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Abstract

In this paper, a comparative analysis of the models involving fractional
derivatives of different orders is given. Such models of viscoelastic materials
are widely used in various problems of mechanics and rheology. Rabotnov’s
hereditarily elastic rheological model is considered in detail. It is shown
that this model is equivalent to the rheological model involving fractional
derivatives in the stress and strain with the orders proportional to a certain
positive value less than unit. In the scientific literature such a model is
referred to as Koeller’s model. Inversion of Rabotnov’s model developed
by himself based on algebra of operators results in similar rheological de-
pendences. Inversion of Koeller’s model carried out using Miller’s theorem
coincides inherently with Rabotnov’s inversion procedure.
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1. Introduction

Many researchers in the sixties years, when constructing the theory of
viscoelasticity, started from the following differential law:

n∑

i=0

ai
diε

dti
=

m∑

j=0

bj
djσ

dtj
. (1)

Here ε and σ are the strain and stress, respectively, ai and bj (i, j =
1, 2, ..., n) are some known values, and this results in the hereditary law
with the kernel in the form of a sum of exponents

ε = J0

[
σ +

n∑

i=1

gi 3∗1 (−τ−1
i )σ

]
(2)

with the operator

3∗1 (−τ−1
i )σ =

∫ t

0
exp(−t′/τi)σ(t− t′)dt′. (3)

This point of view is developed in detail in [2], where the general analysis
of the relationships of the type (1) is given, and the method of obtaining
integral dependencies (2) and (3) is considered.

In their investigations modern researchers use the following rheological
equation proposed by Bagley [1] in his PhD thesis:

ε +
n∑

i=1

aiD
αiε = J0


σ +

m∑

j=1

bjD
βjσ


 , (4)

where αi (i = 1, 2, ..., n) and βj (j = 1, 2, ..., m) (0 < αi, βj < 1) are the
orders of Riemann-Liouville fractional derivatives Dαiε and Dβjσ, defined
as well known in the fractional calculus (see [2], [17]),

Dαf(t) =
1

Γ(1− α)
d

dt

t∫

0

f(τ)
(t− τ)α

dτ (0 < α < 1).

One more example of the rheological model involving sums of fractional
derivatives is the model suggested by Padovan and Sawicki [8]

ε +
Nε∑

l=1

µεl
Dblε = σ +

Nσ∑

l=1

µσl
Dalσ, (5)

where bl = 2l
Nε

, l ∈ [1, Nε] and al = 2l
Nσ

, l ∈ [1, Nσ]. Examples for using the
model (5) in dynamic problems of viscoelasticity can be found in [9] and
[18].
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In this paper, the authors do not pursue the goal to present the detailed
historical aspects of the application of fractional calculus for solving the
problems of mechanics, since this has been attained in their comprehen-
sive state-of-the-art articles [15] and [16]. Here, we want to limit ourselves
by highlighting the ideological inheritance of Academician Yu.N. Rabotnov
devoted to the fractional calculus models involving more than two different
fractional parameters.

Indeed, it is not well known that the rheological equation of the type
n∑

i=0

aiD
iαε =

n∑

j=0

bjD
jασ, (6)

combining in some sense Eqs. (1) and (4), was proposed by Rabotnov [12]
in 1966 in the equivalent form

ε = J∞

[
σ +

n∑

i=1

gi 3∗α (−τ−α
i )σ

]
(7)

with the operator

3∗α (−τ−α
i )σ =

∫ t

0
3α (−t′/τi)σ(t− t′)dt′. (8)

The function 3α (−1, t′/τi), which appears in Eq. (8),

3α (−1, t′/τi) =
tα−1

τα
i

∞∑

n=1

(−1)n (t/τi)αn

Γ[α(n + 1)]
, (9)

where Γ[α(n+1)] is the gamma-function, was called by Rabotnov in his pi-
oneering paper [11] published in 1948 as the fractional exponential function,
since for α = 1 it is reduced to the ordinary exponential function exp(−t/τi).
We shall follow the terminology by Rabotnov.

Further, in 1966 Rabotnov was the first to show in his book [12] the
connection between the fractional exponential function (9) and the Mittag-
Leffler function (see equation (30.3) in [12]). This relationship is presented
below in Eq. (21). Moreover, in 1969 Rabotnov with his pupils [14] tabu-
lated the fractional exponential function ant its integral, which is expressed
in terms of the Mittag-Leffler function. Subsequently, some part of the
tables [14] were included in [13] and published in its English edition.

It is interesting, as a fact, that the model (5) combines the features of
the models (4) and (6). But despite the model (4), its fractional parameters
appearing in the left and right sides are proportional to N−1

ε and N−1
σ ,

respectively; and unlike the model (6), the magnitudes of all its fractional
parameters fall within the range from 0 to 2.
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2. Equivalence of the models (6) and (7)

In order to establish the equivalence of the model (6) with m = n and the
model (7), let us apply Laplace transform to Eq. (6). Expressing transform
ε̄ in terms of transform σ̄ yields

ε =

n∑
j=0

bjp
jα

n∑
i=0

aipiα

σ, (10)

with p denoting the Laplace transform variable.
Suppose that equations

n∑

j=0

bjZ
j = 0, (11a)

n∑

i=0

aiZ
i = 0 (11b)

possess real and different roots, which we denote, respectively, as γj = −t−α
j

(j = 1, ..., n) and βi = −t̃−α
i (i = 1, ..., n). Then expanding the fraction

involved in (10) into simple fractions, we obtain

n∑
j=0

bjp
jα

n∑
i=0

aipiα

=
bn

an

n∏
j=1

(pα + t−α
j )

n∏
i=1

(pα + t̃−α
i )

= J∞

(
1 +

n∑

i=1

gi

1 + (pτi)α

)
, (12)

where J∞ is compliance,

gi = tαi
fn−1(−t−α

i )
n∏

k=1
(k 6=i)

(t̃−α
k − t̃−α

i )
, fn−1(p) =

n−1∑

i=0

(
bi

bn
− ai

an

)
piα, J∞ =

bn

an
.

In view of (12), relationship (10) can be then represented in the form

ε = J∞

(
1 +

n∑

i=1

gi

1 + (pτi)α

)
σ. (13)

Considering that Laplace transform of the fractional exponent 3α (−t/τi)

3̄α(p) = [1 + (pτi)α]−1 (14)
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and going in Eq. (13) from image to pre-image, we are led to relationship
(7).

The rheological equation (7) was suggested by Rabotnov [12, 13] for
approximation of hereditary kernels determined experimentally.

In 1986 Koeller [6] presented Eq. (6) in the case n = 2 in the form

(a0 + a1D
α + a2D

2α)ε = (b0 + b1D
α + b2D

2α)σ, (15)

and in the equivalent form

(Dα + τ−α
1 )(Dα + τ−α

2 )σ = (Dα + t−α
1 )(Dα + t−α

2 )ε, (16)

without any reference to Rabotnov’s monograph [13], although in Introduc-
tion to his previous paper [5] published in 1984, the author wrote about his
familiarity with Rabotnov’s theory via English translation of Rabotnov’s
book [13] carried out in 1980.

Further researchers, see for example Welch et al [21], using equation
(15) and knowing nothing about Rabotnov’s investigations, without any
hesitation gave Koeller credit for its derivation, although for fairness’ sake,
Eqs. (6) and (15) should be called as Rabotnov-Koeller equations.

Expressing from Eq. (7) σ in terms of ε yields

σ = E∞


ε−

n∑

j=1

ej 3∗α (−t−α
j )ε


 , (17)

where E∞ = J−1∞ , and

ei = tαi
f(n−1)(−t−α

j )
n∏

k=1
(k 6=n)

(t−α
k − t−α

i )
.

3. Connection between the rheological parameters
of equations (7) and (17)

If, following Rabotnov [13], we substitute the value σ from Eq. (17) into
Eq. (7) and use the theorem of operators’ multiplication,

3∗α (−τ−α
i ) 3∗α (−τ−α

j ) =
1

τ−α
j − τ−α

i

[3∗α (−τ−α
i )− 3∗α (−τ−α

j )], (18)

then as a result, we obtain
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n∑

i=1

gi 3∗α (−τ−α
i )−

n∑

j=1

ej 3∗α (−t−α
j )

−
n∑

i=1

n∑

j=1

giej

3∗α (−τ−α
i )− 3∗α (−t−α

j )

t−α
j − τ−α

i

= 0,

whence the two series of equalities follow:

1 +
n∑

i=1

gi

τ−α
i − t−α

j

= 0, 1 +
n∑

j=1

ej

τ−α
i − t−α

j

= 0. (19a, b)

The first series of equalities (19a) shows that the values t−α
j are the roots

of the equation

1 +
n∑

i=1

gi

τ−α
i − x

= 0.

The second series of equalities (19b) represents a set of n linear equations
for n unknown coefficients ej .

Suppose that gi > 0, τ−α
i > 0 and τ−α

k > τ−α
k−1 > 0, and consider the

following two functions

F1(x) = 1 +
n∑

i=1

gi

τ−α
i − x

, F2(y) = 1 +
n∑

j=1

ej

y − t−α
j

. (20a, b)

A reference to formulas (20) shows that the function F1(x) possesses
zeros F1(γj) = 0 located between its poles F1(βi) = ±∞, that is

βk < γk < βk+1, βn < γn,

therefore F1(0) = 1, and F1(∞) = F1(−∞) = 1. As for the function F2(y),
0 < F2(0) < 1, F2(±∞) = 1, and then the values ej > 0 (j = 1, ..., n).

Let us put σ = σ0 =const in (7), and take into account Eq. (30.3) from
[12], i.e.,

3∗α (−t/τ−1
i ) · 1 = {1− Eα [−(t/τj)α]} τα

i , (21)
where

Eα [−(t/τj)α] =
∞∑

n=0

(−1)n(t/τi)αn

Γ(1 + αn)

is the Mittag-Leffler function. Then going to limit as t →∞ and considering
that Eα(−∞) = 0, we find

ε(∞) = J∞

[
1 +

n∑

i=1

giτ
α
i

]
σ0 = F1(0)J∞σ0. (22a)
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Similarly, from (17) it follows that if ε = ε0 =const, then

σ(∞) = E∞


1−

n∑

j=1

ejt
α
j


 ε0 = F2(0)E∞ε0. (22b)

Since F1(0) > 1, and ε(0) = J∞σ0, then Eq. (22a) describes finite creep;
as 0 < F2(0) < 1, and σ0 = E∞ε(0), then Eq. (22b) describes incomplete
relaxation.

If β1 = 0, this means that one term in the sum (7) represents the
operator of fractional integration Iα; the product of this operator with a
constant increases without bounds as time goes on. Formally putting τ−α

1 =
0 in (22a), we obtain F1(0) = ∞, and F2(0) = 0. In other words, if the creep
is unbounded, then the relaxation is full. The creep and relaxation functions
for the models (7) and (17) can be written, respectively, as

J(t) = J∞

{
1 +

n∑

i=1

gi [1− Eα (−(t/τi)α)]

}
, (23a)

G(t) = E∞



1−

n∑

j=1

ei [1− Eα (−(t/tj)α)]



 . (23b)

Formulas (23) for n = 2 were used in [21] for describing experimental
data obtained by Gottenberg and Christensen [4] and for illustrating advan-
tages of the fractional derivative models over the viscoelastic models with
integer order derivatives (1).

An immediate generalization of the Rabotnov’s model (17) is the model
proposed by Koeller [5]

σ = E∞


ε−

n∑

j=1

ei 3∗αj
(−t

−αj

j )ε


 . (24)

Inversion of this equation is rather difficult, but nevertheless it may be
used for solving different problems of mechanics.

Inversion of formulas (7) into (17), or (17) into (7), is given in Rabotnov’s
books [12] and [13] published in 1966 and 1977, respectively, and translated
in English in 1969 and 1980, respectively. However, references to these
monographs in articles devoted to the applications of fractional calculus
to viscoelasticity are few and far between. Moreover, a reader can find
citation of [12] and/or [13] more frequently in papers by Western researchers
than in those by Russian scientists. To the authors deep regret, Russian
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young researchers know not much about outstanding investigation of our
distinguished Academician. And hereafter is one striking example.

4. Application of Rabotnov’s equations for solving
some fractional derivative equations

Using the fractional Green’s function (see [7]), Surguladze [19] constructs
the solution of the following set of equations:

Q(Dν)f(t) = g(t), ν =
1
q
, (25)

Dkνf(0) = 0 (0 ≤ k ≤ N − 1)

Q(Dν) = a0D
nν + a1D

(n−1)ν + ... + anD0, (26)

where g(t) is the known function, N is the smallest integer which is larger
or equal to nν, and q is a positive integer.

However, the solution of Eq. (25) with the operator (26) was obtained
by Rabotnov ([12]) 35 years ago, without using Green’s function. Moreover,
Rabotnov [12] solved a more general problem, since he considered sums of
operators in both sides of Eq. (25).

Indeed, Eq. (7) is equivalent to the equation

σ = Q(Dν)ε. (27)

In order to show this, it is sufficient to apply Laplace transformation to
Eq. (27). Then

σ = Q(pν)ε, (28a)

or
ε = σ

1
a0pnν + a1p(n−1)ν + ... + an

. (28b)

Denoting the roots of the equation

a0x
n + a1x

(n−1) + ... + an = 0

by αi = −τ−ν
i , we rewrite (28b) in the form

ε = σ
J∞

n∏
i=1

(1 + pντν
i )

. (29)

Expanding then the right part of expression (29) in terms of simple fractions,
we obtain, taking into account (13), the relationship (7).
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Inversion of the relationship (7) is just the formula (17), while the pa-
rameters involved therein are found from (19a,b). It is not clear why would
the author of [19] and [20] carrying out the inversion of long time known
hereditarily elastic relationships has not used Rabotnov’s method, which is
more effective than that of Miller and Ross [7].

5. Conclusion

Appearance of viscoelastic models involving fractional derivatives of dif-
ferent orders often is related to the names of Bagley [1] and Koeller [6].
However, due to our knowledge, the first such model appeared in 1966 in
Russia and was suggested by Academician Yu.N. Rabotnov in the equiv-
alent operator form, see [12]. Could Rabotnov write his model in terms
of fractional derivatives? Of course he could! As far back as in 1948, in
his classical papers [10] and [11] he wrote about this matter. However, he
considered fractional derivatives as some mathematical abstraction without
any physical meaning and demonstrativeness and thus, suggested to use the
hereditary mechanics models instead of the operators of fractional calculus.

In this paper, an attempt has been made to improve a historical un-
fairness, as well as to show the importance of Rabotnov’s ideas, which have
a lead of several decades in the development of viscoelasticity. For this
purpose, a comparative analysis of the models involving fractional deriva-
tives of different orders is given. Such models of viscoelastic materials are
widely used now in various problems of mechanics and rheology. Rabotnov’s
hereditarily elastic rheological model is considered in detail. For this model
it is shown that it is equivalent to the rheological model involving fractional
derivatives in the stress and strain with the orders proportional to a certain
positive value less than unit.
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