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Abstract

In this paper we study the Riesz potentials (B -Riesz potentials) gener-
noog2

ated by the Laplace-Bessel differential operator Apg = 882 li ,
Oy, Tn Oxy,
7 >0, in the weighted Lebesgue spaces L, .15, . We establish an inequal-
ity of Stein-Weiss type for the B -Riesz potentials, and obtain necessary
and sufficient conditions on the parameters for the boundedness of the B -
Riesz potential operator from the spaces Lp,\x|ﬁ,7 to L and from
the spaces Lj |5, to the weak spaces WLy . -
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0. Introduction

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The potential
and related topics associated with the Laplace-Bessel differential operator
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noog2
Ap = 882 + li, >0
— Oy, T Oxy,
have been the research areas many mathematicians such as B. Muckenhoupt
and E. Stein [7], I. Kipriyanov [8], L. Lyakhov [10], K. Stempak [12], A.D.
Gadjiev and I.A. Aliev [1], V.S. Guliyev [2]-[4], and others.

In this paper we study Riesz potentials (B -Riesz potentials) gener-
ated by the Laplace-Bessel differential operator Ap in weighted Lebesque
spaces. We establish an inequality of Stein-Weiss type (see [11]) for the
B -Riesz potentials. We obtain the necessary and sufficient conditions on
the parameters for boundedness of the B -Riesz potential operator from
the spaces L to L and from the spaces Ly s, to the weak
spaces WL

p,|]8 v @lz)A o

alzry
1. Definitions, notation and preliminaries

Let R? ={z € R"; = (@1,...,%p), 2, > 0} and B(z,r) = {y €
RY @ |lz—y|<r, r>0}, B, =B(0,7), and let CB(x,r) =R} \ B(z,r) .
For a measurable set A C R7 let |A|, = [, a)dx, then |B,|, =

w(n,y)r"*7 | where
VT (v +1)/2)

wln7) = /B T = o iy~ 2)/2)

Denote by TV the generalized shift operator (B —shift operator) acting
according to the law

TVi(z) = C, /0 F (&~ (@ yn)s) sin? " BB,

where (2p,Yn)s = /72 + Y2 — 22pyncos 8 and C, = %(?/22)) = %w(2,’y).

We note that the generalized shift operator TY is closely connected

with the Laplace-Bessel differential operator Ap (for example, n =1 see
[9] and n > 1 [8] for details).

Let L,,(R") be the space of measurable functions on R’ with finite
norm 1p

17020y = 10y i) = ( L rf<x>rpa:zdx> L 1<p<c.
+

For p = oo the space Lo ~(R") is defined by means of the usual modifi-
cation

[l 2oy = [/l = €55 sup|f(z)].
z€ERY
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The translation operator TY generates the corresponding B -convolution
o) = [ )o@ v
+

for which the Young inequality holds:

IF@als,, <7, lol,, . 1<par<cs, +-=1+1
ry Py .y » q
LEMMA 1. Let 0 <a<n+~. Then
| T ]| — [y < 2m ey e g (1)
for 2|z| < |y| .
P roof We will show that
e e
<c, /OW (&' = (@, yn)p) |7 = Jy[*7" | sin? ! BdB.

From the mean value theorem we have

|04—n—’Y |a—n—~/‘

1 =/ m)s) " = Ly
< H (l’l — y/, (:Ena yn)ﬁ)l - |yH ga—n—’y—l’

where min {|(2" — ', (zn, yn)p)|, yl} <& < max{[(z" — v, (zn,yn)p)l,Yl} -
Note that

3
|(' = ¥/, (@n,yn)p) | < |2|+ Jy| < 3yl

1
(& =4/, @n,ym)p) | = o =yl = [yl = |2 = Sy

and
‘(:E/ _ y/a (CUn’yn)ﬂ)‘ - !y| < ‘LE| + |y| — |y‘ < ’£C|
|y’ - ‘(1‘/ _ y/, (eTnyyn)ﬂ)‘ < ]y| — \x — y‘ < ’x|
Hence
1 ’ ’ 3 , ,
Ul <[ =o' (@n.yn)p) | < Syl and [[(" — o/, (@n.ya)s) | = Iol] < la]-
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DEFINITION 1. Let 1 <p < oo. We denote by WL, (R") the weak
L, space defined as the set of locally integrable functions f with the
finite norms

1
Ifllw, , = sup rf222(r),
’ r>0

where f.,(r) =[{z e R : |f(z)] > 7‘}‘7 .

Let v be non-negative and measurable function on R ,and Ly, ,(R?)
be the weighted L, . -space of all measurable functions f on R’ for which

1Ly = WLy = l0f N, ey < oo

We denote by WLp,~(RY) (1<p<oo)the weighted weak Lebesgue
space which is the class of all measurable functions f : R’} — R, for which

I fllwe,.., = ||f”WLp,M(R1) = ||Uf||WL,,,7(1R1) < 0.

We shall need the following Hardy-type transforms defined on R :
mfw) = [ foidy . = [ fwid
|z|

Bla|
The following two theorems for these transformations were proved in [5]
(see also [6], Section 1.1).

THEOREM A. Let 1 < q < oo. Suppose that v and w are a.e.
positive functions on R} . Then:

(a) The operator H, is bounded from Li.,~(RY) to WLg,~(RY)
if and only if

1/q
Ap = sup (/ vq(x)mxda:) supw ™ (z) < oo,
t>0 CBt By

(b) The operator H! is bounded from Ly ~(RY) to WL, (RY)

if and only if

1/q
Ag = sup (/ v%w)m%dw) supw ™ (x) < oo.
t>0 \JB, Cp,

Moreover, there exist positive constants a; , j = 1,...,4, depending
only on q such that a1A; < ||H|| < axA; and agzA; < ||H'|| < agAs .

THEOREM B. Let 1 < p < ¢q < oo. Suppose that v and w are a.e.
positive functions on R} . Then:

(a) The operator H. is bounded from Ly .,~(R") to Lg,~(RY) if
and only if
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1/q , 1/p
As = sup </ v%a:)x%dx) (/ wP (m)x%dm) < oo, p =p/(p-1),
t>0 CBt By
(b) The operator H! is bounded from Ly, ~(R}) to Lg.~(RY) if
and only if

1/q , 1/p
Ay =sup </ vq(a:)a:jldm> (/ wP (x)x%dm) < 0.
t>0 Bt EBt

Moreover, there exist positive constants bj, j = 1,...,4, depending
only on p and q such that bjAs < ||H|| < byAs and b3Ay < ||H'| <
b4A4 .

We will need the case when we substitute L,, ,(R’.) by the homoge-
neous space (X,p,u), X =R, p(z—y) = [z —y|, du(z) = zidz in
Theorems A and B.

Consider the B -Riesz potential

Inyfz) = / TYz|* " f(y)yldy, 0<a<n+r.
RZ

For the B -Riesz potential the following Hardy-Littlewood-Sobolev the-
orem is valid.

THEOREM 1. ([1]) Let 0 <a<n+7 and 1 <p< ™2

DIfF1<p< %, then condition % — % = 555 Is necessary and
sufficient for the boundedness of I, . from Ly, (R") to L,~(R7Y) .

2) If p=1, then condition 1— % = ﬁ is necessary and sufficient for
the boundedness of 1., from L (R%}) to WLg~,(RY).

2. Main results

One of the our main results is the following Stein-Weiss type theorem
for the B -Riesz potentials.

THEOREM 2. Let 0 < a < n+ 7, 1<p§q<oo,ﬁ<";r,7,

A<M B4AS>0 (B+A>0,if p=g), L-L1 =202 and fe

q
ﬁpfdzmﬁ(]l%fﬁ) . Then Ionf € Lgjy-»,(R%Y) and the following inequality
olds:

1/p

1/q
(/ |x_>‘q|Ia’,Yf(aj)qx;yldx> SC(/ lxlﬁplf(w)lpwzdx) . (2)
R” R?

™
where C' is independent of f .
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Proof. Wehave

1/q
( / 2| |fa,yf<x>|%zdw)
R}
q 1/q
g( / | ( / If(y)ITylwl“‘”‘”yZdy> x%daz>
R% Big)/2
q 1/q
+< / 2| ( / rf<y>rTy\a:|a—"-wzdy) xzd:c)
R% Ba2|\B|z| /2
( /
R

It is easy to verify that if |y| < |z]|/2, then |z| < |y|+ |z —y| <
|z|/2 4+ |z —y| . Hence |z|/2 < |z —y| and TY|z|* """ < (|z|/2)* "7 .
Consequently,

Il < 2n+7—o¢ /
B R

Further, taking into account the inequality —A¢ < (n+~v—a)g—n—~
(Ea<"q—+,7+)\)wehave

1/q
(ﬂ:B |x|(—)\+a—n—v)ql‘%dw> —_ Cltoc—)\—(n-i-”/)/q ,
t

q 1/q
|| M (/E £ ()l Ty\ﬂfl“"”?/%@) w?ﬂﬂf) =L+1L+1s.
2|

n
+

1/q
[a] (=== <wa<x>>qxxdx> -

n
+

q/q'+(A—a)q/
Analogously, by virtue of the condition fp < (n+7y)(p—1) (=<
"7 it follows that

g 1/p'
< ||~ x%daz) = Cot "t N/P' =B,
By

where C] = ( w(ny) (n+7)>1/q )

w(n, 1/p'
where Cy = (%) .

Summarizing these estimates, we find that

1/q , 1/p’
sup (/ |x|()‘+°‘"7)qx%dx> </ |xlfﬁp m%daz>
t>0 CBt Bt

T W = = n
:ClC'gsuptaﬁ’\Jr . P7<oo<:>oz—ﬁ—)\:n+7 +7.
t>0 p q




THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL ... 83

Now the first part of Theorem A leads us to the inequality
1/p
I} < bCr 02" (/ 37|ﬁ‘f(x)‘px%d$> :
R

It is easy to verify that if |y| > 2|z|, then |y| < |z|+ |z — y| <
ly|/2 + |z —y| . Hence |y|/2 < |z —y| and TY|z|* "7 < (Jy|/2)* "7 .
Consequently,

1/q
Iy < e ( L (=) <x>>qxxdx> -

Further, taking into account the inequality —A\¢ > —n—~v (= A <
27 we have

1/q
By

1/
where C3 = (%) q. Analogously, by virtue of the condition

Op>ap—n—ry (Eoz<”Tﬁ+ﬁ), it follows that

L/p
< ||~ (Bt —c)p x;{dm) = Oyt N/P' = (ntrtB-a)
By

where Cly = <<1+w—a>/(n+v>>pul) -
Summarizing these estimates, we find that

1/q , 1/p’
sup (/ |x|_)‘q:p%dm> </c |1:]_(’g+”+7_°‘)p x%dm)
t>0 Bt Bt

B—A4 1ty _nty n—+-y n—+y

= (C3Cy supt™” a P <o a—0— A=
t>0 p q

Now the second part of Theorem B leads us to the inequality

1/p
I3 < byC5C42" (/ fvlﬁlf(w)\pﬂfldﬂﬁ> -
Ry

To estimate I» , we consider the cases a < "Tﬁ and a >
rately.
Let a < ”Tﬁ . In this case the condition o = 8+ A + nTJf'y - >

.2
nTﬁ_nTﬂ implies ¢ < p* , where p* = (n+7)p/(n+~v—ap) .
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First, assume that ¢ < p* . In the sequel we use the notation
Dy ={z eRL 2" <|z| <281} | Dp={xec R? : 2872 <|z| < 2F+2)
By Holder’s inequality with respect to the exponent % and Theorem
1, we find that

q 1/q
I = (/ |~ (/ If(y)ITy!x\“‘”‘Vygdy> xgdx)
RY Bajz\Bjz|/2
q 1/q
- (Z / ]~ ( / If(y)ITylx“‘”—”’ygdy> xgdx)
Dy, Byz|\B|z|/2

keZ
* q/p*

P
<2/ ( / |f<y>|Ty|xra—"—7yzdy> 2)de
Dy, Bz \B|z|/2

keZ

p*—q 1/q

X (/ ’x‘;igp; a:;{da:) a
Dy,
P —q p* a/p* Ha
<Cs (Z okl=Ag+E (nty)] </ )]M (fxﬁk) (x) xldm) )
Dy,

keZ

o g a/p\ M1
< Gy (22’“‘”* pr ()] ( /H If(:r)lp:v%dw> )
k

kEZ
1/p
<c (/ |xrﬁ|f<x>|pxmx) .
R}

If g=p",then S+ X =0 and consequently, using directly Theorem 1

we have
. 1/p*
IQ < Cg <Z Qkﬁp* / g .1‘de>
kEZ
p*/p\ P
< Cy (ZW”* ( A rf<m>rpxzda:) )
Dy,

Dy,
kEZ
1/p
er (/ \a:|f’p|f<x>|%zdx) -
Rn

+

oy (fXDNk> (z)
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Now let o > "Tﬂ . In this case by Holder’s inequality with respect to
the exponent p we get the following estimate

q/p
I < / 2]~ ( / rf<y>rpyzdy>
RY Bz \Blz| /2

) q/p
X (/ (TY|z|* " 7)" y%dy) x)dx
B2 \B|z|/2

On the other hand, using (2) and the inequality a > "p# , we find that

1/q

/ (T¥|2*~"7)" ydy < / o — y| Iy dy
Bz \B|z|/2 B3z \B|z|/2
S 1
S/ ‘BQM N E(z, =) dr
0 v
|$|(0¢*n*7)1?/ 0o 1
< / | Bojy|., dr —I—/ E(z,7=—n=—")| dr
0 v || (@=n—")p v

/ o0 I S ,
S Cll ‘x’(a_n_’)/)p +n+7+012/ T (a=n—y)p" 7= 013 ’[L" (a—n—v)p +77/+'77
|| (x=n=7)p’
where the positive constant C13 does not depend on x . The latter estimate

yields

I, <
a/p 1/q
Cu Z/ |x‘—/\q+[(a—n—v)p/+n+ﬂ§ (/ |f(y)|pygdy> ) da
kez’ Dr Bsjo\Blz| /2
1/q
VR S VIS (R WS PN
<Cul) 1 fPydy ) x| Y o) da
kez” Dk Dy,
k A nty | nt+y q/p 1/q
<ou (SO B (L igpi)
kez Dy
a/p\ Y4 a/p
<Cu @: 21 [ |sraids) ) <Cis ( / \x|ﬁp|f<x>|%2dw> -
€z Dy R
Thus Theorem 2 is completely proved. [ ]

To obtain the general result on the boundedness of the B -potentials
I, we need the following weak weighted estimate.
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THEOREM 3. Let 0 < a<n+7v, 1 <g<oo, 00, A<
B4 A>0 1-L =22 and f € Ly e,(RY). Then In,f €

n+-y

WLy - ~[R}) and the following inequality holds

1/q c
</ iff%m) S/ 2|7 f (z) |z dz,  (3)
{2€RY: 2]~ F()|>7} T JRY

where C' is independent of f .

Proof. Wehave

1/q
(/ a:%dx)
ER™: [a] Mo f(@)|>7)

<

1/q

-
) dx
/{xeRii 217 f5,, p W) TY|a|o=n=Yyndy>T/3}

1/q

+ / x)dx
{weR: (el ™2 [, By, o /@I TVl =" yndy>7/3}

1/q

+ / x)dx =J1+ Jo+ Js.
{weR: ||~ [ " [F()| TY || —Vyndy>T/3}
2|z

Then

1/q
Ji < / x)dx :
{zeRy: 2n Ty = g|omn=Y = AH, f(x)>7/3}

Further, taking into account the inequality —A¢ < (n+~vy—a)g—n—=
(Ea<n+’y—%+)\)wehave

/[; |$‘(—>\+a—n—"/)qx%dm
By
o
= / / r(—A—l—a—n—w)q—f—n—f—w—lggdgdr = O t(—)\—l—a—n—v)q-i-n—i-y’
sttt
where the positive constant Cig depends only on a, A and ¢. Analo-

gously by virtue of the condition § < 0 it follows that
sup |z| 7 =75,
By



THE STEIN-WEISS TYPE INEQUALITY FOR FRACTIONAL ... 87

Summarizing these estimates we find that

1/q
sup (/ |:L‘|(_’\+O‘_”_7)qxxda:> sup |z|~?
t>0 \.JCg, B,

nty —n—~y—
= (g supt g TAtamn=y ’8<oo<:>a—ﬁ—)\:n+'y

t>0

_nty

Now in the case p = 1 the first part of Theorem A leads us to the inequality

C
<= jalPlf ()P da,
T R:L—

where the positive constant Cj7 is independent of f .
Also,

1/q
x%dm) .

Further, taking into account the inequality —A\¢ > —n—~v (= A <
nty )
q

J3 < (/
{zeRn: 2ntyv—az| = HL (| f(y)||ly|*—=7)(z)>7/3}

we have
t
|| M) d = / 1/ p AL dedr = Oyt AT
By Sff 0

where the positive constant Cis depends only on « and A . Analogously
by virtue of the condition 8 > a —n —~ it follows that

sup \x]_ﬁJra_”_V = ¢ Pran—y,
Cg,

Summarizing these estimates, we find that

1/q
sup (/ |x|_)‘q:p%dm> sup |z|Pran=
>0 \JB, Cg,

n+
= C1g suptTv_)“"O‘_"_v_ﬁ <ooE=a—fF-A=n+y— m

t>0 q
Now in the case p = 1 the second part of Theorem A leads us to the
inequality

I < 0 [ 128 (@) el da,
T R:L_

where the positive constant Cjg is independent of f .
We now, we estimate .J, .
From g4 A >0 and Theorem 1 we get
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1/q

Jo = x)dz

hez /{wEDk: 172 Sy By 1] TVl 0 dy>7/3)

1/q

< x)dx

keZ /{IGDkthzlz\Blz LfFWIyl? TY|z|o—F=A=n=vyldy>cT}

1/2
1/q
< / x)dx
(1% {w€ Dkt [Tampr (FOIPxp; ) (@) [>er) )

C a\ /4 C 1/q
S<Z (5 f (x)”x‘wd"“’» §<51/R \x|ﬂ|f<x>\xzdar> .

kEZ

n
From Theorems 2 and 3 we get the following

THEOREM 4. Let 0 <a<n+vy, 1<p<g< oo, 6<”pﬁ (<0,
if p=1), A<$ (A<0,if g=00), a>B+A>0 (B+AX>0,if
p=gq ). Then:

NDIf1<p< aﬁgz/\ , then condition ]lj — % = a;f_/\ is necessary and
sufficient for the boundedness of 1o from Ly, 5 (RY) to Ly p-»,(RY) .

2) If p=1, then condition 1—1 = a;ff’\ is necessary and sufficient

for the boundedness of lo, from Ly s, (RY) to WL, -x,(RY) .

P r o o f. Sufficiency of Theorem 4 follows from Theorems 2 and 3.
Necessity. 1) Suppose that the operator I, is bounded from

Ly jopp 5 (RE) t0 Ly g5 (RY) and 1 <p < aTﬁrzA :
Define fi(x) =: f(tx) for ¢t > 0. Then it can be easily shown that

_nty _
HftHLp,\z\ﬁ,»y =t p B Hf“Lp,\le,'Y ) (Ia,’yft)(lf) =1 a[a,'yf(tl'),

and
n+

—a— T4
HIaﬂftHLquk)\ . =t " ||Ioc,7fHL

Since the operator I, is bounded from L, .5 ,(R}) to Ly - o (RY),
we have

alz| =Ny

Maadllz, .\ <CIflL,
where C is independent of f . Then we get
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+oEr )
HIa,’)/fHLq oA :ta q HIOL,’thHL

a,lz] =Ny
EESTN oYty
<t il = Ot o Vi PR,
—B=\
If %_% < anf—’y , then for all f € Lp,|x|ﬁy»y(Ri) we have HIoz,'ny‘|[/(”I‘,A77
=0 a t—0.
—B-\
If %_é > O‘nfv ,thenforall f € L, ,15,(R}) we have ”IOlKYfHLq"x‘_AW

=0 as t— 0.
1

Therefore we get the equality i a—B-A

1
q n+y

2) Suppose that the operator I, is bounded from Ly ;5 (R%}) to
WLy a1 ~[RY) . It is easy to show that

1f2ll » Tanf)(@) = 7% Loy ) (t2),

=t P 1,

1,]x|B 1,|z|8

and
—a—nEY g ||

HIowftHWLq o =1 1

[y Ia”nyWLq,II\*)‘,W '

By the boundedness of I, from Ly .6, (RY) to WLy -2, (RY),
we have

Moo lws, < ClSlL, 0
where C is independent of f . Then we have

(Ia,wft)*,'y(T) = t_n_W(Ia,ﬂ/f)*,w(taT)a

PN Un o ST\
o fillyyr . =t " an fllwr 0
al@| =Ny L RE '

and

+L+'Yf)\
||I0‘7’YfHWLq oA =t"""q H[aﬁfftHWLq,\z\—/\

nty ) Y N—n—y—
< O P fellny e, = O TS

Y
1,|z|8

If 1-1 < @222 thenforall f € Ly s, wehave || Toqflly =
e @@= Ay

n+-y
0 ast—0.
1 —B=X _
If 1_5 > anT’y , then for all f € L1,|m|f3,'y we have HIa’VfHWLq"Ih)\W =

0 as t — 0.
Therefore we get the equality 1 — % = a;f;)‘ :
Thus Theorem 4 is proved. ]
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