)(\alpha+\lambda+\eta+1)\left(1+u_{2}^{2}\right)}{(\alpha+\lambda+\eta+1)^{2}+(1-\alpha)^{2} u_{2}^{2}}=\frac{A+B u_{2}^{2}}{2 C}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=(\alpha+\lambda+\eta+1)[2 \alpha(\alpha+\lambda+\eta+1)-(1-\alpha)], \\
& B=(1-\alpha)[2 \alpha(1-\alpha)-(\alpha+\lambda+\eta+1)], \\
& C=(\alpha+\lambda+\eta+1)^{2}+(1-\alpha)^{2} u_{2}^{2}>0 .
\end{aligned}
$$

We note that $\Re\left(\phi\left(i u_{2}, v_{1}\right)\right) \leqq 0$ if and only if, $A \leqq 0$ and $B \leqq 0$. From $A \leqq 0$, we obtain $\alpha$ as given by (2.1) and $B \leqq 0$ gives us $0 \leqq \alpha<1$. This completes the proof of Theorem 1.

Theorem 2. Let $f \in \mathcal{A}, \lambda>0, \lambda+\eta>-1$ and $\min \{\lambda+\eta,-\mu+$ $\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
V^{\lambda, \mu, \eta}(k, 0) \subset V^{\lambda, \mu, \eta}(k, \alpha), \tag{2.8}
\end{equation*}
$$

where $\alpha$ is given by (2.2).

Proof. To prove the inclusion relationship, we observe (in view of Theorem 1) that

$$
\begin{aligned}
f(z) \in V^{\lambda, \mu, \eta}(k, 0) & \Longleftrightarrow z f^{\prime}(z) \in R^{\lambda, \mu, \eta}(k, 0) \\
& \Longleftrightarrow z f^{\prime}(z) \in R^{\lambda+1, \mu, \eta}(k, \alpha) \\
& \Longleftrightarrow f(z) \in V^{\lambda+1, \mu, \eta}(k, \alpha),
\end{aligned}
$$

which establishes Theorem 2.
Theorem 3. Let $f \in \mathcal{A}, \lambda>0, \lambda+\eta>-1$ and $\min \{\lambda+\eta,-\mu+$ $\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
T^{\lambda, \mu, \eta}(k, \beta, 0) \subset T^{\lambda+1, \mu, \eta}(k, \gamma, \alpha), \tag{2.9}
\end{equation*}
$$

where $\alpha$ is given by (2.2) and $\gamma \leqq \beta$ is defined in the proof.
Proof. Let $f(z) \in T^{\lambda, \mu, \eta}(k, \beta, 0)$. Then there exists $g(z) \in R^{\lambda, \mu, \eta}(2,0)$ such that

$$
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} g(z)} \in P_{k}(\beta) \quad(z \in \mathbb{U} ; 0 \leqq \beta<1) .
$$

Let

$$
\begin{align*}
& \frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} g(z)}=(1-\gamma) p(z)+\gamma \\
& \quad=\left(\frac{k}{4}+\frac{1}{2}\right)\left[(1-\gamma) p_{1}(z)+\gamma\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[(1-\gamma) p_{2}(z)+\gamma\right], \tag{2.10}
\end{align*}
$$

where $p(z)$ is analytic in $\mathbb{U}$, with $p(0)=1$. Using the identity (1.13) in (2.10), and after some computation, we obtain

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} g(z)}=[(1-\gamma) p(z)+\gamma]+\frac{(1-\gamma) z p^{\prime}(z)}{\lambda+\eta+2} \frac{J_{0, z}^{\lambda+1, \mu, \eta} g(z)}{J_{0, z}^{\lambda, \mu, \eta} g(z)} . \tag{2.11}
\end{equation*}
$$

Since $g(z) \in R^{\lambda, \mu, \eta}(2,0)$, by Theorem 1 we know that $g(z) \in R^{\lambda+1, \mu, \eta}(2, \alpha)$, where $\alpha$ is given by (2.2). Hance there exists an analytic function $q(z)$ with $q(0)=1$, such that

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} g(z)}=(1-\alpha) q(z)+\alpha \quad(z \in \mathbb{U}) . \tag{2.12}
\end{equation*}
$$

Then, by using identity (1.13) once again for the function $g(z)$ in (2.12) and using (2.11) therein, we get

$$
\begin{align*}
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} g(z)}-\beta & =(1-\gamma) p(z)+(\gamma-\beta)+\frac{(1-\gamma) z p^{\prime}(z)}{(1-\alpha) q(z)+\alpha+\lambda+\eta+1} \\
& \in P_{k} . \tag{2.13}
\end{align*}
$$

We form a function $\phi(u, v)$ by taking $u=p_{i}(z), v=z p_{i}^{\prime}(z)$ in (2.13) as

$$
\begin{equation*}
\phi(u, v)=(1-\gamma) u+(\gamma-\beta)+\frac{(1-\gamma) v}{(1-\alpha) q(z)+\alpha+\lambda+\eta+1} . \tag{2.14}
\end{equation*}
$$

It can be easily seen that the function $\phi(u, v)$ defined by (2.14) satisfies the conditions (i) and (ii) of Lemma 1 . We verify the condition (iii) as follows:

$$
\begin{aligned}
\Re\left(\phi\left(i u_{2}, v_{1}\right)\right) & =\gamma-\beta+\frac{(1-\gamma)\left[(1-\alpha) q_{1}+\alpha+\lambda+\eta+1\right] v_{1}}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\eta+1\right]^{2}+(1-\alpha)^{2} q_{2}^{2}} \\
& \leqq \gamma-\beta-\frac{1}{2} \frac{(1-\gamma)[(1-\alpha)+\alpha+\lambda+\eta+1]\left(1+u_{2}^{2}\right)}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\eta+1\right]^{2}+(1-\alpha)^{2} q_{2}^{2}} \\
& \leqq 0 \quad \text { for } \quad \gamma \leqq \beta<1 .
\end{aligned}
$$

Therefore applying Lemma $1, p_{i} \in P, i=1,2$, and consequently $p \in P_{k}$ and thus $f \in T^{\lambda+1, \mu, \eta}(k, \beta, \alpha)$.

Using the same techniques and relation (1.9) with Theorem 3, we have the following

Theorem 4. Let $f \in \mathcal{A}, \lambda>0, \lambda+\eta>-1$ and $\min \{\lambda+\eta,-\mu+$ $\eta,-\mu\}>-2$. Then

$$
T_{*}^{\lambda, \mu, \eta}(k, \beta, 0) \subset T_{*}^{\lambda+1, \mu, \eta}(k, \gamma, \alpha),
$$

where $\gamma$ and $\alpha$ are as in Theorem 3.
Remark. Upon setting $\mu=0$ and $\eta=\delta-1$, Theorems 1 to 4 would yield the corresponding known results due to Noor [5]. Furthermore, for different choices of $k, \lambda, \mu$ and $\eta$, we can obtain several interesting special cases of Theorems 1 to 4 .

Acknowledgement. The author would like to express his gratitude to the anonymous referee and to the Managing Editor of FCAA, Virginia Kiryakova for their helpful suggestions.

## References

[1] V. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 9, No 2 (2006), 159176.
[2] S. S. Miller, Differential inequalities and caratheordary functions. Bull. Amer. Math. Soc. 81 (1975), 79-81.
[3] K.I. Noor, On quasi convex functions and related topics. Int. J. Math. Math. Sci. 10 (1987), 241-258.
[4] K.I. Noor, On close-to-convex and related functions. Ph. D. Thesis, University of Wales, U.K. (1972).
[5] K.I. Noor, On analytic function related to certain family of integral operators. J. Inequal. Pure and Appl. Math. 7, No 2 (2006), Article 69, 1-6 (Electronic).
[6] K.S. Padamanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 31 (1975), 311-323.
[7] B. Pinchuk, Functions with bounded boundary rotation. Israel J. Math. 10 (1971), 7-16.
[8] J.K. Prajapat, R.K. Raina and H.M. Srivastava, Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integr. Transf. Spec. Funct. 18, No 9 (2007), 639-651.
[9] M. Saigo, A remark on integral operators involving Gauss hypergeometric functions. Math. Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.
[10] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 131 (1988), 412-420.

Department of Mathematics
Sobhasaria Engineering College
NH_11, Gokulpura, Sikar
332001-Rajasthan, INDIA
e-mail: jkp_0007@rediffmail.com

Revised: January 11, 2008

