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Abstract
The product of an entire function satisfying a growth condition at in-

finity and an integrable Boehmian is defined. Properties of this product are
investigated.
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1. Introduction
Different aspects of the spaces of generalized functions known as Boehmi-

ans have been investigated by several authors. For example, the convergence
structures for different spaces of Boehmians have been studied in [5] and
[11]. Boehmians on the torus have been studied in [17], while Boehmians
on the sphere were investigated in [12], [13], and [15]. Also, there have been
several integral transforms extended to spaces of Boehmians ([1], [2], [4],
[6], [8], [9], [10], [14], [16]).

However, defining a suitable product of a function and a Boehmian has
been a problem ([18], [19]). In this note, we provide a definition for the
product of an element from a class of entire functions and an integrable
Boehmian. Then some properties of this product are established.

2. Integrable Boehmians
In this section, after presenting some notation, we discuss the space

of integrable Boehmians. This includes a discussion of the convergence
structure known as δ-convergence, and a brief discussion of the Fourier
transform. For more results concerning integrable Boehmians see [1], [2],
[4], [6], [8], [10], and [16].
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Let L1(R) denote the space of complex-valued integrable functions on
the real line R. Let C(R) denote the space of continuous functions on the
real line and C∞(R) denote all smooth functions on R.

A sequence of integrable functions {fn} converges to f ∈ L1(R) provided
that ||fn − f || → 0 as n →∞, where ||f || = ∫∞

−∞ |f(x)|dx.

Definition 2.1. A sequence {δn} ∈ L1(R) ∩ C(R) is called a delta
sequence, provided

(i)
∫∞
−∞ δn(x) dx = 1 for all n ∈ N;

(ii)
∫∞
−∞ |δn(x)| dx ≤ M for some constant M and all n ∈ N;

(iii) lim
n→∞

∫
|x|>ε |δn(x)| dx = 0 for all n ∈ N and ε > 0.

A pair of sequences (fn, δn) is called a quotient of sequences if fn ∈ L1(R)
for n ∈ N, {δn} is a delta sequence, and fk ∗ δm = fm ∗ δk for all k, m ∈ N,
where ∗ denotes convolution:

(f ∗ g)(x) =
∫ ∞

−∞
f(x− t)g(t)dt. (2.1)

Two quotients of sequences (fn, δn) and (gn, ψn) are said to be equivalent
if fk∗ψm = gm∗δk for all k, m ∈ N. A straightforward calculation shows that
this is an equivalence relation. The equivalence classes are called integrable
Boehmians. The space of all integrable Boehmians will be denoted by βL1

and a typical element of βL1 will be written as F = [fn

δn
].

The space βL1 is a convolution algebra with addition, scalar multiplica-
tion, and convolution as follows:[

fn

δn

]
+

[
gn

ϕn

]
=

[
fn ∗ ϕn + gn ∗ δn

δn ∗ ϕn

]
, (2.2)

α

[
fn

δn

]
=

[
αfn

δn

]
, where α ∈ C, (2.3)

[
fn

δn

]
∗

[
gn

ϕn

]
=

[
fn ∗ gn

δn ∗ ϕn

]
. (2.4)

The space L1(R) may be viewed as a subspace of βL1 by identifying
f ∈ L1(R) with

[
f∗δn

δn

]
∈ βL1 , where {δn} is any delta sequence.

Definition 2.2. A sequence Fn ∈ βL1 is said to be δ-convergent to
F ∈ βL1 , denoted δ- lim

n→∞Fn = F , if there exists a delta sequence {δn} such
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that for all n, k ∈ N, Fn ∗ δk, F ∗ δk ∈ L1(R) and, for each k ∈ N, Fn ∗ δk →
F ∗ δk in L1(R) as n →∞.

The Fourier transform of an L1(R) function is given by

f̂(x) =
∫ ∞

−∞
f(t)e−ixtdt. (2.5)

The Fourier transform can be extended to the space βL1 as follows.

Definition 2.3. The Fourier transform for F =
[

fn

δn

]
∈ βL1 is given

by
F̂ (x) = lim

n→∞ f̂n(x). (2.6)

The above limit exists, and is independent of the representative. More-
over, the Fourier transform of a Boehmian is a continuous function and
satisfies the same basic properties as the classical Fourier transform of an
L1 function (see [10]).

The following will be needed in the proof of Theorem 2.5 and also in
the following sections:

(i) If {δn} is a delta sequence, then δ̂n → 1 as n →∞, where the conver-
gence is uniform on compact sets of R.

(ii) There exists a delta sequence {δn} such that δ̂n ∈ C∞(R) and supp δ̂n

is compact, n ∈ N. Let S(R) denote the space of rapidly decreasing
smooth functions. Let ψ ∈ S(R) such that ψ has compact support
and ψ(0) = 1. Since the Fourier transform maps the space S(R)
onto itself, there exists a σ ∈ S(R) such that σ̂ = ψ. Now, put
δn(x) = nσ(nx), n ∈ N. Then, {δn} is the desired delta sequence.

The proof of the following lemma is left to the reader. The space of all
continuous functions which vanish at infinity is denoted by C0(R). Also, a
function f ∈ C(2)(R) provided that it is twice differentiable and f ′′ ∈ C(R).

Lemma 2.4. Let g ∈ C(2)(R) such that g(j) ∈ L1(R) ∩ C0(R) for
j = 0, 1, 2. Then there exists f ∈ L1(R) such that f̂(x) = g(x), x ∈ R.

The following theorem will be useful when investigating the product in
the next section.

Theorem 2.5. If g ∈ C(2)(R), then there exists a unique F ∈ βL1

such that F̂ (x) = g(x), x ∈ R.
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P r o o f. Let {δn} be a delta sequence with supp δ̂n bounded and
δ̂n ∈ C∞(R). Thus, (gδ̂n)(j) ∈ L1(R)∩C0(R) for j = 0, 1, 2. By Lemma 2.4,
there exists fn ∈ L1(R) such that f̂n = gδ̂n, n ∈ N.

Hence, for all k, n ∈ N,
(fn ∗ δk )̂ = (gδ̂n)δ̂k = (gδ̂k)δ̂n = (fk ∗ δn)̂ . (2.7)

This yields, for all k, n ∈ N,
fn ∗ δk = fk ∗ δn. (2.8)

So, F =
[

fn

δn

]
∈ βL1 . Moreover, for each x ∈ R,

F̂ (x) = lim
n→∞ f̂n(x) = lim

n→∞ g(x)δ̂n(x) = g(x). (2.9)

The uniqueness follows from the fact that the Fourier transform is injective
[10].

3. The product

In this section, using the convergence structure, the definition of the
product of an entire function satisfying a growth condition and an integrable
Boehmian is presented. It is shown that many of the properties satisfied by
the product of functions are also satisfied by the product of a function and
a Boehmian.

Let
M = {ϕ : ϕ is entire, ∃r > 0, ε > 0, γ > 0 3 |ϕ(z)| ≤ γ er|Imz|

(1+|z|)3+ε , z ∈ C}.
Remarks 3.1.

(i) Elements of M are called multipliers for βL1 . We will see that each
element of M has a well-defined product with each element of βL1 .

(ii) Z ⊂M (Z is the space of testing functions used to define the space of
ultradistributions (see [20]). Let D(R) denote the space of all infinitely
differentiable functions with compact supports. Then, Z is the space
of all functions whose Fourier transforms are elements of D(R).)

(iii) If ϕ ∈M, then ϕ̂ ∈ C(2)(R) and supp ϕ̂ is compact.

(iv) M is an algebra which is invariant under differentiation.

Let {σn} be any fixed delta sequence such that σ̂n ∈ D(R), n ∈ N. For
ϕ ∈M and F ∈ βL1 , define

fϕ
n (x) =

1
2π

∫

|t|≤n

(
1− |t|

n

)
(ϕ̂ ∗ F̂ )(t)eixtdt (3.1)

and
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Fϕ
n =

[
fϕ

n ∗ σk

σk

]
for n = 1, 2, . . . (3.2)

Definition 3.2. Let ϕ ∈ M and F ∈ βL1 . The product of ϕ and F ,
denoted ϕ • F , is given by

ϕ • F = δ- lim
n→∞Fϕ

n . (3.3)

Let ϕ ∈ M and F ∈ βL1 . Since ϕ̂ ∈ C(2)(R) and supp ϕ̂ is compact,
ϕ̂ ∗ F̂ ∈ C(2)(R). So, by Theorem 2.5 there exists a unique G ∈ βL1 such
that Ĝ = ϕ̂ ∗ F̂ .

Also, by examining the proof of Theorem 2.5, G =
[

gn

σn

]
for some gn ∈

L1(R), n ∈ N.
Much of the following is similar to the proof of Theorem 4 in [10]. Using

the above and Fubini’s Theorem, for each k, n ∈ N we obtain

(fϕ
n ∗ σk)(x) =

1
2π

∫

|t|≤n

(
1− |t|

n

)
ĝk(t)eixtdt. (3.4)

By another application of Fubini’s Theorem,

((fϕ
n ∗ σk) ∗ σm)(x) =

1
2π

∫

|t|≤n

(
1− |t|

n

)
ĝk(t)σ̂m(t)eixtdt, (3.5)

k, m, n ∈ N.

Since G =
[

gn

σn

]
∈ βL1 ,

ĝkσ̂m = ĝmσ̂k, k, m ∈ N. (3.6)

It follows from (3.5) and (3.6) that

(fϕ
n ∗ σk) ∗ σm = (fϕ

n ∗ σm) ∗ σk, for all k,m, n ∈ N. (3.7)

Now,

fϕ
n ∗ σk = ωn ∗ gk (k, n ∈ N), (3.8)

where ωn is Fejér’s kernel [7]. Thus, fϕ
n ∗ σk ∈ L1(R) (k, n ∈ N), and for

each k ∈ N, fϕ
n ∗ σk → gk (in L1(R)) as n →∞.

Thus, Fϕ
n =

[
fϕ

n ∗σk
σk

]
∈ βL1 , n ∈ N, and δ- lim

n→∞Fϕ
n = G.

Therefore, the product is well-defined for any ϕ ∈M and any F ∈ βL1 .
We also obtain from above, the following
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Theorem 3.3. Let ϕ ∈M and F ∈ βL1 . Then (ϕ • F )̂ = ϕ̂ ∗ F̂ .

The product of a function and a Boehmian is consistent with multipli-
cation of ordinary functions. More precisely, let ϕ ∈ M and f ∈ L1(R).
Since L1(R) ⊂ βL1 , f may be considered as an integrable Boehmian. Thus,
ϕ • f has meaning. Moreover, it is not difficult to show that ϕ • f = ϕf .

Theorem 3.4. Let ϕ,ψ ∈M and F, G ∈ βL1 . Then:

(i) ϕ • (F + G) = ϕ • F + ϕ •G,
(ii) (ϕ + ψ) • F = ϕ • F + ψ • F ,
(iii) α(ϕ • F ) = αϕ • F = ϕ • αF, α ∈ C,
(iv) ϕ • (ψ • F ) = (ϕ • ψ) • F .

P r o o f. The verification of (i), (ii), and (iii) are routine. For (iv),

(ϕ • (ψ • F ))̂ = ϕ̂ ∗ (ψ • F )̂ = ϕ̂ ∗ (ψ̂ ∗ F̂ ) = (ϕ̂ ∗ ψ̂) ∗ F̂

= (ϕ • ψ)̂ ∗ F̂ = ((ϕ • ψ) • F )̂.

Thus, ϕ • (ψ • F ) = (ϕ • ψ) • F .
Let E ′(R) denote the space of distributions with compact supports. By

identifying f ∈ E ′(R) with
[

f∗δn

δn

]
∈ βL1 , where {δn} is any delta sequence

such that δn ∈ D(R) (n ∈ N) , we may consider E ′(R) a subspace of βL1 .

Example 3.5. Using Definition 3.2, the product ϕ•δ(p) is determined,
where δ(p) is the pth derivative of the Dirac delta measure.

Let ϕ ∈M and {σn} be a delta sequence with σ̂n ∈ D(R), n ∈ N,
(
ϕ̂ ∗ (δ(p))̂

)
(x) = (ϕ̂ ∗ (it)p)(x) = ip

p∑

j=0

(−1)j

(
p

j

)
xp−j

∫ ∞

−∞
tjϕ̂(t)dt.

(3.9)
Thus, with F = δ(p), for each k ∈ N

(fϕ
n ∗ σk)(x)

=
1
2π

∫ ∞

−∞

(
1− |t|

n

)
ip

p∑

j=0

(−1)j

(
p

j

)
tp−j

∫ ∞

−∞
ujϕ̂(u)du


 eixtσ̂k(t)dt

(3.10)

=
1
2π

∫ ∞

−∞

(
1− |t|

n

)
ip

p∑

j=0

(−1)j

(
p

j

)
tp−j(−i)jϕ(j)(0)


 eixtσ̂k(t)dt

=
p∑

j=0

(−1)j

(
p

j

)
ϕ(j)(0)

(
1
2π

∫ ∞

−∞

(
1− |t|

n

)
σ̂

(p−j)
k (t)eixtdt

)
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→
p∑

j=0

(−1)j

(
p

j

)
ϕ(j)(0)σ(p−j)

k (x) as n →∞.

(Here the convergence is in L1(R)).
Thus,

ϕ • δ(p) =
p∑

j=0

(−1)j

(
p

j

)
ϕ(j)(0)

[
σ

(p−j)
k

σk

]
, p = 0, 1, 2, . . . (3.11)

This agrees with the product in the space of distributions. That is, if ϕ ∈M,
then

ϕ δ(p) =
p∑

j=0

(−1)j

(
p

j

)
ϕ(j)(0)δ(p−j), p = 0, 1, 2, . . . (3.12)

The previous is not an isolated example. If ϕ ∈M and F ∈ E ′(R), then
the product given in Definition 3.2 gives the same result as the product ϕF
considered in the theory of distributions. This will be made more precise in
the next theorem.

By applying Theorem 6.11 in [3] and using the fact that the Fourier
transform is injective on βL1 , we obtain:

Theorem 3.6. Let ϕ ∈ M and f ∈ E ′(R). Then, ϕf = ϕ • f . (ϕf
denotes the product of a slowly increasing C∞ function and a distribution
with compact support.)

Before the final result of this section, Leibniz formula, is given, a lemma
and the definition of a generalized derivative are needed.

Let {ϕn} be a delta sequence such that ϕn ∈ D(R), n ∈ N. For F =[
fn

δn

]
∈ βL1 , the generalized n-th derivative of F , denoted DnF , is given by

DnF =

[
fk ∗ ϕ

(n)
k

δk ∗ ϕk

]
. (3.13)

Lemma 3.7. Let α ∈ C and f, g ∈ C(R) where f has compact support.
Then,

(αx)n(f ∗ g) =
n∑

j=0

(
n

j

)(
(αx)n−jf ∗ (αx)jg

)
, for n = 1, 2, . . . (3.14)

P r o o f. The equality follows from

x(f ∗ g) = xf ∗ g + f ∗ xg (3.15)

by induction.
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Theorem 3.8. Let ϕ ∈M and F ∈ βL1 . Then,

Dn(ϕ • F ) =
n∑

j=0

(
n

j

) (
ϕ(n−j) •DjF

)
, n = 1, 2, . . . (3.16)

P r o o f. For n = 1, 2, . . .

(Dn(ϕ • F ))̂ = (ix)n(ϕ̂ ∗ F̂ ) (3.17)

=
n∑

j=0

(
n

j

)(
(ix)n−jϕ̂ ∗ (ix)jF̂

)
(by Lemma 3.7)

=
n∑

j=0

(
n

j

) (
(ϕ(n−j))̂ ∗ (DjF )̂

)
=

n∑

j=0

(
n

j

) (
ϕ(n−j) •DjF

)
̂

=
( n∑

j=0

(
n

j

) (
ϕ(n−j) •DjF

) )̂
.

Thus, Dn(ϕ • F ) =
∑n

j=0

(
n
j

) (
ϕ(n−j) •DjF

)
, for n = 1, 2, . . .

4. Continuity of the product

In this section, the continuity of multiplication is established. This is
made more precise in Theorem 4.2.

The space of square integrable functions on R is denoted by L2(R). The

topology for L2(R) is generated by the norm ||f ||2 =
(∫∞
−∞ |f(x)|2dx

) 1
2 .

Let
βA = {F ∈ βL1 : F̂ ∈ C(2)(R)}.

Let {σn} be a fixed delta sequence such that σ̂n ∈ D(R), n ∈ N.

Remarks 4.1.

(i) βA is a convolution algebra.

(ii) For each F ∈ βA, F ∗ σn ∈ L2(R), n ∈ N. This follows by observing
that, for each n ∈ N, F ∗ σn ∈ L1(R) (see proof of Theorem 2.5),
(F ∗ σn)̂ = F̂ σ̂n ∈ C(2)(R), and supp(F ∗ σn)̂ is compact.

Now, we define a separating family of seminorms on βA.
For F ∈ βA,

γp(F ) = ||F ∗ σp||2, p = 1, 2, . . . (4.1)

The sequence of seminorms {γp} generates a locally convex topology for
βA. A sequence {Fn} in βA converges to F ∈ βA, denoted γ- lim

n→∞Fn = F ,

if for each p, γp(Fn − F ) → 0 as n →∞.
We now show that multiplication by an element of M is continuous.
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Theorem 4.2. Let ϕ ∈ M. Then F → ϕ • F is a continuous map
from βL1 into βA. (That is, if δ- lim

n→∞Fn = F , then γ- lim
n→∞ϕ • Fn = ϕ • F .)

P r o o f. First notice that for F ∈ βL1 , ϕ • F ∈ βA. Indeed,

(ϕ • F )̂ = ϕ̂ ∗ F̂ ∈ C(2)(R). (4.2)

Now, suppose Fn, F ∈ βL1 such that δ- lim
n→∞Fn = F . Then,

F̂n → F̂ uniformly on compact sets as n →∞ (see [10]).

((ϕ • Fn) ∗ σk )̂ , ((ϕ • F ) ∗ σk))̂ ∈ C(2)(R), (k, n ∈ N), (4.3)

and,

supp((ϕ • Fn) ∗ σk )̂ ∪ supp((ϕ • F ) ∗ σk )̂ ⊆ supp σ̂k, k, n ∈ N. (4.4)

Now, for each k, n ∈ N and all x ∈ R,

|((ϕ • Fn) ∗ σk )̂ (x)− ((ϕ • F ) ∗ σk )̂ (x)| (4.5)

= |((ϕ̂ ∗ F̂n)σ̂k)(x)− ((ϕ̂ ∗ F̂ )σ̂k)(x)|

≤
(∫

supp ϕ̂
|F̂n(x− t)− F̂ (x− t)| |ϕ̂(t)|dt

)
|σ̂k(x)|.

By using the above, we obtain, for each k ∈ N,

||((ϕ • Fn) ∗ σk )̂ − ((ϕ • F ) ∗ σk )̂ ||2 → 0 as n →∞. (4.6)
Plancherel’s theorem yields,

||(ϕ • Fn) ∗ σk − (ϕ • F ) ∗ σk||2 → 0 as n →∞. (4.7)
Thus, γ- lim

n→∞ϕ • Fn = ϕ • F .
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