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Abstract

We treat the fractional order differential equation that contains the left
and right Riemann-Liouville fractional derivatives. Such equations arise as
the Euler-Lagrange equation in variational principles with fractional deriva-
tives. We reduce the problem to a Fredholm integral equation and construct
a solution in the space of continuous functions. Two competing approaches
in formulating differential equations of fractional order in Mechanics and
Physics are compared in a specific example. It is concluded that only the
physical interpretation of the problem can give a clue which approach should
be taken.
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1. Introduction

This paper concerns the problem of ”fractionalization” of differential
equations of Mechanics. Differential equations of fractional orders appear
in many branches of Physics and Mechanics. There are numerous solutions
of concrete problems, collected in the books [2], [1] and [3], for example. The
monograph [11] contains, among other results, many references to fractional
differential equations.

1Corresponding author
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In all mentioned works, differential equations of the form

Dαy = f (y, t) , t ∈ (0, b) , (1)

where α ∈ R+, are treated. Let m be an integer such that m− 1 < α < m.
The left Reimann-Liouville fractional derivative of order α, which appears
in (1) is defined as

Dαy(t) =
dm

dtm

[
1

Γ (m− α)

∫ t

0

y (τ)
(t− τ)α+1−m dτ

]
, m− 1 < α < m, (2)

where Γ is Euler’s gamma function. Similarly, the right Riemann-Liouville
derivative of order α is defined as

Dαy(t) = (−1)m dm

dtm

[
1

Γ (m− α)

∫ b

t

y (τ)
(τ − t)α+1−m dτ

]
, m− 1 < α < m.

(3)
There are two different approaches in formulating differential equations

of fractional order in Mechanics and Physics. In the first “direct” approach,
the ordinary (integer order) derivative in a differential equation is replaced
by a fractional derivative. Such a procedure gives reasonable results in
many areas, for example, in the viscoelasticity. In the second approach,
one modifies Hamilton’s principle (least action principle) by replacing the
integer order derivative by a fractional one. Then, minimization of the
action integral leads to the differential equation of the system. This second
approach is considered to be, from the stand point of Physics, the more
sound one (see for example, [7]).

Note that in the second approach the resulting fractional differential
equation is not of the form (1) but in the form that we discuss next. Namely,
if the modification is made on the level of the variational principle, we
are faced with the following type of minimization problem with fractional
derivatives (see [4], [5], [6], [7] and [12]): find a minimum of the functional

I [y] =
∫ b

0
F (t, y, Dαy) dt, (4)

where

y (0) = y0, y (b) = y1. (5)

In (4) and (5), y(t) is a function having continuous left Riemann-Liouville
derivative Dαy of order α, and F (t, y, Dαy) is a function with continuous
first and second partial derivatives with respect to all its arguments. It
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is shown in [5], [6] and [7] that a necessary condition that y(t) gives an
extremum to (5) is that it satisfies the Euler-Lagrange equation

Dα

[
∂F

∂Dαy

]
+

∂F

∂y
= 0. (6)

In the special case treated in [7] (motion of a particle in a fractal medium)
the function F has the form

F =
m

2
[Dαy]2 − U (y, t) , (7)

where m and U are the “usual” mass, assumed to be constant, and the
potential energy of the particle. With (7), equation (6) becomes

m (Dα ◦Dαy) (t) = −∂U

∂y
.

In the special case when U = λ
2y2 + yg + h, where λ = const and g and h

are given functions, we obtain

(Dα ◦Dαy) (t) = λy (t) + g (t) . (8)

We shall analyze (8) for the case when 0 < α < 1. Our main result concerns
the existence of a solution y (t, α) to (8) and its behavior in the limit when
α → 1−.

It is important to note that (4) is not the only type of functional used
in fractional order physics. In [8] and [9] convolution type functionals are
considered resulting in two Euler-Lagrange equations, called advanced and
retarded equations. Another type of functionals are used in [10]. Namely,
in [10] in the function F (t, y, Dαy) the derivative Dαy is replaced with the
symmetric fractional differential operator Dy = 1

2 [Dαy +Dαy]. In this way,
one is not, ab initio, favoring left or right fractional derivatives.

As far as we are aware, equations of type (8), are solved only in [6] and
[7] in some very special cases. In the next section we construct a solution
to (8), reducing it to a Fredholm integral equation of the second kind with
singular kernel K (t, u) . If 1/2 ≤ α < 1, then K (t, u) ∈ L2 ((0, b)× (0, b))
and it can be easily proved that (8) has a solution in L2 (0, b), cf. [14] (for
the theory of integral equations with singular kernels on Hölder spaces one
can consult [11] and [16]). But we usually need a continuous solution to
(8). That was the reason that we restricted ourselves in this paper to the
problem of finding a solution in the space C ([0, b]) of continuous functions
on [0, b].
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2. A solution to equation (8)

2.1. Preliminaries

First we list some properties of fractional integrals and derivatives. Let
Iα and Iα denote

(Iαf) (t) =
1

Γ (α)

∫ t

0

f (τ)
(t− τ)1−α dτ,

(Iαf) (t) =
1

Γ (α)

∫ b

t

f (τ)
(τ − t)1−α dτ.

If 0 < α < 1 and f ∈ L1 (0, b) , then Iαf and Iα exist almost everywhere in
(0, b) . Also DαIαf = f (cf. [11], Theorem 2.4).

It is also easily seen that DαIαf = f. Let Qb be the operator (Qbf) (t) =
f (b− t) . For this operator we know that Qb ◦ Iα = Iα ◦Qb and Dα ◦Qb =
Qb ◦ Dα. Now it is easily seen that Dα ◦ Iαf = Dα ◦ Qb ◦ Qb ◦ Iαf =
Qb ◦Dα ◦ Iα ◦Qbf = Qb ◦Qbf = f.

The following lemma can be easily proved:

Lemma 1. If g ∈ C([0, b]), then Iαg, Iαg and Iα◦Iαg belong to C([0, b]),
as well.

With the change of the variable τ = t− u

(Iαg)(t) =
1

Γ(α)

t∫

0

g(τ)dτ

(t− τ)1−α
=

1
Γ(α)

t∫

0

g(t− u)
u1−α

du

and

(Iαg)(t + h)− (Iαg)(t) =
1

Γ(α

t∫

0

1
u1−α

(g(t + h− u)− g(t− u))du

+
1

Γ(α)

t+h∫

t

g(t + h− u)
u1−α

du , 0 ≤ t ≤ b.

Since g ∈ C([0, b]), it is also uniformly continuous on [0, b]. For ε > 0 there
exist δ1 > 0 and δ2 > 0 such that |g(t + h− u)− g(t− u)| < ε, |h| < δ1 and
|(t + h)α − tα| < ε, |h| < δ2.

Let δ = min(δ1, δ2) and M = max |g(t)|, 0 ≤ t ≤ b. Then

|(Iαg)(t + h)− (Iαg)(t)| ≤ 1
Γ(α + 1)

(bα + M)ε, |h| < δ .

This proves that Iαg ∈ C([0, b]).
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To prove that Iαg ∈ C([0, b]) we use the operator Qb, (Qbf)(t) = f(b−t).
If g is continuous, then Qbg is also continuous on [0, b]. With the property
of Qb (cf. [11], p. 34),

Iαg = Iα ◦Qb ◦Qbg = Qb ◦ Iα ◦Qbg . (9)

This proves that Iαg ∈ C([0, b]). It is now easily seen that Iα◦Iαg ∈ C([0, b]).

2.2. Integral equation which corresponds to equation (8)

Lemma 2. If 0 < α < 1 and g ∈ C([0, b]), then every solution f ∈
C([0, b]) to the integral equation

f(t)− λ

b∫

0

Kα(t, u)f(u)du = Gα(t), 0 ≤ t ≤ b, (10)

is also a solution to equation

(Dα ◦Dαf)(t) = λf(t) + g(t), 0 ≤ t ≤ b, (11)
where

Kα(t, u) =
1

Γ2(α)

t∫

0

q(u, τ)
(t− τ)1−α

dτ ;

q(u, τ) =
{

(u− τ)α−1, b ≥ u > τ ≥ 0
0 0 ≤ u < τ ≤ b;

(12)

Gα(t) = (Iα ◦ Iαg)(t) ∈ C([0, b]) . (13)

P r o o f. Let us give to the expression
b∫

0

Kα(t, u)f(u)du

another form:
b∫

0

Kα(t, u)f(u)du =
1

Γ2(α)

b∫

0

f(u)

t∫

0

q(u, τ)
(t− τ)1−α

dτdu

=
1

Γ2(α)

t∫

0

dτ

(t− τ)1−α

b∫

0

f(u)q(u, τ)du

=
1

Γ(α)

t∫

0

dτ

(t− τ)1−α

1
Γ(α)

b∫

τ

f(u)
(u− τ)1−α

du = (Iα ◦ Iαf)(t) . (14)
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Consequently, equation (10) can be given in the form:

f(t)− λ(Iα ◦ Iαf)(t) = (Iα ◦ Iαg)(t) . (15)

Suppose that we have a solution f ∈ C([0, b]) to (10). This is also a solution
to (15). But we will show that it is a solution to (11), as well. For that it is
enough to prove the assertion that for h ∈ C([0, b]) we have Dα ◦Dα(Iα ◦
Iαh) = h.

We have seen that if h ∈ L1(0, b), then Dα ◦ Iαh = h and Dα ◦ Iαh = h.
Thus

Dα ◦Dα ◦ (Iα ◦ Iαh) = Dα ◦ (Dα ◦ Iα) ◦ Iαh = h .

By applying the operator Dα ◦ Dα to (15) we obtain (11), which proves
Lemma 2.

2.3. Construction of a solution to (8)

Theorem 3. Let 0 < α < 1 and let g ∈ C([0, b]) and g 6≡ 0. If |λ| <
Γ2(α+1)

b2α , then

(Dα ◦Dαf)(t) = λf(t) + g(t), 0 ≤ t ≤ b, (16)

has a solution belonging to C([0, b]). This solution fα is given by the Neu-
mann series:

fα(t) = Gα(t) + λKαGα(t) + λ2K2
αGα(t) + ... , 0 ≤ t ≤ b , (17)

where

KαGα(t) =

b∫

0

Kα(t, u)Gα(u)du and Kn
αGα(t) = Kα(Kn−1

α Gα)(t), n ≥ 2;

the function Kα(t, u) is given by (12) and Gα(t) by (13). The series (17)
converges in C([0, b]).

P r o o f. Let us construct the Neumann series using the sequence:

f1 = Gα, fn = Kαfn−1, n ≥ 2 ,

which gives

fn =
n−1∑

j=0

λjKj
αGα

(cf. (17)). Since g ∈ C([0, b]), by Lemma 1 the function Gα, given by
(13) belongs to C([0, b]), as well. Also by (15) KαGα and Kn

αGα, n ≥ 2,
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belong to C([0, b]). Consequently, the addends in the Neumann series (17)
are continuous functions. Now to prove that the series converges in C([0, b]),
we need a majorant for Kn

αGα(t), n ≥ 1. Let us find it:

‖KαGα(t)‖=‖(Iα ◦ IαGα)(t)‖=
1

Γ2(α)

∥∥∥
t∫

0

1
(t− τ)1−α

( b∫

τ

Gα(u)
(u− τ)1−α

du
)
dτ

∥∥∥

≤
∥∥∥ 1
Γ2(α)

t∫

0

1
(t− τ)1−α

b∫

τ

1
(u− τ)1−α

du dτ
∥∥∥‖Gα‖

≤
∥∥∥ 1
α

1
Γ2(α)

t∫

0

(b− τ)α(t− τ)α−1dτ
∥∥∥‖Gα‖

≤ 1
α

1
Γ2(α)

∥∥∥bα

t∫

0

(t− τ)α−1dτ
∥∥∥‖Gα‖ ≤ 1

Γ2(α + 1)
b2α‖Gα‖,

where ‖f‖= max
0≤t≤b

|f (t)| is the norm in C([0, b]). It follows that ‖KαGα(t)‖ ≤
b2α

Γ2(α + 1)
‖Gα‖ and ‖Kn

αGα(t)‖ ≤
(

b2α

Γ2(α+1)

)n
‖Gα‖. Since |λ| b2α

Γ2(α+1)
< 1,

the series in (17) converges in C([0, b]). If we apply the operator Kα to this
series, then Kα can be applied on every addend of the series:

Kα

∞∑

j=0

λjKj
αGα =

∞∑

j=0

λj+1Kj+1
α Gα = f −Gα,

or

Kα lim
n→∞

n∑

j=0

λjKj
αGα = lim

n→∞

n+1∑

j=1

λjKjG = lim
n→∞ fn −Gα,

in C([0, b]). Consequently the function given by the Neumann series (17) is
a solution to (16).

Remarks:
1. In case λ = 0, g ∈ L1(0, b) and |g(b− t)| ≤ Ktε−α, ε > 0, 0 < t < b,

all the solutions to equation

(Dα ◦Dαf)(t) = g(t), 0 < t < b,

in L1(0, b) are of the form:

fα(t) = (Iα ◦ Iαg)(t) + C1(Iα(b− τ)α−1)(t) + C2t
α−1, 0 < t < b. (18)

This follows from the fact that Dαf = 0 if and only if f(t) = Ctα−1. Also,
Dαf = 0 if and only if f(t) = C(b− t)α−1 (cf. [15]).
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2. If in equation (16) g(t) is of the form

g(t) = C1(Iα(b− τ)α−1)(t) + C2t
α−1 ,

then a solution to this equation is

fα(t) = − 1
λ

C1(Iα(b− τ)α−1)(t)− 1
λ

C2t
α−1. (19)

3. In both cases (cf. (18) and (19)) the solution to (16) contains con-
stants C1 and C2 which can be determined so that the solution fα satisfies
additional conditions of the form fα (0) = f0, fα (b) = f1. However, in the
general case, to satisfy these conditions we have to call for an appropriate
additional condition for g. We find such condition on g (t) by analyzing
boundary conditions fα (0) = fα (b) = 0. Let g (t) be given in the form
g (t) = h (t)+ cp (t) , where h (t) ∈ C ([0, b]) and p (t) =

(
Iα (b− τ)α−1

)
(t) ,

with c = const. and 1/2 < α < 1. By the results of Theorem 3, equation
(16), with g = h, has a solution fα (t) given by (17). This solution satisfies
initial condition fα (0) = 0. If it also satisfies fα (b) = 0, then g (t) can be
just h (t) . Otherwise, for g (t) = h (t) − cp (t) , c = λh(b)

p(b) , equation (16) has
a solution which satisfies the prescribed boundary conditions (cf. Remarks,
1.).

2.4. Example

We treat an example that will show relation between two approaches of
fractional generalizations of equations of physics (see [7]). Thus, we consider
the problem of minimizing the following functional

I =
∫ 1

0

{
1
2

[Dαf ]2 + Af

}
dt (20)

with 1/2 < α < 1 and A ∈ L1 (0, 1) , |A (1− t)| ≤ atε−α, ε > 0, a being a
given constant. Also we assume that

f (0) = f (1) = 0. (21)

The Euler–Lagrange equation for the functional (20) reads

(Dα ◦Dαf) (t) + A (t) = 0. (22)
The boundary conditions corresponding to (22) are (21). Applying the
result in Remark 1. we have a family of solutions to (22)

fα (t) = − (Iα ◦ IαA) (t) + C1

(
Iα (1− t)α−1

)
(t) + C2t

α−1, 0 < t < 1.

(23)
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To satisfy the boundary condition (21)1 we have to take C2 = 0. The second
constant C1 can be found from the condition fα (1) = 0, i.e.,

lim
t→1−

1
Γ2 (α)

∫ t

0

dτ

(t− τ)1−α

∫ 1

τ

A (u)
(u− τ)1−α du

+ lim
t→1−

C1
1

Γ (α)

∫ t

0

dτ

(t− τ)1−α (1− τ)1−α .

Both limits exist because of assumptions on A (t) and α.

3. The limit of solution (17) when α → 1−

Theorem 4. Let |λ| < max
α∈[ε,1−ε]

Γ2(α+1)
b2α , ε > 0. Then:

1) The series (17) which defines a solution to (16) converges uniformly
on [0, b] × [ε, 1 − ε] to a function f (t, α) ∈ C([0, b] × [ε, 1 − ε]). Let f (t)
denote the function f (t) = lim

α→1−
f (t, α) . Then the function f ∈ C ([0, b]) .

2) If in addition f ∈ C2([0, b]), f (3) ∈ L1 (0, b) and f (2) (t, α) → f (2) (t),
α → 1−, uniformly in t ∈ [η, 1−η] for every η > 0, f (3) (t, α) → f (3) (t) , α →
1−, t ∈ (0, b) , then f satisfies:

−d2f

dt2
= λf (t) + g (t) , 0 < t < b.

P r o o f. 1) In the proof of Theorem 3 we have only to change the con-
dition |λ| < Γ2(α+1)

b2α , by |λ| < max
α∈[ε,1−ε]

Γ2(α+1)
b2α . Consequently, f ∈ C ([0, b]) .

2) If t ∈ (0, b) , then there is an η > 0 such that t ∈ [η, b − η] ≡ Jη.
Consider Dαh for an h ∈ C2 ([0, b]) and h(3) ∈ L1 (0, b) using twice the
partial integration we have:

(Dαh) (t) =
t−αh (0)
Γ (1− α)

+
t1−αh(1) (0)
Γ (2− α)

+
∫ t

0

(t− τ)1−α

Γ (2− α)
h(2) (τ) dτ.

Whence, for t ∈ [η, b− η] :

lim
α→1−

(Dαh) (t) = h(1) (0) +
∫ t

0
h(2) (τ) dτ = h(1) (t) .

In the same way we have
(
Dαh(1)

)
(t) =

(b−t)−α

Γ (1−α)
h(1) (b)−(b−t)1−α h(2) (b)

Γ (2−α)
+

∫ b

t

(τ−t)1−α

Γ (2−α)
h(3) (τ) dτ
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and for t ∈ [η, b− η] :

lim
α→1−

(
Dαh(1)

)
(t) = −h(2) (b) +

∫ b

t
h(3) (τ) dτ = −h(2) (t) .

The last two limits are valid, uniformly in t, t ∈ [η, b− η]. By construction

(Dα ◦Dαf (t, α)) (t) = λf (t, α) + g (t) , 0 < t < b.

For a t ∈ (0, b) we can take

lim
α→1−

(Dα ◦Dαf (t, α)) (t) = lim
α→1−

f (t, α) + g (t) .

With the above results, the last limit gives

− d2

dt2
f (t) = λf (t) + g (t) . (24)

This proves Theorem 4.

4. Conclusion

We analyzed the differential equation (8)

(Dα ◦Dαy) (t) = λy (t) + g (t) (25)

which follows from the minimization of (4) with F given by (7) and U =
λ
2y2 + yg + h. This equation may be considered as fractional generalization
of (24) for 0 < α ≤ 1. The direct way to write fractional generalization of
(24) is to consider

−Dβy (t) = λy (t) + g (t) , (26)

with 1 ≤ β ≤ 2. For (26) the solution is known and it reads (see [3], p. 140)

yβ (t) =
2∑

k=1

Ckt
β−kEβ,β−k+1

(
−λtβ

)

+
∫ t

0
(t− τ)β−1 Eβ,β

(
−λ (t− τ)β

)
g (τ) dτ, (27)

where β > 1, Ck, k = 1, 2 are constants and Eα,β (t) =
∞∑

k=0

tk

Γ(αk+β) , α, β > 0,

is a two-parameter Mittag-Leffler function. It is interesting to compare (27)
for 1 < β < 2 and (17), i.e.,
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yα(t) =
∞∑

j=0

λjKj
αGα(t), (28)

for α = β/2. We do this in the special case of (25) when λ = 0, g (t) =
C = const., b = 1 and y (0) = 0, y (1) = 0. From (23) (with A (t) = −C) we
obtain

yα (t) =
C

Γ (α) Γ (1 + α)

∫ t

0
(1− τ)α (t− τ)α−1 dτ

+C1

∫ t

0
(1− τ)α−1 (t− τ)α−1 dτ, (29)

where

C1 = − C
∫ 1
0 (1− τ)α (1− τ)α−1 dτ

Γ (α) Γ (1 + α)
∫ 1
0 (1− τ)α−1 (1− τ)α−1 dτ

= − C (2α− 1)
2Γ2 (α + 1)

.

The direct approach leads to the solution of Dβyβ = C, yβ (0) = 0, yβ (1) = 0
that reads

yβ (t) = − Ctβ−1

Γ (1 + β)
(1− t) , 1 < β < 2. (30)

We believe that only physics of the problem can give a clue which ap-
proach should be taken.
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