

THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL INTEGRALS, ASSOCIATED WITH THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR *)

Akif D. Gadjiev ¹, Vagif S. Guliyev ²

Abstract

In this paper we study the Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator $\Delta_B = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2} + \frac{\gamma}{x_n} \frac{\partial}{\partial x_n}$, $\gamma > 0$, in the weighted Lebesgue spaces $L_{p,|x|\beta,\gamma}$. We establish an inequality of Stein-Weiss type for the B-Riesz potentials, and obtain necessary and sufficient conditions on the parameters for the boundedness of the B-Riesz potential operator from the spaces $L_{p,|x|\beta,\gamma}$ to $L_{q,|x|^\lambda,\gamma}$, and from the spaces $L_{1,|x|^\beta,\gamma}$ to the weak spaces $WL_{q,|x|^\lambda,\gamma}$.

2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35

 $Key\ Words\ and\ Phrases$: Laplace-Bessel differential operator, generalized shift operator, B-Riesz potential, Stein-Weiss type inequality, weighted Lebesque space

0. Introduction

The classical Riesz potential is an important technical tool in harmonic analysis, theory of functions and partial differential equations. The potential and related topics associated with the Laplace-Bessel differential operator

^{*)}Akif Gadjiev's research is partially supported by the grant of INTAS (project 06-1000017-8792) and Vagif Guliyev's research is partially supported by the grant of the Azerbaijan–U.S. Bilateral Grants Program II (project ANSF Award / 16071) and by the grant of INTAS (project 05-1000008-8157)

$$\Delta_B = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2} + \frac{\gamma}{x_n} \frac{\partial}{\partial x_n}, \quad \gamma > 0$$

have been the research areas many mathematicians such as B. Muckenhoupt and E. Stein [7], I. Kipriyanov [8], L. Lyakhov [10], K. Stempak [12], A.D. Gadjiev and I.A. Aliev [1], V.S. Guliyev [2]-[4], and others.

In this paper we study Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator Δ_B in weighted Lebesque spaces. We establish an inequality of Stein-Weiss type (see [11]) for the B-Riesz potentials. We obtain the necessary and sufficient conditions on the parameters for boundedness of the B-Riesz potential operator from the spaces $L_{p,|x|^\beta,\gamma}$ to $L_{q,|x|^\lambda,\gamma}$, and from the spaces $L_{1,|x|^\beta,\gamma}$ to the weak spaces $WL_{q,|x|^\lambda,\gamma}$.

1. Definitions, notation and preliminaries

Let $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x = (x_1, ..., x_n), x_n > 0\}$ and $B(x,r) = \{y \in \mathbb{R}^n_+ : |x-y| < r, r > 0\}$, $B_r \equiv B(0,r)$, and let ${}^{\complement}B(x,r) = \mathbb{R}^n_+ \setminus B(x,r)$. For a measurable set $A \subset \mathbb{R}^n_+$ let $|A|_{\gamma} = \int_A x_n^{\gamma} dx$, then $|B_r|_{\gamma} = \omega(n,\gamma)r^{n+\gamma}$, where

$$\omega(n,\gamma) = \int_{B_1} x_n^{\gamma} dx = \frac{\pi^{(n-1)/2} \Gamma((\gamma+1)/2)}{2\Gamma((n+\gamma-2)/2)}.$$

Denote by T^y the generalized shift operator (B –shift operator) acting according to the law

$$T^{y}f(x) = C_{\gamma} \int_{0}^{\pi} f\left(x' - y', (x_n, y_n)_{\beta}\right) \sin^{\gamma - 1} \beta d\beta,$$

where
$$(x_n, y_n)_{\beta} = \sqrt{x_n^2 + y_n^2 - 2x_n y_n \cos \beta}$$
 and $C_{\gamma} = \frac{\Gamma((\gamma+1)/2)}{\sqrt{\pi}\Gamma(\gamma/2)} = \frac{2}{\pi} \omega(2, \gamma)$.

We note that the generalized shift operator T^y is closely connected with the Laplace-Bessel differential operator Δ_B (for example, n=1 see [9] and n>1 [8] for details).

Let $L_{p,\gamma}(\mathbb{R}^n_+)$ be the space of measurable functions on \mathbb{R}^n_+ with finite norm

$$||f||_{L_{p,\gamma}} = ||f||_{L_{p,\gamma}(\mathbb{R}^n_+)} = \left(\int_{\mathbb{R}^n_+} |f(x)|^p x_n^{\gamma} dx\right)^{1/p}, \quad 1 \le p < \infty.$$

For $p = \infty$ the space $L_{\infty,\gamma}(\mathbb{R}_+^n)$ is defined by means of the usual modification

$$||f||_{L_{\infty,\gamma}} = ||f||_{L_{\infty}} = \underset{x \in \mathbb{R}_{1}^{n}}{ess \, sup \, |f(x)|}.$$

THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL ... 79

The translation operator T^y generates the corresponding B -convolution

$$(f \otimes g)(x) = \int_{\mathbb{R}^n_+} f(y) T^y g(x) y_n^{\gamma} dy,$$

for which the Young inequality holds:

$$||f \otimes g||_{L_{r,\gamma}} \le ||f||_{L_{p,\gamma}} ||g||_{L_{q,\gamma}}, \quad 1 \le p, q, r \le \infty, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1.$$

Lemma 1. Let $0 < \alpha < n + \gamma$. Then

$$\left|T^{y}|x|^{\alpha-n-\gamma} - |y|^{\alpha-n-\gamma}\right| \le 2^{n+\gamma+1-\alpha}|y|^{\alpha-n-\gamma-1}|x| \tag{1}$$

for $2|x| \le |y|$.

Proof. We will show that

$$|T^{y}|x|^{\alpha-n-\gamma} - |y|^{\alpha-n-\gamma}|$$

$$\leq C_{\gamma} \int_{0}^{\pi} \left| \left| \left(x' - y', (x_{n}, y_{n})_{\beta} \right) \right|^{\alpha-n-\gamma} - |y|^{\alpha-n-\gamma} \right| \sin^{\gamma-1} \beta d\beta.$$

From the mean value theorem we have

$$\left| \left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right|^{\alpha - n - \gamma} - |y|^{\alpha - n - \gamma} \right|$$

$$\leq \left| \left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right| - |y| \left| \xi^{\alpha - n - \gamma - 1},$$

where $\min\{\left|\left(x'-y',(x_n,y_n)_{\beta}\right)\right|,\left|y\right|\} \le \xi \le \max\{\left|\left(x'-y',(x_n,y_n)_{\beta}\right)\right|,\left|y\right|\}$. Note that

$$\left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right| \le |x| + |y| \le \frac{3}{2} |y|,$$

 $\left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right| \ge |x - y| \ge |y| - |x| \ge \frac{1}{2} |y|$

and

$$\left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right| - |y| \le |x| + |y| - |y| \le |x| |y| - \left| \left(x' - y', (x_n, y_n)_{\beta} \right) \right| \le |y| - |x - y| \le |x|.$$

Hence

$$\frac{1}{2}|y| \le |(x'-y',(x_n,y_n)_{\beta})| \le \frac{3}{2}|y|$$
, and $||(x'-y',(x_n,y_n)_{\beta})| - |y|| \le |x|$.

DEFINITION 1. Let $1 \leq p < \infty$. We denote by $WL_{p,\gamma}(\mathbb{R}^n_+)$ the weak $L_{p,\gamma}$ space defined as the set of locally integrable functions f with the finite norms

$$||f||_{WL_{p,\gamma}} = \sup_{r>0} r f_{*,\gamma}^{1/p}(r),$$

where
$$f_{*,\gamma}(r) = \left| \left\{ x \in \mathbb{R}^n_+ : |f(x)| > r \right\} \right|_{\gamma}$$
.

Let v be non-negative and measurable function on \mathbb{R}^n_+ , and $L_{p,v,\gamma}(\mathbb{R}^n_+)$ be the weighted $L_{p,\gamma}$ -space of all measurable functions f on \mathbb{R}^n_+ for which

$$||f||_{L_{p,v,\gamma}} \equiv ||f||_{L_{p,v,\gamma}(\mathbb{R}^n_+)} = ||vf||_{L_{p,\gamma}(\mathbb{R}^n_+)} < \infty.$$

We denote by $WL_{p,v,\gamma}(\mathbb{R}^n_+)$ ($1 \leq p < \infty$) the weighted weak Lebesgue space which is the class of all measurable functions $f: \mathbb{R}^n_+ \to \mathbb{R}$, for which

$$||f||_{WL_{p,v,\gamma}} \equiv ||f||_{WL_{p,v,\gamma}(\mathbb{R}^n_+)} = ||vf||_{WL_{p,\gamma}(\mathbb{R}^n_+)} < \infty.$$

We shall need the following Hardy-type transforms defined on \mathbb{R}^n_+ :

$$H_{\gamma}f(x)=\int_{B_{|x|}}f(y)y_n^{\gamma}dy\quad,\quad H_{\gamma}'f(x)=\int_{\complement_{B_{|x|}}}f(y)y_n^{\gamma}dy.$$

The following two theorems for these transformations were proved in [5] (see also [6], Section 1.1).

THEOREM A. Let $1 < q < \infty$. Suppose that v and w are a.e. positive functions on \mathbb{R}^n_+ . Then:

(a) The operator H_{γ} is bounded from $L_{1,w,\gamma}(\mathbb{R}^n_+)$ to $WL_{q,v,\gamma}(\mathbb{R}^n_+)$ if and only if

$$A_1 \equiv \sup_{t>0} \left(\int_{\mathfrak{g}_{B_t}} v^q(x) x_n^{\gamma} dx \right)^{1/q} \sup_{B_t} w^{-1}(x) < \infty,$$

(b) The operator H'_{γ} is bounded from $L_{1,w,\gamma}(\mathbb{R}^n_+)$ to $WL_{q,v,\gamma}(\mathbb{R}^n_+)$ if and only if

$$A_2 \equiv \sup_{t>0} \left(\int_{B_t} v^q(x) x_n^{\gamma} dx \right)^{1/q} \sup_{\mathfrak{g}_{B_t}} w^{-1}(x) < \infty.$$

Moreover, there exist positive constants a_j , $j=1,\ldots,4$, depending only on q such that $a_1A_1 \leq ||H|| \leq a_2A_1$ and $a_3A_2 \leq ||H'|| \leq a_4A_2$.

Theorem B. Let 1 . Suppose that <math>v and w are a.e. positive functions on \mathbb{R}^n_+ . Then:

(a) The operator H_{γ} is bounded from $L_{p,w,\gamma}(\mathbb{R}^n_+)$ to $L_{q,v,\gamma}(\mathbb{R}^n_+)$ if and only if

$$A_3 \equiv \sup_{t>0} \left(\int_{\mathbb{G}_{B_t}} v^q(x) x_n^{\gamma} dx \right)^{1/q} \left(\int_{B_t} w^{-p'}(x) x_n^{\gamma} dx \right)^{1/p'} < \infty, \ p' = p/(p-1),$$

(b) The operator H'_{γ} is bounded from $L_{p,w,\gamma}(\mathbb{R}^n_+)$ to $L_{q,v,\gamma}(\mathbb{R}^n_+)$ if and only if

$$A_4 \equiv \sup_{t>0} \left(\int_{B_t} v^q(x) x_n^\gamma dx \right)^{1/q} \left(\int_{\mathbb{G}_{B_t}} w^{-p'}(x) x_n^\gamma dx \right)^{1/p'} < \infty.$$

Moreover, there exist positive constants b_j , j = 1, ..., 4, depending only on p and q such that $b_1A_3 \leq ||H|| \leq b_2A_3$ and $b_3A_4 \leq ||H'|| \leq$ b_4A_4 .

We will need the case when we substitute $L_{p,\nu,\gamma}(\mathbb{R}^n_+)$ by the homogeneous space (X, ρ, μ) , $X = \mathbb{R}^n_+$, $\rho(x-y) = |x-y|$, $d\mu(x) = x_n^{\gamma} dx$ in Theorems A and B.

Consider the B-Riesz potential

$$I_{\alpha,\gamma}f(x) = \int_{\mathbb{R}^n_+} T^y |x|^{\alpha - n - \gamma} f(y) y_n^{\gamma} dy, \quad 0 < \alpha < n + \gamma.$$

For the B-Riesz potential the following Hardy-Littlewood-Sobolev theorem is valid.

THEOREM 1. ([1]) Let $0 < \alpha < n + \gamma$ and $1 \le p < \frac{n+\gamma}{\alpha}$.

- 1) If $1 , then condition <math>\frac{1}{p} \frac{1}{q} = \frac{\alpha}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{p,\gamma}(\mathbb{R}^n_+)$ to $L_{q,\gamma}(\mathbb{R}^n_+)$.

 2) If p=1, then condition $1-\frac{1}{q}=\frac{\alpha}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{1,\gamma}(\mathbb{R}^n_+)$ to $WL_{q,\gamma}(\mathbb{R}^n_+)$.

2. Main results

One of the our main results is the following Stein-Weiss type theorem for the B-Riesz potentials.

Theorem 2. Let $0 < \alpha < n + \gamma$, $1 , <math>\beta < \frac{n+\gamma}{p'}$, $\lambda < \frac{n+\gamma}{q} , \ \beta + \lambda \geq 0 \ (\beta + \lambda > 0 , \text{ if } \ p = q), \ \frac{1}{p} - \frac{1}{q} = \frac{\alpha - \beta - \lambda}{n+\gamma} \text{ and } \ f \in L_{p,|x|\beta,\gamma}(\mathbb{R}^n_+) \ . \ \text{Then } \ I_{\alpha,\gamma}f \in L_{q,|x|-\lambda,\gamma}(\mathbb{R}^n_+) \ \text{and the following inequality}$

$$\left(\int_{\mathbb{R}^{n}_{+}} |x|^{-\lambda q} |I_{\alpha,\gamma} f(x)|^{q} x_{n}^{\gamma} dx \right)^{1/q} \le C \left(\int_{\mathbb{R}^{n}_{+}} |x|^{\beta p} |f(x)|^{p} x_{n}^{\gamma} dx \right)^{1/p}, \quad (2)$$

where C is independent of f.

Proof. We have

$$\begin{split} \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left|I_{\alpha,\gamma} f(x)\right|^q x_n^{\gamma} dx\right)^{1/q} \\ & \leq \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left(\int_{B_{|x|/2}} |f(y)| \; T^y |x|^{\alpha-n-\gamma} y_n^{\gamma} dy\right)^q x_n^{\gamma} dx\right)^{1/q} \\ & + \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left(\int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| \; T^y |x|^{\alpha-n-\gamma} y_n^{\gamma} dy\right)^q x_n^{\gamma} dx\right)^{1/q} \\ & + \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left(\int_{\mathbb{C}_{B_{2|x|}}} |f(y)| \; T^y |x|^{\alpha-n-\gamma} y_n^{\gamma} dy\right)^q x_n^{\gamma} dx\right)^{1/q} \equiv I_1 + I_2 + I_3. \end{split}$$

It is easy to verify that if |y| < |x|/2, then $|x| \le |y| + |x-y| < |x|/2 + |x-y|$. Hence |x|/2 < |x-y| and $T^y |x|^{\alpha - n - \gamma} \le (|x|/2)^{\alpha - n - \gamma}$. Consequently,

$$I_1 \le 2^{n+\gamma-\alpha} \left(\int_{\mathbb{R}^n_+} |x|^{(\alpha-n-\gamma-\lambda)q} \left(H_{\gamma} f(x) \right)^q x_n^{\gamma} dx \right)^{1/q}.$$

Further, taking into account the inequality $-\lambda q < (n+\gamma-\alpha)q - n - \gamma$ $(\equiv \alpha < \frac{n+\gamma}{q'} + \lambda)$ we have $\left(\int_{\mathfrak{g}_{R}} |x|^{(-\lambda+\alpha-n-\gamma)q} x_n^{\gamma} dx\right)^{1/q} = C_1 t^{\alpha-\lambda-(n+\gamma)/q'},$

$$\left(\int_{\mathfrak{g}_{B_t}} |x|^{C(X+\alpha^{-1})/4} x_n^{-1} dx\right) = C_1 t^{\alpha^{-1}/4}$$

where $C_1 = \left(\frac{\omega(n,\gamma)}{q/q' + (\lambda - \alpha)q/(n+\gamma)}\right)^{1/q}$. Analogously, by virtue of the condition $\beta p < (n+\gamma)(p-1)$ ($\equiv \beta <$ $\frac{n+\gamma}{n'}$), it follows that

$$\left(\int_{B_t} |x|^{-\beta p'} x_n^{\gamma} dx\right)^{1/p'} = C_2 t^{(n+\gamma)/p'-\beta},$$

where $C_2 = \left(\frac{\omega(n,\gamma)}{1-\beta p'/(n+\gamma)}\right)^{1/p'}$

Summarizing these estimates, we find that

$$\sup_{t>0} \left(\int_{\mathfrak{g}_{B_t}} |x|^{(-\lambda+\alpha-n-\gamma)q} x_n^{\gamma} dx \right)^{1/q} \left(\int_{B_t} |x|^{-\beta p'} x_n^{\gamma} dx \right)^{1/p'}$$

$$= C_1 C_2 \sup_{t>0} t^{\alpha-\beta-\lambda+\frac{n+\gamma}{q}-\frac{n+\gamma}{p}} < \infty \Longleftrightarrow \alpha - \beta - \lambda = \frac{n+\gamma}{p} - \frac{n+\gamma}{q}.$$

Now the first part of Theorem A leads us to the inequality

$$I_1 \le b_2 C_1 C_2 2^{n+\gamma-\alpha} \left(\int_{\mathbb{R}^n_+} |x|^{\beta} |f(x)|^p x_n^{\gamma} dx \right)^{1/p}$$

It is easy to verify that if |y|>2|x|, then $|y|\leq |x|+|x-y|<|y|/2+|x-y|$. Hence |y|/2<|x-y| and $T^y|x|^{\alpha-n-\gamma}\leq (|y|/2)^{\alpha-n-\gamma}$. Consequently,

$$I_3 \le 2^{n+\gamma-\alpha} \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left(H'_{\gamma} \left(|f(y)||y|^{\alpha-n-\gamma} \right) (x) \right)^q x_n^{\gamma} dx \right)^{1/q}.$$

Further, taking into account the inequality $-\lambda q > -n - \gamma$ ($\equiv \lambda < \frac{n+\gamma}{q}$), we have

 $\left(\int_{B_t} |x|^{-\lambda q} x_n^{\gamma} dx\right)^{1/q} = C_3 t^{(n+\gamma)/q - \lambda},$

where $C_3 = \left(\frac{\omega(n,\gamma)}{1-\lambda q/(n+\gamma)}\right)^{1/q}$. Analogously, by virtue of the condition $\beta p > \alpha p - n - \gamma$ ($\equiv \alpha < \frac{n+\gamma}{p} + \beta$), it follows that

$$\left(\int_{B_t} |x|^{-(\beta+n+\gamma-\alpha)p'} x_n^{\gamma} dx\right)^{1/p'} = C_4 t^{(n+\gamma)/p'-(n+\gamma+\beta-\alpha)},$$

where
$$C_4 = \left(\frac{\omega(n,\gamma)}{(1+(\beta-\alpha)/(n+\gamma))p'-1}\right)^{1/p'}$$

Summarizing these estimates, we find that

$$\begin{split} \sup_{t>0} \left(\int_{B_t} |x|^{-\lambda q} x_n^{\gamma} dx \right)^{1/q} \left(\int_{\mathbb{C}_{B_t}} |x|^{-(\beta+n+\gamma-\alpha)p'} x_n^{\gamma} dx \right)^{1/p'} \\ &= C_3 C_4 \sup_{t>0} t^{\alpha-\beta-\lambda+\frac{n+\gamma}{q}-\frac{n+\gamma}{p}} < \infty \Longleftrightarrow \alpha-\beta-\lambda = \frac{n+\gamma}{p} - \frac{n+\gamma}{q}. \end{split}$$

Now the second part of Theorem B leads us to the inequality

$$I_3 \le b_4 C_3 C_4 2^{n+\gamma-\alpha} \left(\int_{\mathbb{R}^n_+} |x|^{\beta} |f(x)|^p x_n^{\gamma} dx \right)^{1/p}.$$

To estimate I_2 , we consider the cases $\alpha < \frac{n+\gamma}{p}$ and $\alpha > \frac{n+\gamma}{p}$ separately.

Let $\alpha < \frac{n+\gamma}{p}$. In this case the condition $\alpha = \beta + \lambda + \frac{n+\gamma}{p} - \frac{n+\gamma}{q} \ge \frac{n+\gamma}{p} - \frac{n+\gamma}{q}$ implies $q \le p^*$, where $p^* = (n+\gamma)p/(n+\gamma-\alpha p)$.

First, assume that $q < p^*$. In the sequel we use the notation

$$D_k \equiv \{x \in \mathbb{R}^n_+ : 2^k \le |x| < 2^{k+1}\} \ , \ \widetilde{D_k} \equiv \{x \in \mathbb{R}^n_+ : 2^{k-2} \le |x| < 2^{k+2}\}.$$

By Hölder's inequality with respect to the exponent $\frac{p^*}{q}$ and Theorem 1, we find that

$$\begin{split} I_2 &= \left(\int_{\mathbb{R}^n_+} |x|^{-\lambda q} \left(\int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| \ T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy \right)^q x_n^{\gamma} dx \right)^{1/q} \\ &= \left(\sum_{k \in \mathbb{Z}} \int_{D_k} |x|^{-\lambda q} \left(\int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| \ T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy \right)^q x_n^{\gamma} dx \right)^{1/q} \\ &\leq \left(\sum_{k \in \mathbb{Z}} \left(\int_{D_k} \left(\int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| \ T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy \right)^{p^*} x_n^{\gamma} dx \right)^{q/p^*} \\ &\qquad \times \left(\int_{D_k} |x|^{\frac{-\lambda q p^*}{p^* - q}} x_n^{\gamma} dx \right)^{\frac{p^* - q}{p^*}} \right)^{1/q} \\ &\leq C_5 \left(\sum_{k \in \mathbb{Z}} 2^{k[-\lambda q + \frac{p^* - q}{p^*} (n + \gamma)]} \left(\int_{D_k} \left| I_{\alpha, \gamma} \left(f \chi_{\widetilde{D_k}} \right) (x) \right|^{p^*} x_n^{\gamma} dx \right)^{q/p^*} \right)^{1/q} \\ &\leq C_6 \left(\sum_{k \in \mathbb{Z}} 2^{k[-\lambda q + \frac{p^* - q}{p^*} (n + \gamma)]} \left(\int_{\widetilde{D_k}} |f(x)|^p x_n^{\gamma} dx \right)^{q/p} \right)^{1/q} \\ &\leq C_7 \left(\int_{\mathbb{R}^n_+} |x|^{\beta} |f(x)|^p x_n^{\gamma} dx \right)^{1/p}. \end{split}$$

If $q=p^*$, then $\,\beta+\lambda=0\,$ and consequently, using directly Theorem 1 we have

$$I_{2} \leq C_{8} \left(\sum_{k \in \mathbb{Z}} 2^{k\beta p^{*}} \int_{D_{k}} \left| I_{\alpha,\gamma} \left(f \chi_{\widetilde{D_{k}}} \right) (x) \right|^{p^{*}} x_{n}^{\gamma} dx \right)^{1/p^{*}}$$

$$\leq C_{9} \left(\sum_{k \in \mathbb{Z}} 2^{k\beta p^{*}} \left(\int_{\widetilde{D_{k}}} |f(x)|^{p} x_{n}^{\gamma} dx \right)^{p^{*}/p} \right)^{1/p^{*}}$$

$$\leq C_{10} \left(\int_{\mathbb{R}^{n}_{+}} |x|^{\beta p} |f(x)|^{p} x_{n}^{\gamma} dx \right)^{1/p} .$$

Now let $\alpha > \frac{n+\gamma}{p}$. In this case by Hölder's inequality with respect to the exponent p we get the following estimate

$$I_{2} \leq \left(\int_{\mathbb{R}^{n}_{+}} |x|^{-\lambda q} \left(\int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)|^{p} y_{n}^{\gamma} dy \right)^{q/p} \times \left(\int_{B_{2|x|} \backslash B_{|x|/2}} \left(T^{y} |x|^{\alpha - n - \gamma} \right)^{p'} y_{n}^{\gamma} dy \right)^{q/p'} x_{n}^{\gamma} dx \right)^{1/q}.$$

On the other hand, using (2) and the inequality $~\alpha>\frac{n+\gamma}{p}$, we find that

$$\int_{B_{2|x|}\backslash B_{|x|/2}} \left(T^{y}|x|^{\alpha-n-\gamma}\right)^{p'} y_{n}^{\gamma} dy \leq \int_{B_{2|x|}\backslash B_{|x|/2}} |x-y|^{(\alpha-n-\gamma)p'} y_{n}^{\gamma} dy$$

$$\leq \int_{0}^{\infty} \left|B_{2|x|} \cap E(x, \tau^{\frac{1}{(\alpha-n-\gamma)p'}})\right|_{\gamma} d\tau$$

$$\leq \int_{0}^{|x|^{(\alpha-n-\gamma)p'}} \left|B_{2|x|}\right|_{\gamma} d\tau + \int_{|x|^{(\alpha-n-\gamma)p'}}^{\infty} \left|E(x, \tau^{\frac{1}{(\alpha-n-\gamma)p'}})\right|_{\gamma} d\tau$$

$$\leq C_{11}|x|^{(\alpha-n-\gamma)p'+n+\gamma} + C_{12} \int_{|x|^{(\alpha-n-\gamma)p'}}^{\infty} \tau^{\frac{1}{(\alpha-n-\gamma)p'}} d\tau = C_{13}|x|^{(\alpha-n-\gamma)p'+n+\gamma},$$

where the positive constant $\,C_{13}\,$ does not depend on $\,x\,$. The latter estimate yields

$$C_{14} \left(\sum_{k \in \mathbb{Z}} \int_{D_{k}} |x|^{-\lambda q + [(\alpha - n - \gamma)p' + n + \gamma] \frac{q}{p'}} \left(\int_{B_{2|x|} \setminus B_{|x|/2}} |f(y)|^{p} y_{n}^{\gamma} dy \right)^{q/p} x_{n}^{\gamma} dx \right)^{1/q}$$

$$\leq C_{14} \left(\sum_{k \in \mathbb{Z}} \int_{D_{k}} \left(\int_{\widetilde{D_{k}}} |f(y)|^{p} y_{n}^{\gamma} dy \right)^{q/p} |x|^{-\lambda q + [(\alpha - n - \gamma)p' + n + \gamma] \frac{q}{p'}} x_{n}^{\gamma} dx \right)^{1/q}$$

$$\leq C_{14} \left(\sum_{k \in \mathbb{Z}} 2^{k(-\lambda + \alpha - n - \gamma + \frac{n + \gamma}{p'} + \frac{n + \gamma}{q})q} \left(\int_{\widetilde{D_{k}}} |f(y)|^{p} y_{n}^{\gamma} dy \right)^{q/p} \right)^{1/q}$$

$$\leq C_{14} \left(\sum_{k \in \mathbb{Z}} 2^{k\beta q} \left(\int_{\widetilde{D_{k}}} |f(x)|^{p} x_{n}^{\gamma} dx \right)^{q/p} \right)^{1/q} \leq C_{15} \left(\int_{\mathbb{R}_{+}^{n}} |x|^{\beta p} |f(x)|^{p} x_{n}^{\gamma} dx \right)^{q/p}.$$

Thus Theorem 2 is completely proved.

To obtain the general result on the boundedness of the B-potentials $I_{\alpha,\gamma}$ we need the following weak weighted estimate.

Theorem 3. Let $0<\alpha< n+\gamma$, $1< q<\infty$, $\beta\leq 0$, $\lambda<\frac{n+\gamma}{q}$, $\beta+\lambda\geq 0$ $1-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ and $f\in L_{1,|x|^\beta,\gamma}(\mathbb{R}^n_+)$. Then $I_{\alpha,\gamma}f\in WL_{q,|x|^{-\lambda},\gamma}(\mathbb{R}^n_+)$ and the following inequality holds

$$\left(\int_{\{x\in\mathbb{R}^n_+:|x|^{-\lambda}|I_{\alpha,\gamma}f(x)|>\tau\}} x_n^{\gamma}dx\right)^{1/q} \le \frac{C}{\tau} \int_{\mathbb{R}^n_+} |x|^{\beta}|f(x)|x_n^{\gamma}dx, \qquad (3)$$

where C is independent of f.

Proof. We have

$$\begin{split} \left(\int_{\{x \in \mathbb{R}^n_+: \, |x|^{-\lambda} | I_{\alpha,\gamma} f(x)| > \tau\}} x_n^{\gamma} dx \right)^{1/q} \\ & \leq \left(\int_{\{x \in \mathbb{R}^n_+: \, |x|^{-\lambda} \int_{B_{|x|/2}} |f(y)| \, T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy > \tau/3\}} x_n^{\gamma} dx \right)^{1/q} \\ & + \left(\int_{\{x \in \mathbb{R}^n_+: \, |x|^{-\lambda} \int_{B_{2|x|} \setminus B_{|x|/2}} |f(y)| \, T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy > \tau/3\}} x_n^{\gamma} dx \right)^{1/q} \\ & + \left(\int_{\{x \in \mathbb{R}^n_+: \, |x|^{-\lambda} \int_{\mathbb{C}_{B_{2|x|}}} |f(y)| \, T^y |x|^{\alpha - n - \gamma} y_n^{\gamma} dy > \tau/3\}} x_n^{\gamma} dx \right)^{1/q} \equiv J_1 + J_2 + J_3. \end{split}$$

Then

$$J_1 \le \left(\int_{\{x \in \mathbb{R}^n_+: \, 2^{n+\gamma-\alpha} |x|^{\alpha-n-\gamma-\lambda} H_\gamma f(x) > \tau/3\}} x_n^{\gamma} dx \right)^{1/q}.$$

Further, taking into account the inequality $-\lambda q < (n+\gamma-\alpha)q-n-\gamma$ ($\equiv \alpha < n+\gamma-\frac{n+\gamma}{q}+\lambda$) we have

$$\begin{split} \int_{\mathbb{G}_{B_t}} |x|^{(-\lambda+\alpha-n-\gamma)q} x_n^{\gamma} dx \\ &= \int_{S_+^{n-1}} \int_t^{\infty} r^{(-\lambda+\alpha-n-\gamma)q+n+\gamma-1} \xi_n^{\gamma} d\xi dr = C_{16} t^{(-\lambda+\alpha-n-\gamma)q+n+\gamma}, \end{split}$$

where the positive constant C_{16} depends only on α , λ and q. Analogously by virtue of the condition $\beta \leq 0$ it follows that

$$\sup_{B_t} |x|^{-\beta} = t^{-\beta}.$$

Summarizing these estimates we find that

$$\sup_{t>0} \left(\int_{\mathbb{G}_{B_t}} |x|^{(-\lambda+\alpha-n-\gamma)q} x_n^{\gamma} dx \right)^{1/q} \sup_{B_t} |x|^{-\beta}$$

$$= C_{16} \sup_{t>0} t^{\frac{n+\gamma}{q} - \lambda + \alpha - n - \gamma - \beta} < \infty \Longleftrightarrow \alpha - \beta - \lambda = n + \gamma - \frac{n+\gamma}{q}.$$

Now in the case p = 1 the first part of Theorem A leads us to the inequality

$$J_1 \le \frac{C_{17}}{\tau} \int_{\mathbb{R}^n_+} |x|^{\beta} |f(x)|^p x_n^{\gamma} dx,$$

where the positive constant C_{17} is independent of f.

Also,

$$J_3 \le \left(\int_{\{x \in \mathbb{R}^n_+: 2^{n+\gamma-\alpha} |x|^{-\lambda} H'_{\gamma}(|f(y)||y|^{\alpha-n-\gamma})(x) > \tau/3\}} x_n^{\gamma} dx \right)^{1/q}.$$

Further, taking into account the inequality $-\lambda q > -n - \gamma$ ($\equiv \lambda < \frac{n+\gamma}{q}$) we have

$$\int_{B_t} |x|^{-\lambda q} x_n^{\gamma} dx = \int_{S_n^{n-1}} \int_0^t r^{-\lambda q + n + \gamma - 1} \xi_n^{\gamma} d\xi dr = C_{18} t^{-\lambda q + n + \gamma},$$

where the positive constant C_{18} depends only on α and λ . Analogously by virtue of the condition $\beta \geq \alpha - n - \gamma$ it follows that

$$\sup_{\mathbb{C}_{R_{\epsilon}}}|x|^{-\beta+\alpha-n-\gamma}=t^{-\beta+\alpha-n-\gamma}.$$

Summarizing these estimates, we find that

$$\sup_{t>0} \left(\int_{B_t} |x|^{-\lambda q} x_n^{\gamma} dx \right)^{1/q} \sup_{\mathfrak{C}_{B_t}} |x|^{-\beta + \alpha - n - \gamma}$$

$$= C_{18} \sup_{t>0} t^{\frac{n+\gamma}{q} - \lambda + \alpha - n - \gamma - \beta} < \infty \Longleftrightarrow \alpha - \beta - \lambda = n + \gamma - \frac{n+\gamma}{q}.$$

Now in the case p=1 the second part of Theorem A leads us to the inequality

$$J_3 \le \frac{C_{19}}{\tau} \int_{\mathbb{R}^n} |x|^{\beta} |f(x)| x_n^{\gamma} dx,$$

where the positive constant C_{19} is independent of f.

We now, we estimate J_2 .

From $\beta + \lambda \ge 0$ and Theorem 1 we get

$$J_{2} = \left(\sum_{k \in \mathbb{Z}} \int_{\{x \in D_{k}: |x|^{-\lambda} \int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| \ T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} dy > \tau/3\}} x_{n}^{\gamma} dx\right)^{1/q}$$

$$\leq \left(\sum_{k \in \mathbb{Z}} \int_{\{x \in D_{k}: \int_{B_{2|x|} \backslash B_{|x|/2}} |f(y)| |y|^{\beta} \ T^{y}|x|^{\alpha-\beta-\lambda-n-\gamma} y_{n}^{\gamma} dy > c\tau\}} x_{n}^{\gamma} dx\right)^{1/q}$$

$$\leq \left(\sum_{k \in \mathbb{Z}} \int_{\{x \in D_{k}: \left|I_{\alpha-\beta-\lambda,\gamma} \left(f(\cdot)| \cdot |^{\beta} \chi_{\widetilde{D_{k}}}\right)(x)\right| > c\tau\}} x_{n}^{\gamma} dx\right)^{1/q}$$

$$\leq \left(\sum_{k \in \mathbb{Z}} \left(\frac{C_{20}}{\tau} \int_{\widetilde{D_{k}}} |f(x)| |x|^{\beta} x_{n}^{\gamma} dx\right)^{q}\right)^{1/q} \leq \left(\frac{C_{21}}{\tau} \int_{\mathbb{R}^{n}_{+}} |x|^{\beta} |f(x)| x_{n}^{\gamma} dx\right)^{1/q}.$$

From Theorems 2 and 3 we get the following

Theorem 4. Let $0 < \alpha < n + \gamma$, $1 \le p \le q < \infty$, $\beta < \frac{n + \gamma}{p'}$ ($\beta \le 0$, if p=1), $\lambda < \frac{n+\gamma}{q}$ ($\lambda \le 0$, if $q=\infty$), $\alpha \ge \beta + \lambda \ge 0$ ($\beta + \lambda > 0$, if

- 1) If $1 , then condition <math>\frac{1}{p} \frac{1}{q} = \frac{\alpha-\beta-\lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{p,|x|\beta,\gamma}(\mathbb{R}^n_+)$ to $L_{q,|x|-\lambda,\gamma}(\mathbb{R}^n_+)$.

 2) If p=1, then condition $1-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{1,|x|\beta,\gamma}(\mathbb{R}^n_+)$ to $WL_{q,|x|-\lambda,\gamma}(\mathbb{R}^n_+)$.

Proof. Sufficiency of Theorem 4 follows from Theorems 2 and 3.

Necessity. 1) Suppose that the operator $I_{\alpha,\gamma}$ is bounded from $L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ to $L_{q,|x|^{-\lambda},\gamma}(\mathbb{R}^n_+)$ and 1 .

Define $f_t(x) =: f(tx)$ for t > 0. Then it can be easily shown that

$$||f_t||_{L_{p,|x|^{\beta},\gamma}} = t^{-\frac{n+\gamma}{p}-\beta} ||f||_{L_{p,|x|^{\beta},\gamma}}, \quad (I_{\alpha,\gamma}f_t)(x) = t^{-\alpha}I_{\alpha,\gamma}f(tx),$$

and

$$\|I_{\alpha,\gamma}f_t\|_{L_{q,|x|-\lambda,\gamma}} = t^{-\alpha - \frac{n+\gamma}{q} + \lambda} \|I_{\alpha,\gamma}f\|_{L_{q,|x|-\lambda,\gamma}}.$$

Since the operator $I_{\alpha,\gamma}$ is bounded from $L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ to $L_{q,|x|^{-\lambda},\gamma}(\mathbb{R}^n_+)$, we have

$$||I_{\alpha,\gamma}f||_{L_{q,|x|-\lambda,\gamma}} \le C||f||_{L_{p,|x|^{\beta},\gamma}},$$

where C is independent of f . Then we get

THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL ... 89

$$\begin{split} & \|I_{\alpha,\gamma}f\|_{L_{q,|x|-\lambda,\gamma}} = t^{\alpha+\frac{n+\gamma}{q}-\lambda} \|I_{\alpha,\gamma}f_t\|_{L_{q,|x|-\lambda,\gamma}} \\ & \leq Ct^{\alpha+\frac{n+\gamma}{q}-\lambda} \|f_t\|_{L_{p,|x|^{\beta},\gamma}} = Ct^{\alpha+\frac{n+\gamma}{q}-\lambda-\frac{n+\gamma}{p}-\beta} \|f\|_{L_{p,|x|^{\beta},\gamma}}. \end{split}$$

If $\frac{1}{p} - \frac{1}{q} < \frac{\alpha - \beta - \lambda}{n + \gamma}$, then for all $f \in L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ we have $\|I_{\alpha,\gamma}f\|_{L_{q,|x|^{-\lambda},\gamma}} = 0$ as $t \to 0$.

If $\frac{1}{p} - \frac{1}{q} > \frac{\alpha - \beta - \lambda}{n + \gamma}$, then for all $f \in L_{p,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ we have $\|I_{\alpha,\gamma}f\|_{L_{q,|x|^{-\lambda},\gamma}} = 0$ as $t \to \infty$.

Therefore we get the equality $\ \frac{1}{p} - \frac{1}{q} = \frac{\alpha - \beta - \lambda}{n + \gamma}$.

2) Suppose that the operator $I_{\alpha,\gamma}$ is bounded from $L_{1,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ to $WL_{\alpha,|x|^{-\lambda},\gamma}(\mathbb{R}^n_+)$. It is easy to show that

$$\|f_t\|_{L_{1,|x|^{\beta},\gamma}} = t^{-n-\gamma-\beta} \, \|f\|_{L_{1,|x|^{\beta},\gamma}} \quad , \quad (I_{\alpha,\gamma}f_t)(x) = t^{-\alpha}(I_{\alpha,\gamma}f)(tx),$$

and

$$\|I_{\alpha,\gamma}f_t\|_{WL_{q,|x|-\lambda,\gamma}} = t^{-\alpha - \frac{n+\gamma}{q} + \lambda} \|I_{\alpha,\gamma}f\|_{WL_{q,|x|-\lambda,\gamma}}.$$

By the boundedness of $I_{\alpha,\gamma}$ from $L_{1,|x|^{\beta},\gamma}(\mathbb{R}^n_+)$ to $WL_{q,|x|^{-\lambda},\gamma}(\mathbb{R}^n_+)$, we have

$$||I_{\alpha,\gamma}f||_{WL_{q,|x|-\lambda,\gamma}} \le C||f||_{L_{1,|x|^{\beta},\gamma}},$$

where C is independent of f. Then we have

$$(I_{\alpha,\gamma}f_t)_{*,\gamma}(\tau) = t^{-n-\gamma}(I_{\alpha,\gamma}f)_{*,\gamma}(t^{\alpha}\tau),$$

$$\left\|I_{\alpha,\gamma}f_{t}\right\|_{WL_{q,|x|-\lambda,\gamma}}=t^{-\alpha-\frac{n+\gamma}{q}+\lambda}\left\|I_{\alpha,\gamma}f\right\|_{WL_{q,|x|-\lambda,\gamma}},$$

and

$$\begin{split} & \|I_{\alpha,\gamma}f\|_{WL_{q,|x|-\lambda,\gamma}} = t^{\alpha+\frac{n+\gamma}{q}-\lambda} \|I_{\alpha,\gamma}f_t\|_{WL_{q,|x|-\lambda,\gamma}} \\ & \leq Ct^{\alpha+\frac{n+\gamma}{q}-\lambda} \|f_t\|_{L_{1,|x|^\beta,\gamma}} = Ct^{\alpha+\frac{n+\gamma}{q}-\lambda-n-\gamma-\beta} \|f\|_{L_{1,|x|^\beta,\gamma}}. \end{split}$$

If $1-\frac{1}{q}<\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f\in L_{1,|x|^\beta,\gamma}$ we have $\|I_{\alpha,\gamma}f\|_{WL_{q,|x|^{-\lambda},\gamma}}=0$ as $t\to 0$.

If $1-\frac{1}{q}>\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f\in L_{1,|x|^{\beta},\gamma}$ we have $\|I_{\alpha,\gamma}f\|_{WL_{q,|x|^{-\lambda},\gamma}}=0$ as $t\to\infty$.

Therefore we get the equality $1 - \frac{1}{q} = \frac{\alpha - \beta - \lambda}{n + \gamma}$. Thus Theorem 4 is proved.

References

- [1] A.D. Gadjiev, I.A. Aliev, On classes of operators of potential types, generated by a generalized shift. Reports of Enlarged Session of the Seminars of I.N. Vekua Inst. of Applied Mathematics, Tbilisi 3, No 2 (1988), 21-24 (In Russian).
- [2] V.S. Guliyev, Sobolev theorems for B-Riesz potentials. Dokl. RAN **358**, No 4 (1998), 450-451 (In Russian).
- [3] V.S. Guliyev, Some properties of the anisotropic Riesz-Bessel potential. *Analysis Mathematica* **26**, No 2 (2000), 99-118.
- [4] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator. *Mathematical Inequalities and Applications* **6**, No 2 (2003), 317-330.
- [5] D.E. Edmunds, V.M. Kokilashvili, A. Meskhi, Boundedness and compactness of Hardy-type operators on Banach function spaces defined on measure space. *Proc. A. Razmadze Math. Inst.* **117** (1998), 7-30.
- [6] D.E. Edmunds, V.M. Kokilashvili and A. Meskhi, *Bounded and Compact Contegral Operators*. Kluwer, Dordrecht (2002).
- [7] B. Muckenhoupt B. and E.M. Stein, Classical expansions and their relation to conjugate harmonic functions. *Translation Amer. Math. Soc.* **118** (1965), 17-92.
- [8] I.A. Kiprijanov, Fourier-Bessel transformations and imbedding theorems. *Trudy Math. Inst. Steklov* **89** (1967), 130-213.
- [9] B.M. Levitan, Bessel function expansions in series and Fourier integrals. *Uspekhi Mat. Nauk* 6 (1951), No. 2 (42), 102-143 (In Russian).
- [10] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel Transformation. Proc. V.A. Steklov Inst. Math. 214 (1997), 234-249.
- [11] E.M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean spaces. J. Math. Mech. 7, No 4 (1958), 503 514.
- [12] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform. Math. Institute of Wroslaw (Poland), *Preprint No. 45* (1985).

Received: December 10, 2007

1,2 Dept. of Mathematical Analysis
 Institute of Mathematics and Mechanics of NAS of Azerbaijan
 9, F. Agayev str., AZ 1141 - Baku, AZERBAIJAN
 e-mails: ¹ akif_gadjiev@mail.az , ² vagif@guliyev.com
 ² Baku State University. Dept. of Mathematical Analysis

23, Akad. Z. Khalilov str., AZ 1141 – Baku, AZERBAIJAN