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Abstract

In this paper we study the Riesz potentials (B -Riesz potentials) gener-

ated by the Laplace-Bessel differential operator ∆B =
n∑

k=1

∂2

∂x2
k

+
γ

xn

∂

∂xn
,

γ > 0 , in the weighted Lebesgue spaces Lp,|x|β ,γ . We establish an inequal-
ity of Stein-Weiss type for the B -Riesz potentials, and obtain necessary
and sufficient conditions on the parameters for the boundedness of the B -
Riesz potential operator from the spaces Lp,|x|β ,γ to Lq,|x|λ,γ , and from
the spaces L1,|x|β ,γ to the weak spaces WLq,|x|λ,γ .
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0. Introduction

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The potential
and related topics associated with the Laplace-Bessel differential operator
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∆B =
n∑

k=1

∂2

∂x2
k

+
γ

xn

∂

∂xn
, γ > 0

have been the research areas many mathematicians such as B. Muckenhoupt
and E. Stein [7], I. Kipriyanov [8], L. Lyakhov [10], K. Stempak [12], A.D.
Gadjiev and I.A. Aliev [1], V.S. Guliyev [2]-[4], and others.

In this paper we study Riesz potentials (B -Riesz potentials) gener-
ated by the Laplace-Bessel differential operator ∆B in weighted Lebesque
spaces. We establish an inequality of Stein-Weiss type (see [11]) for the
B -Riesz potentials. We obtain the necessary and sufficient conditions on
the parameters for boundedness of the B -Riesz potential operator from
the spaces Lp,|x|β ,γ to Lq,|x|λ,γ , and from the spaces L1,|x|β ,γ to the weak
spaces WLq,|x|λ,γ .

1. Definitions, notation and preliminaries

Let Rn
+ = {x ∈ Rn ; x = (x1, ..., xn), xn > 0} and B(x, r) = {y ∈

Rn
+ : |x− y| < r, r > 0} , Br ≡ B(0, r) , and let

{
B(x, r) = Rn

+ \B(x, r) .
For a measurable set A ⊂ Rn

+ let |A|γ =
∫
A xγ

ndx , then |Br|γ =
ω(n, γ)rn+γ , where

ω(n, γ) =
∫

B1

xγ
ndx =

π(n−1)/2Γ ((γ + 1)/2)
2Γ ((n + γ − 2)/2)

.

Denote by T y the generalized shift operator (B –shift operator) acting
according to the law

T yf(x) = Cγ

∫ π

0
f

(
x′ − y′, (xn, yn)β

)
sinγ−1 βdβ,

where (xn, yn)β =
√

x2
n + y2

n − 2xnyn cosβ and Cγ = Γ((γ+1)/2)√
πΓ(γ/2)

= 2
π ω(2, γ).

We note that the generalized shift operator T y is closely connected
with the Laplace-Bessel differential operator ∆B (for example, n = 1 see
[9] and n > 1 [8] for details).

Let Lp,γ(Rn
+) be the space of measurable functions on Rn

+ with finite
norm

‖f‖Lp,γ = ‖f‖Lp,γ(Rn
+) =

(∫

Rn
+

|f(x)|pxγ
ndx

)1/p

, 1 ≤ p < ∞.

For p = ∞ the space L∞,γ(Rn
+) is defined by means of the usual modifi-

cation
‖f‖L∞,γ = ‖f‖L∞ = ess sup

x∈Rn
+

|f(x)|.
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The translation operator T y generates the corresponding B -convolution

(f ⊗ g)(x) =
∫

Rn
+

f(y) T yg(x) yγ
ndy,

for which the Young inequality holds:

‖f ⊗ g‖Lr,γ
≤ ‖f‖Lp,γ

‖g‖Lq,γ
, 1 ≤ p, q, r ≤ ∞,

1
p

+
1
q

=
1
r

+ 1.

Lemma 1. Let 0 < α < n + γ . Then
∣∣T y|x|α−n−γ − |y|α−n−γ

∣∣ ≤ 2n+γ+1−α|y|α−n−γ−1|x| (1)

for 2|x| ≤ |y| .
P r o o f. We will show that

∣∣T y|x|α−n−γ − |y|α−n−γ
∣∣

≤ Cγ

∫ π

0

∣∣∣
∣∣(x′ − y′, (xn, yn)β

)∣∣α−n−γ − |y|α−n−γ
∣∣∣ sinγ−1 βdβ.

From the mean value theorem we have
∣∣∣
∣∣(x′ − y′, (xn, yn)β

)∣∣α−n−γ − |y|α−n−γ
∣∣∣

≤ ∣∣∣∣(x′ − y′, (xn, yn)β

)∣∣− |y|∣∣ ξα−n−γ−1,

where min {|(x′ − y′, (xn, yn)β)| , |y|} ≤ ξ ≤ max {|(x′ − y′, (xn, yn)β)| , |y|} .
Note that

∣∣(x′ − y′, (xn, yn)β

)∣∣ ≤ |x|+ |y| ≤ 3
2
|y|,

∣∣(x′ − y′, (xn, yn)β

)∣∣ ≥ |x− y| ≥ |y| − |x| ≥ 1
2
|y|

and
∣∣(x′ − y′, (xn, yn)β

)∣∣− |y| ≤ |x|+ |y| − |y| ≤ |x|
|y| − ∣∣(x′ − y′, (xn, yn)β

)∣∣ ≤ |y| − |x− y| ≤ |x|.
Hence

1
2
|y| ≤ ∣∣(x′ − y′, (xn, yn)β

)∣∣ ≤ 3
2
|y|, and

∣∣∣∣(x′ − y′, (xn, yn)β

)∣∣− |y|∣∣ ≤ |x|.
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Definition 1. Let 1 ≤ p < ∞ . We denote by WLp,γ(Rn
+) the weak

Lp,γ space defined as the set of locally integrable functions f with the
finite norms

‖f‖WLp,γ
= sup

r>0
rf

1/p
∗,γ (r),

where f∗,γ(r) =
∣∣{x ∈ Rn

+ : |f(x)| > r
}∣∣

γ
.

Let v be non-negative and measurable function on Rn
+ , and Lp,v,γ(Rn

+)
be the weighted Lp,γ -space of all measurable functions f on Rn

+ for which

‖f‖Lp,v,γ ≡ ‖f‖Lp,v,γ(Rn
+) = ‖vf‖Lp,γ(Rn

+) < ∞.

We denote by WLp,v,γ(Rn
+) ( 1 ≤ p < ∞ ) the weighted weak Lebesgue

space which is the class of all measurable functions f : Rn
+ → R , for which

‖f‖WLp,v,γ ≡ ‖f‖WLp,v,γ(Rn
+) = ‖vf‖WLp,γ(Rn

+) < ∞.

We shall need the following Hardy-type transforms defined on Rn
+ :

Hγf(x) =
∫

B|x|
f(y)yγ

ndy , H ′
γf(x) =

∫
{B|x|

f(y)yγ
ndy.

The following two theorems for these transformations were proved in [5]
(see also [6], Section 1.1).

Theorem A. Let 1 < q < ∞ . Suppose that v and w are a.e.
positive functions on Rn

+ . Then:

(a) The operator Hγ is bounded from L1,w,γ(Rn
+) to WLq,v,γ(Rn

+)
if and only if

A1 ≡ sup
t>0

(∫
{Bt

vq(x)xγ
ndx

)1/q

sup
Bt

w−1(x) < ∞,

(b) The operator H ′
γ is bounded from L1,w,γ(Rn

+) to WLq,v,γ(Rn
+)

if and only if

A2 ≡ sup
t>0

(∫

Bt

vq(x)xγ
ndx

)1/q

sup
{Bt

w−1(x) < ∞.

Moreover, there exist positive constants aj , j = 1, . . . , 4 , depending
only on q such that a1A1 ≤ ‖H‖ ≤ a2A1 and a3A2 ≤ ‖H ′‖ ≤ a4A2 .

Theorem B. Let 1 < p ≤ q < ∞ . Suppose that v and w are a.e.
positive functions on Rn

+ . Then:

(a) The operator Hγ is bounded from Lp,w,γ(Rn
+) to Lq,v,γ(Rn

+) if
and only if
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A3 ≡ sup
t>0

(∫
{Bt

vq(x)xγ
ndx

)1/q (∫

Bt

w−p′(x)xγ
ndx

)1/p′

< ∞, p′ = p/(p−1),

(b) The operator H ′
γ is bounded from Lp,w,γ(Rn

+) to Lq,v,γ(Rn
+) if

and only if

A4 ≡ sup
t>0

(∫

Bt

vq(x)xγ
ndx

)1/q (∫
{
Bt

w−p′(x)xγ
ndx

)1/p′

< ∞.

Moreover, there exist positive constants bj , j = 1, . . . , 4 , depending
only on p and q such that b1A3 ≤ ‖H‖ ≤ b2A3 and b3A4 ≤ ‖H ′‖ ≤
b4A4 .

We will need the case when we substitute Lp,υ,γ(Rn
+) by the homoge-

neous space (X, ρ, µ) , X = Rn
+ , ρ(x − y) = |x − y| , dµ(x) = xγ

ndx in
Theorems A and B.

Consider the B -Riesz potential

Iα,γf(x) =
∫

Rn
+

T y|x|α−n−γf(y)yγ
ndy, 0 < α < n + γ.

For the B -Riesz potential the following Hardy-Littlewood-Sobolev the-
orem is valid.

Theorem 1. ([1]) Let 0 < α < n + γ and 1 ≤ p < n+γ
α .

1) If 1 < p < n+γ
α , then condition 1

p − 1
q = α

n+γ is necessary and
sufficient for the boundedness of Iα,γ from Lp,γ(Rn

+) to Lq,γ(Rn
+) .

2) If p = 1 , then condition 1− 1
q = α

n+γ is necessary and sufficient for
the boundedness of Iα,γ from L1,γ(Rn

+) to WLq,γ(Rn
+) .

2. Main results

One of the our main results is the following Stein-Weiss type theorem
for the B -Riesz potentials.

Theorem 2. Let 0 < α < n + γ , 1 < p ≤ q < ∞ , β < n+γ
p′ ,

λ < n+γ
q , β + λ ≥ 0 ( β + λ > 0 , if p = q ), 1

p − 1
q = α−β−λ

n+γ and f ∈
Lp,|x|β ,γ(Rn

+) . Then Iα,γf ∈ Lq,|x|−λ,γ(Rn
+) and the following inequality

holds:
(∫

Rn
+

|x|−λq |Iα,γf(x)|q xγ
ndx

)1/q

≤ C

(∫

Rn
+

|x|βp|f(x)|pxγ
ndx

)1/p

, (2)

where C is independent of f .
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P r o o f. We have

(∫

Rn
+

|x|−λq |Iα,γf(x)|q xγ
ndx

)1/q

≤
(∫

Rn
+

|x|−λq

(∫

B|x|/2

|f(y)| T y|x|α−n−γyγ
ndy

)q

xγ
ndx

)1/q

+

(∫

Rn
+

|x|−λq

(∫

B2|x|\B|x|/2

|f(y)| T y|x|α−n−γyγ
ndy

)q

xγ
ndx

)1/q

+

(∫

Rn
+

|x|−λq

(∫
{B2|x|

|f(y)| T y|x|α−n−γyγ
ndy

)q

xγ
ndx

)1/q

≡ I1 +I2 +I3.

It is easy to verify that if |y| < |x|/2 , then |x| ≤ |y| + |x − y| <
|x|/2 + |x − y| . Hence |x|/2 < |x − y| and T y|x|α−n−γ ≤ (|x|/2)α−n−γ .
Consequently,

I1 ≤ 2n+γ−α

(∫

Rn
+

|x|(α−n−γ−λ)q (Hγf(x))q xγ
ndx

)1/q

.

Further, taking into account the inequality −λq < (n + γ−α)q−n− γ
( ≡ α < n+γ

q′ + λ ) we have(∫
{Bt

|x|(−λ+α−n−γ)qxγ
ndx

)1/q

= C1t
α−λ−(n+γ)/q′ ,

where C1 =
(

ω(n,γ)
q/q′+(λ−α)q/(n+γ)

)1/q
.

Analogously, by virtue of the condition βp < (n + γ)(p − 1) ( ≡ β <
n+γ
p′ ), it follows that(∫

Bt

|x|−βp′xγ
ndx

)1/p′

= C2t
(n+γ)/p′−β,

where C2 =
(

ω(n,γ)
1−βp′/(n+γ)

)1/p′
.

Summarizing these estimates, we find that

sup
t>0

(∫
{Bt

|x|(−λ+α−n−γ)qxγ
ndx

)1/q (∫

Bt

|x|−βp′xγ
ndx

)1/p′

= C1C2 sup
t>0

t
α−β−λ+n+γ

q
−n+γ

p < ∞⇐⇒ α− β − λ =
n + γ

p
− n + γ

q
.
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Now the first part of Theorem A leads us to the inequality

I1 ≤ b2C1C22n+γ−α

(∫

Rn
+

|x|β|f(x)|pxγ
ndx

)1/p

.

It is easy to verify that if |y| > 2|x| , then |y| ≤ |x| + |x − y| <
|y|/2 + |x − y| . Hence |y|/2 < |x − y| and T y|x|α−n−γ ≤ (|y|/2)α−n−γ .
Consequently,

I3 ≤ 2n+γ−α

(∫

Rn
+

|x|−λq
(
H ′

γ

(|f(y)||y|α−n−γ
)
(x)

)q
xγ

ndx

)1/q

.

Further, taking into account the inequality −λq > −n − γ ( ≡ λ <
n+γ

q ), we have (∫

Bt

|x|−λqxγ
ndx

)1/q

= C3t
(n+γ)/q−λ,

where C3 =
(

ω(n,γ)
1−λq/(n+γ)

)1/q
. Analogously, by virtue of the condition

βp > αp− n− γ ( ≡ α < n+γ
p + β ), it follows that

(∫

Bt

|x|−(β+n+γ−α)p′xγ
ndx

)1/p′

= C4t
(n+γ)/p′−(n+γ+β−α),

where C4 =
(

ω(n,γ)
(1+(β−α)/(n+γ))p′−1

)1/p′
.

Summarizing these estimates, we find that

sup
t>0

(∫

Bt

|x|−λqxγ
ndx

)1/q (∫
{
Bt

|x|−(β+n+γ−α)p′xγ
ndx

)1/p′

= C3C4 sup
t>0

t
α−β−λ+n+γ

q
−n+γ

p < ∞⇐⇒ α− β − λ =
n + γ

p
− n + γ

q
.

Now the second part of Theorem B leads us to the inequality

I3 ≤ b4C3C42n+γ−α

(∫

Rn
+

|x|β|f(x)|pxγ
ndx

)1/p

.

To estimate I2 , we consider the cases α < n+γ
p and α > n+γ

p sepa-
rately.

Let α < n+γ
p . In this case the condition α = β + λ + n+γ

p − n+γ
q ≥

n+γ
p − n+γ

q implies q ≤ p∗ , where p∗ = (n + γ)p/(n + γ − αp) .
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First, assume that q < p∗ . In the sequel we use the notation

Dk ≡ {x ∈ Rn
+ : 2k ≤ |x| < 2k+1} , D̃k ≡ {x ∈ Rn

+ : 2k−2 ≤ |x| < 2k+2}.

By Hölder’s inequality with respect to the exponent p∗
q and Theorem

1, we find that

I2 =

(∫

Rn
+

|x|−λq

(∫

B2|x|\B|x|/2

|f(y)| T y|x|α−n−γyγ
ndy

)q

xγ
ndx

)1/q

=

(∑

k∈Z

∫

Dk

|x|−λq

(∫

B2|x|\B|x|/2

|f(y)| T y|x|α−n−γyγ
ndy

)q

xγ
ndx

)1/q

≤




∑

k∈Z




∫

Dk

(∫

B2|x|\B|x|/2

|f(y)| T y|x|α−n−γyγ
ndy

)p∗

xγ
ndx




q/p∗

×
(∫

Dk

|x|−λqp∗
p∗−q xγ

ndx

) p∗−q
p∗




1/q

≤ C5

(∑

k∈Z
2k[−λq+ p∗−q

p∗ (n+γ)]
(∫

Dk

∣∣∣Iα,γ

(
fχfDk

)
(x)

∣∣∣
p∗

xγ
ndx

)q/p∗
)1/q

≤ C6

(∑

k∈Z
2k[−λq+ p∗−q

p∗ (n+γ)]
(∫

fDk

|f(x)|pxγ
ndx

)q/p
)1/q

≤ C7

(∫

Rn
+

|x|β|f(x)|pxγ
ndx

)1/p

.

If q = p∗ , then β + λ = 0 and consequently, using directly Theorem 1
we have

I2 ≤ C8

(∑

k∈Z
2kβp∗

∫

Dk

∣∣∣Iα,γ

(
fχfDk

)
(x)

∣∣∣
p∗

xγ
ndx

)1/p∗

≤ C9

(∑

k∈Z
2kβp∗

(∫
fDk

|f(x)|pxγ
ndx

)p∗/p
)1/p∗

≤ C10

(∫

Rn
+

|x|βp|f(x)|pxγ
ndx

)1/p

.
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Now let α > n+γ
p . In this case by Hölder’s inequality with respect to

the exponent p we get the following estimate

I2 ≤



∫

Rn
+

|x|−λq

(∫

B2|x|\B|x|/2

|f(y)|pyγ
ndy

)q/p

×
(∫

B2|x|\B|x|/2

(
T y|x|α−n−γ

)p′
yγ

ndy

)q/p′

xγ
ndx




1/q

.

On the other hand, using (2) and the inequality α > n+γ
p , we find that

∫

B2|x|\B|x|/2

(
T y|x|α−n−γ

)p′
yγ

ndy ≤
∫

B2|x|\B|x|/2

|x− y|(α−n−γ)p′yγ
ndy

≤
∫ ∞

0

∣∣∣B2|x| ∩ E(x, τ
1

(α−n−γ)p′ )
∣∣∣
γ
dτ

≤
∫ |x|(α−n−γ)p′

0

∣∣B2|x|
∣∣
γ
dτ +

∫ ∞

|x|(α−n−γ)p′

∣∣∣E(x, τ
1

(α−n−γ)p′ )
∣∣∣
γ
dτ

≤C11|x|(α−n−γ)p′+n+γ+C12

∫ ∞

|x|(α−n−γ)p′
τ

1
(α−n−γ)p′ dτ =C13|x|(α−n−γ)p′+n+γ ,

where the positive constant C13 does not depend on x . The latter estimate
yields

I2 ≤

C14


∑

k∈Z

∫

Dk

|x|−λq+[(α−n−γ)p′+n+γ] q
p′

(∫

B2|x|\B|x|/2

|f(y)|pyγ
ndy

)q/p

xγ
ndx




1/q

≤ C14

(∑

k∈Z

∫

Dk

(∫
fDk

|f(y)|pyγ
ndy

)q/p

|x|−λq+[(α−n−γ)p′+n+γ] q
p′ xγ

ndx

)1/q

≤ C14

(∑

k∈Z
2k(−λ+α−n−γ+n+γ

p′ +n+γ
q

)q
(∫

fDk

|f(y)|pyγ
ndy

)q/p
)1/q

≤C14

(∑

k∈Z
2kβq

(∫
fDk

|f(x)|pxγ
ndx

)q/p
)1/q

≤C15

(∫

Rn
+

|x|βp|f(x)|pxγ
ndx

)q/p

.

Thus Theorem 2 is completely proved.
To obtain the general result on the boundedness of the B -potentials

Iα,γ we need the following weak weighted estimate.
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Theorem 3. Let 0 < α < n + γ , 1 < q < ∞ , β ≤ 0 , λ <
n+γ

q , β + λ ≥ 0 1 − 1
q = α−β−λ

n+γ and f ∈ L1,|x|β ,γ(Rn
+) . Then Iα,γf ∈

WLq,|x|−λ,γ(Rn
+) and the following inequality holds

(∫

{x∈Rn
+: |x|−λ|Iα,γf(x)|>τ}

xγ
ndx

)1/q

≤ C

τ

∫

Rn
+

|x|β|f(x)|xγ
ndx, (3)

where C is independent of f .

P r o o f. We have
(∫

{x∈Rn
+: |x|−λ|Iα,γf(x)|>τ}

xγ
ndx

)1/q

≤



∫

{x∈Rn
+: |x|−λ

R
B|x|/2

|f(y)| T y |x|α−n−γyγ
ndy>τ/3}

xγ
ndx




1/q

+




∫

{x∈Rn
+: |x|−λ

R
B2|x|\B|x|/2

|f(y)| T y |x|α−n−γyγ
ndy>τ/3}

xγ
ndx




1/q

+




∫

{x∈Rn
+: |x|−λ

R
{
B2|x|

|f(y)| T y |x|α−n−γyγ
ndy>τ/3}

xγ
ndx




1/q

≡ J1 + J2 + J3.

Then

J1 ≤
(∫

{x∈Rn
+: 2n+γ−α|x|α−n−γ−λHγf(x)>τ/3}

xγ
ndx

)1/q

.

Further, taking into account the inequality −λq < (n + γ−α)q−n− γ
( ≡ α < n + γ − n+γ

q + λ ) we have
∫

{Bt

|x|(−λ+α−n−γ)qxγ
ndx

=
∫

Sn−1
+

∫ ∞

t
r(−λ+α−n−γ)q+n+γ−1ξγ

ndξdr = C16 t(−λ+α−n−γ)q+n+γ ,

where the positive constant C16 depends only on α , λ and q . Analo-
gously by virtue of the condition β ≤ 0 it follows that

sup
Bt

|x|−β = t−β.
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Summarizing these estimates we find that

sup
t>0

(∫
{Bt

|x|(−λ+α−n−γ)qxγ
ndx

)1/q

sup
Bt

|x|−β

= C16 sup
t>0

t
n+γ

q
−λ+α−n−γ−β

< ∞⇐⇒ α− β − λ = n + γ − n + γ

q
.

Now in the case p = 1 the first part of Theorem A leads us to the inequality

J1 ≤ C17

τ

∫

Rn
+

|x|β|f(x)|pxγ
ndx,

where the positive constant C17 is independent of f .
Also,

J3 ≤
(∫

{x∈Rn
+: 2n+γ−α|x|−λH′

γ(|f(y)||y|α−n−γ)(x)>τ/3}
xγ

ndx

)1/q

.

Further, taking into account the inequality −λq > −n − γ ( ≡ λ <
n+γ

q ) we have
∫

Bt

|x|−λqxγ
ndx =

∫

Sn−1
+

∫ t

0
r−λq+n+γ−1ξγ

ndξdr = C18t
−λq+n+γ ,

where the positive constant C18 depends only on α and λ . Analogously
by virtue of the condition β ≥ α− n− γ it follows that

sup
{
Bt

|x|−β+α−n−γ = t−β+α−n−γ .

Summarizing these estimates, we find that

sup
t>0

(∫

Bt

|x|−λqxγ
ndx

)1/q

sup
{
Bt

|x|−β+α−n−γ

= C18 sup
t>0

t
n+γ

q
−λ+α−n−γ−β

< ∞⇐⇒ α− β − λ = n + γ − n + γ

q
.

Now in the case p = 1 the second part of Theorem A leads us to the
inequality

J3 ≤ C19

τ

∫

Rn
+

|x|β|f(x)|xγ
ndx,

where the positive constant C19 is independent of f .
We now, we estimate J2 .
From β + λ ≥ 0 and Theorem 1 we get
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J2 =


∑

k∈Z

∫

{x∈Dk: |x|−λ
R

B2|x|\B|x|/2
|f(y)| T y |x|α−n−γyγ

ndy>τ/3}
xγ

ndx




1/q

≤

∑

k∈Z

∫

{x∈Dk:
R

B2|x|\B|x|/2
|f(y)||y|β T y |x|α−β−λ−n−γyγ

ndy>cτ}
xγ

ndx




1/q

≤
(∑

k∈Z

∫

{x∈Dk:
���Iα−β−λ,γ

�
f(·)|·|βχgDk

�
(x)
���>cτ}

xγ
ndx

)1/q

≤
(∑

k∈Z

(
C20

τ

∫
fDk

|f(x)||x|β xγ
ndx

)q
)1/q

≤
(

C21

τ

∫

Rn
+

|x|β|f(x)|xγ
ndx

)1/q

.

From Theorems 2 and 3 we get the following

Theorem 4. Let 0 < α < n+γ , 1 ≤ p ≤ q < ∞ , β < n+γ
p′ ( β ≤ 0 ,

if p = 1 ), λ < n+γ
q ( λ ≤ 0 , if q = ∞ ), α ≥ β + λ ≥ 0 ( β + λ > 0 , if

p = q ). Then:

1) If 1 < p < n+γ
α−β−λ , then condition 1

p − 1
q = α−β−λ

n+γ is necessary and
sufficient for the boundedness of Iα,γ from Lp,|x|β ,γ(Rn

+) to Lq,|x|−λ,γ(Rn
+) .

2) If p = 1 , then condition 1− 1
q = α−β−λ

n+γ is necessary and sufficient
for the boundedness of Iα,γ from L1,|x|β ,γ(Rn

+) to WLq,|x|−λ,γ(Rn
+) .

P r o o f. Sufficiency of Theorem 4 follows from Theorems 2 and 3.
Necessity. 1) Suppose that the operator Iα,γ is bounded from

Lp,|x|β ,γ(Rn
+) to Lq,|x|−λ,γ(Rn

+) and 1 < p < n+γ
α−β−λ .

Define ft(x) =: f(tx) for t > 0 . Then it can be easily shown that

‖ft‖L
p,|x|β,γ

= t
−n+γ

p
−β ‖f‖L

p,|x|β,γ
, (Iα,γft)(x) = t−αIα,γf(tx),

and
‖Iα,γft‖L

q,|x|−λ,γ
= t

−α−n+γ
q

+λ ‖Iα,γf‖L
q,|x|−λ,γ

.

Since the operator Iα,γ is bounded from Lp,|x|β ,γ(Rn
+) to Lq,|x|−λ,γ(Rn

+) ,
we have

‖Iα,γf‖L
q,|x|−λ,γ

≤ C‖f‖L
p,|x|β,γ

,

where C is independent of f . Then we get
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‖Iα,γf‖L
q,|x|−λ,γ

= t
α+n+γ

q
−λ ‖Iα,γft‖L

q,|x|−λ,γ

≤ Ct
α+n+γ

q
−λ‖ft‖L

p,|x|β,γ
= Ct

α+n+γ
q
−λ−n+γ

p
−β‖f‖L

p,|x|β,γ
.

If 1
p−1

q < α−β−λ
n+γ , then for all f ∈ Lp,|x|β ,γ(Rn

+) we have ‖Iα,γf‖L
q,|x|−λ,γ

= 0 as t → 0 .
If 1

p−1
q > α−β−λ

n+γ , then for all f ∈ Lp,|x|β ,γ(Rn
+) we have ‖Iα,γf‖L

q,|x|−λ,γ

= 0 as t →∞ .
Therefore we get the equality 1

p − 1
q = α−β−λ

n+γ .
2) Suppose that the operator Iα,γ is bounded from L1,|x|β ,γ(Rn

+) to
WLq,|x|−λ,γ(Rn

+) . It is easy to show that

‖ft‖L
1,|x|β,γ

= t−n−γ−β ‖f‖L
1,|x|β,γ

, (Iα,γft)(x) = t−α(Iα,γf)(tx),

and
‖Iα,γft‖WL

q,|x|−λ,γ
= t

−α−n+γ
q

+λ ‖Iα,γf‖WL
q,|x|−λ,γ

.

By the boundedness of Iα,γ from L1,|x|β ,γ(Rn
+) to WLq,|x|−λ,γ(Rn

+) ,
we have

‖Iα,γf‖WL
q,|x|−λ,γ

≤ C‖f‖L
1,|x|β,γ

,

where C is independent of f . Then we have

(Iα,γft)∗,γ(τ) = t−n−γ(Iα,γf)∗,γ(tατ),

‖Iα,γft‖WL
q,|x|−λ,γ

= t
−α−n+γ

q
+λ ‖Iα,γf‖WL

q,|x|−λ,γ
,

and

‖Iα,γf‖WL
q,|x|−λ,γ

= t
α+n+γ

q
−λ‖Iα,γft‖WL

q,|x|−λ,γ

≤ Ct
α+n+γ

q
−λ‖ft‖L

1,|x|β,γ
= Ct

α+n+γ
q
−λ−n−γ−β‖f‖L

1,|x|β,γ
.

If 1−1
q < α−β−λ

n+γ , then for all f ∈ L1,|x|β ,γ we have ‖Iα,γf‖WL
q,|x|−λ,γ

=
0 as t → 0 .

If 1−1
q > α−β−λ

n+γ , then for all f ∈ L1,|x|β ,γ we have ‖Iα,γf‖WL
q,|x|−λ,γ

=
0 as t →∞ .

Therefore we get the equality 1− 1
q = α−β−λ

n+γ .
Thus Theorem 4 is proved.
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