# THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL INTEGRALS, ASSOCIATED WITH THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR *) 

Akif D. Gadjiev ${ }^{1}$, Vagif S. Guliyev ${ }^{2}$


#### Abstract

In this paper we study the Riesz potentials ( $B$-Riesz potentials) generated by the Laplace-Bessel differential operator $\Delta_{B}=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\gamma}{x_{n}} \frac{\partial}{\partial x_{n}}$, $\gamma>0$, in the weighted Lebesgue spaces $L_{p,|x|^{\beta}, \gamma}$. We establish an inequality of Stein-Weiss type for the $B$-Riesz potentials, and obtain necessary and sufficient conditions on the parameters for the boundedness of the $B$ Riesz potential operator from the spaces $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{\lambda}, \gamma}$, and from the spaces $L_{1,|x|^{\beta}, \gamma}$ to the weak spaces $W L_{q,|x|^{\lambda}, \gamma}$.

2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35 Key Words and Phrases: Laplace-Bessel differential operator, generalized shift operator, $B$-Riesz potential, Stein-Weiss type inequality, weighted Lebesque space

\section*{0. Introduction}

The classical Riesz potential is an important technical tool in harmonic analysis, theory of functions and partial differential equations. The potential and related topics associated with the Laplace-Bessel differential operator


[^0]$$
\Delta_{B}=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\gamma}{x_{n}} \frac{\partial}{\partial x_{n}}, \quad \gamma>0
$$
have been the research areas many mathematicians such as B. Muckenhoupt and E. Stein [7], I. Kipriyanov [8], L. Lyakhov [10], K. Stempak [12], A.D. Gadjiev and I.A. Aliev [1], V.S. Guliyev [2]-[4], and others.

In this paper we study Riesz potentials ( $B$-Riesz potentials) generated by the Laplace-Bessel differential operator $\Delta_{B}$ in weighted Lebesque spaces. We establish an inequality of Stein-Weiss type (see [11]) for the $B$-Riesz potentials. We obtain the necessary and sufficient conditions on the parameters for boundedness of the $B$-Riesz potential operator from the spaces $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{\lambda}, \gamma}$, and from the spaces $L_{1,|x|^{\beta}, \gamma}$ to the weak spaces $W L_{q,|x| \lambda, \gamma}$.

## 1. Definitions, notation and preliminaries

Let $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x=\left(x_{1}, \ldots, x_{n}\right), x_{n}>0\right\}$ and $B(x, r)=\{y \in$ $\left.\mathbb{R}_{+}^{n}:|x-y|<r, r>0\right\}, B_{r} \equiv B(0, r)$, and let ${ }^{\complement} B(x, r)=\mathbb{R}_{+}^{n} \backslash B(x, r)$.

For a measurable set $A \subset \mathbb{R}_{+}^{n}$ let $|A|_{\gamma}=\int_{A} x_{n}^{\gamma} d x$, then $\left|B_{r}\right|_{\gamma}=$ $\omega(n, \gamma) r^{n+\gamma}$, where

$$
\omega(n, \gamma)=\int_{B_{1}} x_{n}^{\gamma} d x=\frac{\pi^{(n-1) / 2} \Gamma((\gamma+1) / 2)}{2 \Gamma((n+\gamma-2) / 2)}
$$

Denote by $T^{y}$ the generalized shift operator ( $B$-shift operator) acting according to the law

$$
T^{y} f(x)=C_{\gamma} \int_{0}^{\pi} f\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right) \sin ^{\gamma-1} \beta d \beta
$$

where $\left(x_{n}, y_{n}\right)_{\beta}=\sqrt{x_{n}^{2}+y_{n}^{2}-2 x_{n} y_{n} \cos \beta}$ and $C_{\gamma}=\frac{\Gamma((\gamma+1) / 2)}{\sqrt{\pi \Gamma(\gamma / 2)}}=\frac{2}{\pi} \omega(2, \gamma)$.
We note that the generalized shift operator $T^{y}$ is closely connected with the Laplace-Bessel differential operator $\Delta_{B}$ (for example, $n=1$ see [9] and $n>1$ [8] for details).

Let $L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ be the space of measurable functions on $\mathbb{R}_{+}^{n}$ with finite norm

$$
\|f\|_{L_{p, \gamma}}=\|f\|_{L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)}=\left(\int_{\mathbb{R}_{+}^{n}}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p}, \quad 1 \leq p<\infty
$$

For $p=\infty$ the space $L_{\infty, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ is defined by means of the usual modification

$$
\|f\|_{L_{\infty, \gamma}}=\|f\|_{L_{\infty}}=\underset{x \in \mathbb{R}_{+}^{n}}{\operatorname{ess} \sup }|f(x)| .
$$

The translation operator $T^{y}$ generates the corresponding $B$-convolution

$$
(f \otimes g)(x)=\int_{\mathbb{R}_{+}^{n}} f(y) T^{y} g(x) y_{n}^{\gamma} d y
$$

for which the Young inequality holds:

$$
\|f \otimes g\|_{L_{r, \gamma}} \leq\|f\|_{L_{p, \gamma}}\|g\|_{L_{q, \gamma}}, \quad 1 \leq p, q, r \leq \infty, \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1 .
$$

Lemma 1. Let $0<\alpha<n+\gamma$. Then

$$
\begin{equation*}
\left.\left|T^{y}\right| x\right|^{\alpha-n-\gamma}-\left.|y|^{\alpha-n-\gamma}\left|\leq 2^{n+\gamma+1-\alpha}\right| y\right|^{\alpha-n-\gamma-1}|x| \tag{1}
\end{equation*}
$$

for $2|x| \leq|y|$.
Proof. We will show that

$$
\begin{gathered}
\left.\left|T^{y}\right| x\right|^{\alpha-n-\gamma}-|y|^{\alpha-n-\gamma} \mid \\
\leq\left. C_{\gamma} \int_{0}^{\pi}| |\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right|^{\alpha-n-\gamma}-|y|^{\alpha-n-\gamma} \mid \sin ^{\gamma-1} \beta d \beta .
\end{gathered}
$$

From the mean value theorem we have
where $\min \left\{\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right|,|y|\right\} \leq \xi \leq \max \left\{\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right|,|y|\right\}$.
Note that

$$
\begin{gathered}
\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right| \leq|x|+|y| \leq \frac{3}{2}|y| \\
\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right| \geq|x-y| \geq|y|-|x| \geq \frac{1}{2}|y|
\end{gathered}
$$

and

$$
\begin{aligned}
& \left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right|-|y| \leq|x|+|y|-|y| \leq|x| \\
& |y|-\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right| \leq|y|-|x-y| \leq|x| .
\end{aligned}
$$

Hence

$$
\frac{1}{2}|y| \leq\left|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)\right| \leq \frac{3}{2}|y|, \text { and } \|\left(x^{\prime}-y^{\prime},\left(x_{n}, y_{n}\right)_{\beta}\right)|-|y|| \leq|x| .
$$

Definition 1. Let $1 \leq p<\infty$. We denote by $W L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ the weak $L_{p, \gamma}$ space defined as the set of locally integrable functions $f$ with the finite norms

$$
\|f\|_{W L_{p, \gamma}}=\sup _{r>0} r f_{*, \gamma}^{1 / p}(r)
$$

where $f_{*, \gamma}(r)=\left|\left\{x \in \mathbb{R}_{+}^{n}:|f(x)|>r\right\}\right|_{\gamma}$.
Let $v$ be non-negative and measurable function on $\mathbb{R}_{+}^{n}$, and $L_{p, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ be the weighted $L_{p, \gamma}$-space of all measurable functions $f$ on $\mathbb{R}_{+}^{n}$ for which

$$
\|f\|_{L_{p, v, \gamma}} \equiv\|f\|_{L_{p, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)}=\|v f\|_{L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)}<\infty .
$$

We denote by $W L_{p, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)(1 \leq p<\infty)$ the weighted weak Lebesgue space which is the class of all measurable functions $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, for which

$$
\|f\|_{W L_{p, v, \gamma}} \equiv\|f\|_{W L_{p, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)}=\|v f\|_{W L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)}<\infty
$$

We shall need the following Hardy-type transforms defined on $\mathbb{R}_{+}^{n}$ :

$$
H_{\gamma} f(x)=\int_{B_{|x|}} f(y) y_{n}^{\gamma} d y \quad, \quad H_{\gamma}^{\prime} f(x)=\int_{\mathfrak{c}_{B_{|x|}}} f(y) y_{n}^{\gamma} d y
$$

The following two theorems for these transformations were proved in [5] (see also [6], Section 1.1).

Theorem A. Let $1<q<\infty$. Suppose that $v$ and $w$ are a.e. positive functions on $\mathbb{R}_{+}^{n}$. Then:
(a) The operator $H_{\gamma}$ is bounded from $L_{1, w, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ if and only if

$$
A_{1} \equiv \sup _{t>0}\left(\int_{\mathrm{c}_{B_{t}}} v^{q}(x) x_{n}^{\gamma} d x\right)^{1 / q} \sup _{B_{t}} w^{-1}(x)<\infty
$$

(b) The operator $H_{\gamma}^{\prime}$ is bounded from $L_{1, w, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ if and only if

$$
A_{2} \equiv \sup _{t>0}\left(\int_{B_{t}} v^{q}(x) x_{n}^{\gamma} d x\right)^{1 / q} \sup _{\mathrm{C}_{B_{t}}} w^{-1}(x)<\infty
$$

Moreover, there exist positive constants $a_{j}, j=1, \ldots, 4$, depending only on $q$ such that $a_{1} A_{1} \leq\|H\| \leq a_{2} A_{1}$ and $a_{3} A_{2} \leq\left\|H^{\prime}\right\| \leq a_{4} A_{2}$.

Theorem B. Let $1<p \leq q<\infty$. Suppose that $v$ and $w$ are a.e. positive functions on $\mathbb{R}_{+}^{n}$. Then:
(a) The operator $H_{\gamma}$ is bounded from $L_{p, w, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ if and only if
$A_{3} \equiv \sup _{t>0}\left(\int_{\mathrm{c}_{B_{t}}} v^{q}(x) x_{n}^{\gamma} d x\right)^{1 / q}\left(\int_{B_{t}} w^{-p^{\prime}}(x) x_{n}^{\gamma} d x\right)^{1 / p^{\prime}}<\infty, p^{\prime}=p /(p-1)$,
(b) The operator $H_{\gamma}^{\prime}$ is bounded from $L_{p, w, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ if and only if

$$
A_{4} \equiv \sup _{t>0}\left(\int_{B_{t}} v^{q}(x) x_{n}^{\gamma} d x\right)^{1 / q}\left(\int_{\mathrm{c}_{B_{t}}} w^{-p^{\prime}}(x) x_{n}^{\gamma} d x\right)^{1 / p^{\prime}}<\infty .
$$

Moreover, there exist positive constants $b_{j}, j=1, \ldots, 4$, depending only on $p$ and $q$ such that $b_{1} A_{3} \leq\|H\| \leq b_{2} A_{3}$ and $b_{3} A_{4} \leq\left\|H^{\prime}\right\| \leq$ $b_{4} A_{4}$.

We will need the case when we substitute $L_{p, v, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ by the homogeneous space $(X, \rho, \mu), X=\mathbb{R}_{+}^{n}, \rho(x-y)=|x-y|, d \mu(x)=x_{n}^{\gamma} d x$ in Theorems A and B.

Consider the $B$-Riesz potential

$$
I_{\alpha, \gamma} f(x)=\int_{\mathbb{R}_{+}^{n}} T^{y}|x|^{\alpha-n-\gamma} f(y) y_{n}^{\gamma} d y, \quad 0<\alpha<n+\gamma
$$

For the $B$-Riesz potential the following Hardy-Littlewood-Sobolev theorem is valid.

Theorem 1. ([1]) Let $0<\alpha<n+\gamma$ and $1 \leq p<\frac{n+\gamma}{\alpha}$.

1) If $1<p<\frac{n+\gamma}{\alpha}$, then condition $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q, \gamma}\left(\mathbb{R}_{+}^{n}\right)$.
2) If $p=1$, then condition $1-\frac{1}{q}=\frac{\alpha}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{1, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q, \gamma}\left(\mathbb{R}_{+}^{n}\right)$.

## 2. Main results

One of the our main results is the following Stein-Weiss type theorem for the $B$-Riesz potentials.

Theorem 2. Let $0<\alpha<n+\gamma, 1<p \leq q<\infty, \beta<\frac{n+\gamma}{p^{\prime}}$, $\lambda<\frac{n+\gamma}{q}, \beta+\lambda \geq 0(\beta+\lambda>0$, if $p=q), \frac{1}{p}-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ and $f \in$ $L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$. Then $I_{\alpha, \gamma} f \in L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ and the following inequality holds:

$$
\begin{equation*}
\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left|I_{\alpha, \gamma} f(x)\right|^{q} x_{n}^{\gamma} d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}_{+}^{n}}|x|^{\beta p}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p} \tag{2}
\end{equation*}
$$

where $C$ is independent of $f$.

Proof. We have

$$
\begin{aligned}
& \left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left|I_{\alpha, \gamma} f(x)\right|^{q} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \quad \leq\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left(\int_{B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \quad+\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q} \\
& +\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left(\int_{\mathfrak{c}_{B_{2|x|}}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q} \equiv I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

It is easy to verify that if $|y|<|x| / 2$, then $|x| \leq|y|+|x-y|<$ $|x| / 2+|x-y|$. Hence $|x| / 2<|x-y|$ and $T^{y}|x|^{\alpha-n-\gamma} \leq(|x| / 2)^{\alpha-n-\gamma}$. Consequently,

$$
I_{1} \leq 2^{n+\gamma-\alpha}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{(\alpha-n-\gamma-\lambda) q}\left(H_{\gamma} f(x)\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q<(n+\gamma-\alpha) q-n-\gamma$ ( $\equiv \alpha<\frac{n+\gamma}{q^{\prime}}+\lambda$ ) we have

$$
\left(\int_{\mathrm{c}_{B_{t}}}|x|^{(-\lambda+\alpha-n-\gamma) q} x_{n}^{\gamma} d x\right)^{1 / q}=C_{1} t^{\alpha-\lambda-(n+\gamma) / q^{\prime}}
$$

where $C_{1}=\left(\frac{\omega(n, \gamma)}{q / q^{\prime}+(\lambda-\alpha) q /(n+\gamma)}\right)^{1 / q}$.
Analogously, by virtue of the condition $\beta p<(n+\gamma)(p-1)(\equiv \beta<$ $\left.\frac{n+\gamma}{p^{\prime}}\right)$, it follows that

$$
\left(\int_{B_{t}}|x|^{-\beta p^{\prime}} x_{n}^{\gamma} d x\right)^{1 / p^{\prime}}=C_{2} t^{(n+\gamma) / p^{\prime}-\beta}
$$

where $C_{2}=\left(\frac{\omega(n, \gamma)}{1-\beta p^{\prime} /(n+\gamma)}\right)^{1 / p^{\prime}}$.
Summarizing these estimates, we find that

$$
\begin{aligned}
& \sup _{t>0}\left(\int_{\mathrm{c}_{B_{t}}}|x|^{(-\lambda+\alpha-n-\gamma) q} x_{n}^{\gamma} d x\right)^{1 / q}\left(\int_{B_{t}}|x|^{-\beta p^{\prime}} x_{n}^{\gamma} d x\right)^{1 / p^{\prime}} \\
& \quad=C_{1} C_{2} \sup _{t>0} t^{\alpha-\beta-\lambda+\frac{n+\gamma}{q}-\frac{n+\gamma}{p}}<\infty \Longleftrightarrow \alpha-\beta-\lambda=\frac{n+\gamma}{p}-\frac{n+\gamma}{q} .
\end{aligned}
$$

Now the first part of Theorem A leads us to the inequality

$$
I_{1} \leq b_{2} C_{1} C_{2} 2^{n+\gamma-\alpha}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p}
$$

It is easy to verify that if $|y|>2|x|$, then $|y| \leq|x|+|x-y|<$ $|y| / 2+|x-y|$. Hence $|y| / 2<|x-y|$ and $T^{y}|x|^{\alpha-n-\gamma} \leq(|y| / 2)^{\alpha-n-\gamma}$. Consequently,

$$
I_{3} \leq 2^{n+\gamma-\alpha}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left(H_{\gamma}^{\prime}\left(|f(y)||y|^{\alpha-n-\gamma}\right)(x)\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q>-n-\gamma(\equiv \lambda<$ $\frac{n+\gamma}{q}$ ), we have

$$
\left(\int_{B_{t}}|x|^{-\lambda q} x_{n}^{\gamma} d x\right)^{1 / q}=C_{3} t^{(n+\gamma) / q-\lambda}
$$

where $C_{3}=\left(\frac{\omega(n, \gamma)}{1-\lambda q /(n+\gamma)}\right)^{1 / q}$. Analogously, by virtue of the condition $\beta p>\alpha p-n-\gamma\left(\equiv \alpha<\frac{n+\gamma}{p}+\beta\right)$, it follows that

$$
\left(\int_{B_{t}}|x|^{-(\beta+n+\gamma-\alpha) p^{\prime}} x_{n}^{\gamma} d x\right)^{1 / p^{\prime}}=C_{4} t^{(n+\gamma) / p^{\prime}-(n+\gamma+\beta-\alpha)}
$$

where $C_{4}=\left(\frac{\omega(n, \gamma)}{(1+(\beta-\alpha) /(n+\gamma)) p^{\prime}-1}\right)^{1 / p^{\prime}}$.
Summarizing these estimates, we find that

$$
\begin{aligned}
& \sup _{t>0}\left(\int_{B_{t}}|x|^{-\lambda q} x_{n}^{\gamma} d x\right)^{1 / q}\left(\int_{\mathrm{c}_{B_{t}}}|x|^{-(\beta+n+\gamma-\alpha) p^{\prime}} x_{n}^{\gamma} d x\right)^{1 / p^{\prime}} \\
& \quad=C_{3} C_{4} \sup _{t>0} t^{\alpha-\beta-\lambda+\frac{n+\gamma}{q}-\frac{n+\gamma}{p}}<\infty \Longleftrightarrow \alpha-\beta-\lambda=\frac{n+\gamma}{p}-\frac{n+\gamma}{q} .
\end{aligned}
$$

Now the second part of Theorem B leads us to the inequality

$$
I_{3} \leq b_{4} C_{3} C_{4} 2^{n+\gamma-\alpha}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p}
$$

To estimate $I_{2}$, we consider the cases $\alpha<\frac{n+\gamma}{p}$ and $\alpha>\frac{n+\gamma}{p}$ separately.

Let $\alpha<\frac{n+\gamma}{p}$. In this case the condition $\alpha=\beta+\lambda+\frac{n+\gamma}{p}-\frac{n+\gamma}{q} \geq$ $\frac{n+\gamma}{p}-\frac{n+\gamma}{q}$ implies $q \leq p^{*}$, where $p^{*}=(n+\gamma) p /(n+\gamma-\alpha p)$.

First, assume that $q<p^{*}$. In the sequel we use the notation

$$
D_{k} \equiv\left\{x \in \mathbb{R}_{+}^{n}: 2^{k} \leq|x|<2^{k+1}\right\}, \widetilde{D_{k}} \equiv\left\{x \in \mathbb{R}_{+}^{n}: 2^{k-2} \leq|x|<2^{k+2}\right\} .
$$

By Hölder's inequality with respect to the exponent $\frac{p^{*}}{q}$ and Theorem 1, we find that

$$
\begin{aligned}
& I_{2}=\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q} \\
&=\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}|x|^{-\lambda q}\left(\int_{B_{2|x| \mid} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{q} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \leq\left(\sum_{k \in \mathbb{Z}}\left(\int_{D_{k}}\left(\int_{B_{2|x| \backslash} \mid B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y\right)^{p^{*}} x_{n}^{\gamma} d x\right)^{q / p^{*}}\right. \\
& \leq\left(\int_{D_{k}}|x| \frac{-\lambda q p^{*}}{p^{*}-q}\right.\left.\left.x_{n}^{\gamma} d x\right)^{\frac{p^{*}-q}{p^{*}}}\right)^{1 / q} \\
& \leq C_{5}\left(\sum_{k \in \mathbb{Z}} 2^{k\left[-\lambda q+\frac{p^{*}-q}{p^{*}}(n+\gamma)\right]}\left(\int_{D_{k}}\left|I_{\alpha, \gamma}\left(f \chi_{\widetilde{D_{k}}}\right)(x)\right|^{p^{*}} x_{n}^{\gamma} d x\right)^{q / p^{*}}\right)^{1 / q} \\
& \leq \leq C_{6}\left(\sum_{k \in \mathbb{Z}} 2^{k\left[-\lambda q+\frac{p^{*}-q}{p^{*}}(n+\gamma)\right]}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{q / p}\right)^{1 / q} \\
&\left.\leq C_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p} .
\end{aligned}
$$

If $q=p^{*}$, then $\beta+\lambda=0$ and consequently, using directly Theorem 1 we have

$$
\begin{aligned}
& I_{2} \leq C_{8}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta p^{*}} \int_{D_{k}}\left|I_{\alpha, \gamma}\left(f \chi_{\widetilde{D_{k}}}\right)(x)\right|^{p^{*}} x_{n}^{\gamma} d x\right)^{1 / p^{*}} \\
& \leq C_{9}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta p^{*}}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{p^{*} / p}\right)^{1 / p^{*}} \\
& \quad \leq C_{10}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{\beta p}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{1 / p}
\end{aligned}
$$

Now let $\alpha>\frac{n+\gamma}{p}$. In this case by Hölder's inequality with respect to the exponent $p$ we get the following estimate

$$
\begin{aligned}
I_{2} \leq\left(\int_{\mathbb{R}_{+}^{n}}|x|^{-\lambda q}\right. & \left(\int_{B_{2|x| \backslash} \backslash B_{|x| / 2}}|f(y)|^{p} y_{n}^{\gamma} d y\right)^{q / p} \\
& \left.\times\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}\left(T^{y}|x|^{\alpha-n-\gamma}\right)^{p^{\prime}} y_{n}^{\gamma} d y\right)^{q / p^{\prime}} x_{n}^{\gamma} d x\right)^{1 / q}
\end{aligned}
$$

On the other hand, using (2) and the inequality $\alpha>\frac{n+\gamma}{p}$, we find that

$$
\begin{gathered}
\int_{B_{2|x| \mid} \backslash B_{|x| / 2}}\left(T^{y}|x|^{\alpha-n-\gamma}\right)^{p^{\prime}} y_{n}^{\gamma} d y \leq \int_{B_{2|x| \mid} \backslash B_{|x| / 2}}|x-y|^{(\alpha-n-\gamma) p^{\prime}} y_{n}^{\gamma} d y \\
\leq \int_{0}^{\infty}\left|B_{2|x|} \cap E\left(x, \tau^{(\alpha-n-\gamma) p^{\prime}}\right)\right|_{\gamma} d \tau \\
\leq \int_{0}^{|x|^{(\alpha-n-\gamma) p^{\prime}}}\left|B_{2|x|}\right|_{\gamma} d \tau+\int_{|x|^{(\alpha-n-\gamma) p^{\prime}}}^{\infty}\left|E\left(x, \tau^{(\alpha-n-\gamma) p^{\prime}}\right)\right|_{\gamma} d \tau \\
\leq C_{11}|x|^{(\alpha-n-\gamma) p^{\prime}+n+\gamma}+C_{12} \int_{\left.|x|\right|^{(\alpha-n-\gamma) p^{\prime}}}^{\infty} \tau^{\frac{1}{(\alpha-n-\gamma) p^{\prime}}} d \tau=C_{13}|x|^{(\alpha-n-\gamma) p^{\prime}+n+\gamma},
\end{gathered}
$$

where the positive constant $C_{13}$ does not depend on $x$. The latter estimate yields

$$
\begin{aligned}
& I_{2} \leq \\
& C_{14}\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}|x|^{-\lambda q+\left[(\alpha-n-\gamma) p^{\prime}+n+\gamma\right] \frac{q}{p^{\prime}}}\left(\int_{B_{2|x| \mid} B_{|x| / 2}}|f(y)|^{p} y_{n}^{\gamma} d y\right)^{q / p} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \leq C_{14}\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}\left(\int_{\widehat{D_{k}}}|f(y)|^{p} y_{n}^{\gamma} d y\right)^{q / p}|x|^{-\lambda q+\left[(\alpha-n-\gamma) p^{\prime}+n+\gamma\right] \frac{q}{p^{\prime}}} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \leq C_{14}\left(\sum_{k \in \mathbb{Z}} 2^{k\left(-\lambda+\alpha-n-\gamma+\frac{n+\gamma}{p^{\prime}}+\frac{n+\gamma}{q}\right) q}\left(\int_{\widetilde{D_{k}}}|f(y)|^{p} y_{n}^{\gamma} d y\right)^{q / p}\right)^{1 / q} \\
& \leq C_{14}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta q}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{q / p}\right)^{1 / q} \leq C_{15}\left(\int_{\mathbb{R}_{+}^{n}}|x|^{\beta p}|f(x)|^{p} x_{n}^{\gamma} d x\right)^{q / p} .
\end{aligned}
$$

Thus Theorem 2 is completely proved.
To obtain the general result on the boundedness of the $B$-potentials $I_{\alpha, \gamma}$ we need the following weak weighted estimate.

Theorem 3. Let $0<\alpha<n+\gamma, 1<q<\infty, \beta \leq 0, \lambda<$ $\frac{n+\gamma}{q}, \beta+\lambda \geq 0 \quad 1-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ and $f \in L_{1, \mid x^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$. Then $I_{\alpha, \gamma} f \in$ $W L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ and the following inequality holds

$$
\begin{equation*}
\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}:|x|^{-\lambda}\left|I_{\alpha, \gamma} f(x)\right|>\tau\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \leq \frac{C}{\tau} \int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)| x_{n}^{\gamma} d x, \tag{3}
\end{equation*}
$$

where $C$ is independent of $f$.
Proof. We have

$$
\begin{aligned}
& \left(\int_{\left\{x \in \mathbb{R}_{+}^{n}:|x|-\lambda\left|I_{\alpha, \gamma} f(x)\right|>\tau\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \quad \leq\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}:|x|^{-\lambda} \int_{B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y>\tau / 3\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
& \quad+\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}:|x|-\lambda \int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y>\tau / 3\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
& +\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}:|x|^{-\lambda} \int_{\left.\mathrm{C}_{B_{2|x|}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y>\tau / 3\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \equiv J_{1}+J_{2}+J_{3} .}\right.
\end{aligned}
$$

Then

$$
J_{1} \leq\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}: 2^{n+\gamma-\alpha}|x|^{\alpha-n-\gamma-\lambda} H_{\gamma} f(x)>\tau / 3\right\}} x_{n}^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q<(n+\gamma-\alpha) q-n-\gamma$ ( $\equiv \alpha<n+\gamma-\frac{n+\gamma}{q}+\lambda$ ) we have

$$
\begin{aligned}
\int_{\mathrm{c}_{B_{t}}} & |x|^{(-\lambda+\alpha-n-\gamma) q} x_{n}^{\gamma} d x \\
& =\int_{S_{+}^{n-1}} \int_{t}^{\infty} r^{(-\lambda+\alpha-n-\gamma) q+n+\gamma-1} \xi_{n}^{\gamma} d \xi d r=C_{16} t^{(-\lambda+\alpha-n-\gamma) q+n+\gamma}
\end{aligned}
$$

where the positive constant $C_{16}$ depends only on $\alpha, \lambda$ and $q$. Analogously by virtue of the condition $\beta \leq 0$ it follows that

$$
\sup _{B_{t}}|x|^{-\beta}=t^{-\beta} .
$$

Summarizing these estimates we find that

$$
\begin{aligned}
\sup _{t>0} & \left(\int_{\mathrm{c}_{B_{t}}}|x|^{(-\lambda+\alpha-n-\gamma) q} x_{n}^{\gamma} d x\right)^{1 / q} \sup _{B_{t}}|x|^{-\beta} \\
& =C_{16} \sup _{t>0} t^{\frac{n+\gamma}{q}-\lambda+\alpha-n-\gamma-\beta}<\infty \Longleftrightarrow \alpha-\beta-\lambda=n+\gamma-\frac{n+\gamma}{q} .
\end{aligned}
$$

Now in the case $p=1$ the first part of Theorem A leads us to the inequality

$$
J_{1} \leq \frac{C_{17}}{\tau} \int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)|^{p} x_{n}^{\gamma} d x
$$

where the positive constant $C_{17}$ is independent of $f$.
Also,

$$
J_{3} \leq\left(\int_{\left\{x \in \mathbb{R}_{+}^{n}: 2^{n+\gamma-\alpha}|x|^{-\lambda} H_{\gamma}^{\prime}\left(|f(y)||y|^{\alpha-n-\gamma)(x)>\tau / 3\}}\right.\right.} x_{n}^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q>-n-\gamma(\equiv \lambda<$ $\left.\frac{n+\gamma}{q}\right)$ we have

$$
\int_{B_{t}}|x|^{-\lambda q} x_{n}^{\gamma} d x=\int_{S_{+}^{n-1}} \int_{0}^{t} r^{-\lambda q+n+\gamma-1} \xi_{n}^{\gamma} d \xi d r=C_{18} t^{-\lambda q+n+\gamma},
$$

where the positive constant $C_{18}$ depends only on $\alpha$ and $\lambda$. Analogously by virtue of the condition $\beta \geq \alpha-n-\gamma$ it follows that

$$
\sup _{\mathrm{C}_{B_{t}}}|x|^{-\beta+\alpha-n-\gamma}=t^{-\beta+\alpha-n-\gamma} .
$$

Summarizing these estimates, we find that

$$
\begin{aligned}
\sup _{t>0} & \left(\int_{B_{t}}|x|^{-\lambda q} x_{n}^{\gamma} d x\right)^{1 / q} \sup _{\mathrm{C}_{B_{t}}}|x|^{-\beta+\alpha-n-\gamma} \\
& =C_{18} \sup _{t>0} t^{\frac{n+\gamma}{q}-\lambda+\alpha-n-\gamma-\beta}<\infty \Longleftrightarrow \alpha-\beta-\lambda=n+\gamma-\frac{n+\gamma}{q} .
\end{aligned}
$$

Now in the case $p=1$ the second part of Theorem A leads us to the inequality

$$
J_{3} \leq \frac{C_{19}}{\tau} \int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)| x_{n}^{\gamma} d x
$$

where the positive constant $C_{19}$ is independent of $f$.
We now, we estimate $J_{2}$.
From $\beta+\lambda \geq 0$ and Theorem 1 we get

$$
\begin{gathered}
J_{2}=\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}:|x|^{-\lambda} \int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-n-\gamma} y_{n}^{\gamma} d y>\tau / 3\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
\leq\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}: \int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)||y|^{\beta} T^{y}|x|^{\alpha-\beta-\lambda-n-\gamma} y_{n}^{\gamma} d y>c \tau\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
\leq\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}:\left|I_{\alpha-\beta-\lambda, \gamma}\left(f(\cdot)|\cdot|^{\beta} \chi_{\widetilde{D_{k}}}\right)(x)\right|>c \tau\right\}} x_{n}^{\gamma} d x\right)^{1 / q} \\
\leq\left(\sum_{k \in \mathbb{Z}}\left(\frac{C_{20}}{\tau} \int_{\widetilde{D_{k}}}|f(x)||x|^{\beta} x_{n}^{\gamma} d x\right)^{q}\right)^{1 / q} \leq\left(\frac{C_{21}}{\tau} \int_{\mathbb{R}_{+}^{n}}|x|^{\beta}|f(x)| x_{n}^{\gamma} d x\right)^{1 / q} .
\end{gathered}
$$

From Theorems 2 and 3 we get the following
Theorem 4. Let $0<\alpha<n+\gamma, 1 \leq p \leq q<\infty, \beta<\frac{n+\gamma}{p^{\prime}} \quad(\beta \leq 0$, if $p=1), \quad \lambda<\frac{n+\gamma}{q}(\lambda \leq 0$, if $q=\infty), \alpha \geq \beta+\lambda \geq 0 \quad(\beta+\lambda>0$, if $p=q$ ). Then:

1) If $1<p<\frac{n+\gamma}{\alpha-\beta-\lambda}$, then condition $\frac{1}{p}-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$.
2) If $p=1$, then condition $1-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{1,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$.

Proof. Sufficiency of Theorem 4 follows from Theorems 2 and 3.
Necessity. 1) Suppose that the operator $I_{\alpha, \gamma}$ is bounded from $L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ and $1<p<\frac{n+\gamma}{\alpha-\beta-\lambda}$.

Define $f_{t}(x)=: f(t x)$ for $t>0$. Then it can be easily shown that

$$
\left\|f_{t}\right\|_{L_{p,|x|^{\beta}, \gamma}}=t^{-\frac{n+\gamma}{p}-\beta}\|f\|_{L_{p,|x|^{\beta}, \gamma}} \quad, \quad\left(I_{\alpha, \gamma} f_{t}\right)(x)=t^{-\alpha} I_{\alpha, \gamma} f(t x)
$$

and

$$
\left\|I_{\alpha, \gamma} f_{t}\right\|_{L_{q,|x|-\lambda, \gamma}}=t^{-\alpha-\frac{n+\gamma}{q}+\lambda}\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}
$$

Since the operator $I_{\alpha, \gamma}$ is bounded from $L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$, we have

$$
\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|^{-\lambda}, \gamma}} \leq C\|f\|_{L_{p,|x| \beta, \gamma}}
$$

where $C$ is independent of $f$. Then we get

$$
\begin{gathered}
\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}=t^{\alpha+\frac{n+\gamma}{q}-\lambda}\left\|I_{\alpha, \gamma} f_{t}\right\|_{L_{q,|x|-\lambda, \gamma}} \\
\leq C t^{\alpha+\frac{n+\gamma}{q}-\lambda}\left\|f_{t}\right\|_{L_{p,|x| \beta}, \gamma}
\end{gathered}=C t^{\alpha+\frac{n+\gamma}{q}-\lambda-\frac{n+\gamma}{p}-\beta}\|f\|_{L_{p,\left.|x|\right|^{\beta}, \gamma}} . ~ . ~ .
$$

If $\frac{1}{p}-\frac{1}{q}<\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f \in L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ we have $\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}$ $=0$ as $t \rightarrow 0$.

If $\frac{1}{p}-\frac{1}{q}>\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f \in L_{p,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ we have $\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda}, \gamma}$ $=0$ as $t \rightarrow \infty$.

Therefore we get the equality $\frac{1}{p}-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$.
2) Suppose that the operator $I_{\alpha, \gamma}$ is bounded from $L_{1,\left.|x|\right|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$. It is easy to show that

$$
\left\|f_{t}\right\|_{L_{1,|x| \beta, \gamma}}=t^{-n-\gamma-\beta}\|f\|_{L_{1,|x| \beta}, \gamma} \quad, \quad\left(I_{\alpha, \gamma} f_{t}\right)(x)=t^{-\alpha}\left(I_{\alpha, \gamma} f\right)(t x),
$$

and

$$
\left\|I_{\alpha, \gamma} f_{t}\right\|_{W L_{q,|x|}-\lambda, \gamma}=t^{-\alpha-\frac{n+\gamma}{q}+\lambda}\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|-\lambda, \gamma}} .
$$

By the boundedness of $I_{\alpha, \gamma}$ from $L_{1,|x|^{\beta}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$ to $W L_{q,|x|^{-\lambda}, \gamma}\left(\mathbb{R}_{+}^{n}\right)$, we have

$$
\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|-\lambda, \gamma}} \leq C\|f\|_{L_{1,|x| \beta, \gamma},}
$$

where $C$ is independent of $f$. Then we have

$$
\begin{aligned}
\left(I_{\alpha, \gamma} f_{t}\right)_{*, \gamma}(\tau) & =t^{-n-\gamma}\left(I_{\alpha, \gamma} f\right)_{*, \gamma}\left(t^{\alpha} \tau\right) \\
\left\|I_{\alpha, \gamma} f_{t}\right\|_{W L_{q,|x|-\lambda, \gamma}} & =t^{-\alpha-\frac{n+\gamma}{q}+\lambda}\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|-\lambda, \gamma}}
\end{aligned}
$$

and

$$
\begin{gathered}
\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|^{-\lambda}, \gamma}}=t^{\alpha+\frac{n+\gamma}{q}-\lambda}\left\|I_{\alpha, \gamma} f_{t}\right\|_{W L_{q,|x|-\lambda, \gamma}} \\
\leq C t^{\alpha+\frac{n+\gamma}{q}-\lambda}\left\|f_{t}\right\|_{L_{1,|x| \beta, \gamma}}=C t^{\alpha+\frac{n+\gamma}{q}-\lambda-n-\gamma-\beta}\|f\|_{L_{1,|x| \beta, \gamma}} .
\end{gathered}
$$

If $1-\frac{1}{q}<\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f \in L_{1,|x|^{\beta}, \gamma}$ we have $\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|-\lambda, \gamma}}=$ 0 as $t \rightarrow 0$.

If $1-\frac{1}{q}>\frac{\alpha-\beta-\lambda}{n+\gamma}$, then for all $f \in L_{1,\left.|x|\right|^{\beta}, \gamma}$ we have $\left\|I_{\alpha, \gamma} f\right\|_{W L_{q,|x|-\lambda, \gamma}}=$ 0 as $t \rightarrow \infty$.

Therefore we get the equality $1-\frac{1}{q}=\frac{\alpha-\beta-\lambda}{n+\gamma}$.
Thus Theorem 4 is proved.

## References

[1] A.D. Gadjiev, I.A. Aliev, On classes of operators of potential types, generated by a generalized shift. Reports of Enlarged Session of the Seminars of I.N.Vekua Inst. of Applied Mathematics, Tbilisi 3, No 2 (1988), 21-24 (In Russian).
[2] V.S. Guliyev, Sobolev theorems for $B-$ Riesz potentials. Dokl. RAN 358, No 4 (1998), 450-451 (In Russian).
[3] V.S. Guliyev, Some properties of the anisotropic Riesz-Bessel potential. Analysis Mathematica 26, No 2 (2000), 99-118.
[4] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator. Mathematical Inequalities and Applications 6, No 2 (2003), 317-330.
[5] D.E. Edmunds, V.M. Kokilashvili, A. Meskhi, Boundedness and compactness of Hardy-type operators on Banach function spaces defined on measure space. Proc. A. Razmadze Math. Inst. 117 (1998), 7-30.
[6] D.E. Edmunds, V.M. Kokilashvili and A. Meskhi, Bounded and Compact Cntegral Operators. Kluwer, Dordrecht (2002).
[7] B. Muckenhoupt B. and E.M. Stein, Classical expansions and their relation to conjugate harmonic functions. Translation Amer. Math. Soc. 118 (1965), 17-92.
[8] I.A. Kiprijanov, Fourier-Bessel transformations and imbedding theorems. Trudy Math. Inst. Steklov 89 (1967), 130-213.
[9] B.M. Levitan, Bessel function expansions in series and Fourier integrals. Uspekhi Mat. Nauk 6 (1951), No. 2 (42), 102-143 (In Russian).
[10] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel Transformation. Proc. V.A. Steklov Inst. Math. 214 (1997), 234-249.
[11] E.M. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean spaces. J. Math. Mech. 7, No 4 (1958), 503-514.
[12] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform. Math. Institute of Wroslaw (Poland), Preprint No. 45 (1985).

Received: December 10, 2007

[^1]
[^0]:    ${ }^{*}$ Akif Gadjiev's research is partially supported by the grant of INTAS (project 06-1000017-8792) and Vagif Guliyev's research is partially supported by the grant of the Azerbaijan-U.S. Bilateral Grants Program II (project ANSF Award / 16071) and by the grant of INTAS (project 05-1000008-8157)

[^1]:    1,2 Dept. of Mathematical Analysis
    Institute of Mathematics and Mechanics of NAS of Azerbaijan
    9, F. Agayev str., AZ 1141 - Baku, AZERBAIJAN
    e-mails: ${ }^{1}$ akif_gadjiev@mail.az , ${ }^{2}$ vagif@guliyev.com
    2 Baku State University, Dept. of Mathematical Analysis
    23, Akad. Z. Khalilov str., AZ 1141 - Baku, AZERBAIJAN

