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Abstract

The Caputo fractional derivative is one of the most used definitions of a
fractional derivative along with the Riemann-Liouville and the Grünwald-
Letnikov ones. Whereas the Riemann-Liouville definition of a fractional
derivative is usually employed in mathematical texts and not so frequently
in applications, and the Grünwald-Letnikov definition – for numerical ap-
proximation of both Caputo and Riemann-Liouville fractional derivatives,
the Caputo approach appears often while modeling applied problems by
means of fractional derivatives and fractional order differential equations.

In the mathematical texts and applications, the so called Erdélyi-Kober
(E-K) fractional derivative, as a generalization of the Riemann-Liouville
fractional derivative, is often used, too. In this paper, we investigate some
properties of the Caputo-type modification of the Erdélyi-Kober fractional
derivative. The relation between the Caputo-type modification of the E-K
fractional derivative and the classical E-K fractional derivative is the same
as the relation between the Caputo fractional derivative and the Riemann-
Liouville fractional derivative, i.e. the operations of integration and dif-
ferentiation are interchanged in the corresponding definitions. Here, some
new properties of the classical Erdélyi-Kober fractional derivative and the
respective ones of its Caputo-type modification are presented together.
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1. Introduction

The Caputo-type modification of the Erdélyi-Kober fractional deriva-
tive, we deal with in this paper, was introduced for the first time by Goren-
flo, Luchko and Mainardi in [7] in connection with their investigation of the
scale-invariant solutions of the diffusion-wave equation. The time-fractional
diffusion-wave equation is obtained from the classical diffusion or wave equa-
tion by replacing the first- or second-order time derivative by a fractional
derivative of order α (0 < α ≤ 2). Partial differential equations of fractional
order have been successfully used for modelling relevant physical processes
(see, for example, Caputo [2], Chechkin et al. [3], Freed et al. [5], Giona and
Roman [6], Hilfer [8], [9], [10], Kilbas et al. [12], Mainardi [16], Mainardi and
Tomirotti [17], Mainardi et al. [18], [19], Matignon and Montseny [20], Met-
zler et al. [21], Nigmatullin [22], Pipkin [23], Podlubny [24] and references
there). In the applications, special types of solutions, which are invariant
under some subgroup of the full symmetry group of the given equation (or
for a system of equations) are especially important.

In [7], the authors considered the diffusion-wave equation with the Ca-
puto fractional derivative of the order α, n − 1 < α ≤ n, n ∈ IN . For the
scale-invariant solutions of this equation, they deduced a fractional differ-
ential equation in the following form:

(∗P
γ−n+1,α
2/α v)(y) = Dv′′(y), (1)

where the operator in the left-hand side is the Caputo-type modification of
the Erdélyi-Kober fractional differential operator that will be defined in the
last section of the paper, y = xt−α/2 is the similarity variable (t and x being
the time- and temporal variables of the diffusion-wave equation) and γ is a
similarity parameter. The exact solution of the equation (1) was given in
[7] in terms of the Wright function

Wρ,µ(z) :=
∞∑

k=0

zk

k!Γ(ρk + µ)
, ρ ∈ IR, µ ∈ IC, (2)

and the generalized Wright function

W(µ,a),(ν,b)(z) :=
∞∑

k=0

zk

Γ(a + µk)Γ(b + νk)
, µ, ν ∈ IR, a, b ∈ IC. (3)

Wright himself has investigated the function (3) in the case µ > 0, ν > 0
in [27]. If a = µ = 1 or b = ν = 1, respectively, then it is reduced to the
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Wright function (2). For the properties of the generalized Wright function
for other values of the parameters see [7] and [15].

Since the aim of the paper [7] was mainly to investigate the scale-
invariant solutions of the diffusion-wave equation, the introduced Caputo-
type modification of the Erdélyi-Kober fractional differential operator was
not considered there in details. In this paper, we present and prove some
basic properties of this operator and suggest some open problems for further
research.

The plan of the rest of the paper is as follows. In the second section we
introduce the Erdélyi-Kober fractional integrals and investigate their action
on the space of functions Cα that consists of all functions that are contin-
uous on the half-axis (0,∞) but can have a power singularity at the origin.
The third section deals with the properties of the Erdélyi-Kober fractional
derivatives. In particular, the composition of the E-K fractional derivative
and the E-K fractional integral and the composition of the E-K fractional
integral and the E-K fractional derivative are evaluated simultaneously, in
suitable functional spaces. In Section 4 we define the Caputo-type modifi-
cation of the Erdélyi-Kober fractional derivative and investigate some of its
properties. In particular, the composition of the E-K fractional integral and
the Caputo-type modification of the E-K fractional derivative is calculated,
and the conditions under which the Caputo-type modification of the E-K
fractional derivative coincides with the classical E-K fractional derivative
are given. In conclusion, we present some open problems related with the
Caputo-type modification of the Erdélyi-Kober fractional derivative that
will be considered elsewhere.

2. Erdélyi-Kober fractional integrals

The right- and the left-hand sided Erdélyi-Kober (E-K) fractional inte-
grals of the orders δ and α, respectively, are defined by

(Iγ,δ
β f)(x) =

β

Γ(δ)
x−β(γ+δ)

∫ x

0
(xβ − tβ)δ−1tβ(γ+1)−1f(t)dt, δ, β > 0, γ ∈ IR,

(4)

(Jτ,α
β f)(x) =

β

Γ(α)
xβτ

∫ ∞

x
(tβ − xβ)α−1t−β(τ+α−1)−1f(t)dt, α, β > 0, τ ∈ IR.

(5)
These operators have been used by many authors, in particular, to obtain
solutions of the single, dual and triple integral equations possessing special
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functions of mathematical physics as their kernels. For the theory and ap-
plications of the Erdélyi-Kober fractional integrals see e.g. [26], and more
recently – [11], [12], [13], [25], and [28]. In particular, in [11], [13] the follow-
ing important properties of the operator (4) have been proved (of course,
the left-hand sided Erdélyi-Kober integral (5) possesses similar properties,
but in this paper we mainly restrict our attention to the right-hand sided
operator (4)):

(Iγ,δ
β xλβf)(x) = xλβ(Iγ+λ,δ

β f)(x), (6)

(Iγ,δ
β Iγ+δ,α

β f)(x) = (Iγ,δ+α
β f)(x), (7)

(Iγ,δ
β Iα,η

β f)(x) = (Iα,η
β Iγ,δ

β f)(x). (8)

For β = 1 the operator (4) is reduced to the Kober operator

(Kγ,δf)(x) =
x−γ−δ

Γ(δ)

∫ x

0
(x− t)δ−1tγf(t)dt, δ, β > 0, (9)

that was introduced for the first time by Kober in [14]. In particular, Kober
proved ([14]) the following important result:

Theorem 2.1. Let <(γ − s) > −1, f ∈ Lp(0,∞), 1 ≤ p ≤ 2, γ >
−1

q , 1
p + 1

q = 1. Then the formula

(MKγ,δf)(s) =
Γ(1 + γ − s)

Γ(1 + γ + δ − s)
(M f)(s) (10)

holds true, where

(Mf)(s) :=
∫ +∞

0
f(t)ts−1dt (11)

denotes the Mellin integral transform of a function f .

Formula (10) can be extended to the case of arbitrary β, i.e. for the
Erdélyi-Kober operator (4) (see e.g. [12], [28]):

(M Iγ,δ
β f)(s) =

Γ(1 + γ − s/β)
Γ(1 + γ + δ − s/β)

(M f)(s). (12)

For γ = 0, the Kober operator (9) is reduced to the Riemann-Liouville
fractional integral with a power weight:

(K0,δf)(x) =
x−δ

Γ(δ)

∫ x

0
(x− t)δ−1f(t)dt, δ > 0. (13)
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In this paper, we consider the Erdélyi-Kober fractional integral (4) in a
special space of functions that was introduced for the first time by Dimovski
in [4] (see also [13] and [28]):

Definition 2.1. The space of functions Cα, α ∈ IR consists of all
functions f(x), x > 0, that can be represented in the form f(x) = xpf1(x)
with p > α and f1 ∈ C([0,∞)).

It is obvious that the space Cα is linear and the following inclusion for
the set of spaces Cα, α ∈ IR holds true:

Cα ⊆ Cβ, α ≥ β. (14)

Theorem 2.2. Let α ≥ −β(γ + 1). Then the Erdelyi-Kober fractional
integration operator (4) is a linear map of the space Cα into itself, i.e.

Iγ,δ
β : Cα → Cα. (15)

To prove the theorem, we first represent the Erdelyi-Kober fractional
integration operator (4) in the following form by using the change of the
variables t = xτ1/β:

(Iγ,δ
β f)(x) =

∫ 1

0

(1− τ)δ−1τγ

Γ(δ)
f(xτ1/β)dτ. (16)

For a function f from the space Cα, this representation leads to

(Iγ,δ
β f)(x) =

∫ 1

0

(1− τ)δ−1τγ

Γ(δ)
f(xτ1/β)dτ (17)

= xp

∫ 1

0

(1− τ)δ−1τγ+p/β

Γ(δ)
f1(xτ1/β)dτ = xpf2(x),

where the function f1 is continuous on the interval [0,∞). We have then
the following estimate for 0 ≤ x ≤ X, 0 < τ < 1:∣∣∣∣∣

(1− τ)δ−1τγ+p/β

Γ(δ)
f1(xτ1/β)

∣∣∣∣∣ ≤ A
(1− τ)δ−1τγ+p/β

Γ(δ)
. (18)

For α ≥ −β(γ + 1) and p > α we have γ + p/β > −1. It follows then
from the estimate (18) and the representation (17) that the function f2 is
determined by an uniformly convergent integral with respect to x in any
closed interval [0, X]. Consequently, the function f2 is a continuous one
on the interval [0, X] and, since we can choose any X > 0, on the interval
[0,∞) as well, that finishes the proof of the theorem.

For analogous result, in the case of composition of commuting E-K frac-
tional integrals Iγk,δk

βk
, k = 1, . . . , m, one can see [13], Th. 1.2.15.
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3. Erdélyi-Kober fractional derivatives

In this section we consider the right- and the left-hand sided Erdélyi-
Kober fractional derivatives of orders δ and α, respectively (see e.g. [12],
[13], [25], [28]). Let n − 1 < δ ≤ n, n ∈ IN and m − 1 < α ≤ m, m ∈ IN .
The operator

(Dγ,δ
β f)(x) :=

n∏

j=1

(γ + j +
1
β

x
d

dx
)(Iγ+δ,n−δ

β f)(x) (19)

is called the right-hand sided Erdélyi-Kober (E-K) fractional derivative of
order δ. The left-hand sided E-K fractional derivative of order α is defined,
resp., by

(P τ,α
β f)(x) :=

m−1∏

j=0

(τ + j − 1
β

x
d

dx
)(Jτ+α,m−α

β f)(x). (20)

In the formulae (19) and (20) the operators Iγ,δ
β and Jτ,α

β are the right-
and the left-hand sided Erdélyi-Kober fractional integrals of orders δ and α,
respectively, defined by (4) and (5). In this paper, we deal mainly with the
right-hand sided Erdélyi-Kober derivative Dγ,δ

β . The case of the left-hand
sided derivative can be considered by analogy.

For the functions from the space Cα, α ≥ −β(γ + 1), the right-hand
sided E-K fractional derivative is a left-inverse operator to the right-hand
sided E-K fractional integration operator (4). Let us prove this fact, i.e.,
that

(Dγ,δ
β Iγ,δ

β f)(x) ≡ f(x), f ∈ Cα. (21)

Using the definition of the E-K fractional derivative and the property (7) of
the E-K fractional integral, we obtain the relation

(Dγ,δ
β Iγ,δ

β f)(x) =
n∏

j=1

(γ + j +
1
β

x
d

dx
)(Iγ+δ,n−δ

β Iγ,δ
β f)(x) (22)

=
n∏

j=1

(γ + j +
1
β

x
d

dx
)(Iγ,n

β f)(x).

Since n ∈ IN , the relation

n∏

j=1

(γ + j +
1
β

x
d

dx
)(Iγ,n

β f)(x) ≡ f(x) (23)
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can be proved by the mathematical induction. For n = 1, we have

(γ+1+
1
β

x
d

dx
)(Iγ,1

β f)(x) = (γ+1+
1
β

x
d

dx
)
(

βx−β(γ+1)

∫ x

0
tβ(γ+1)−1f(t)dt

)

= (γ+1)βx−β(γ+1)

∫ x

0
tβ(γ+1)−1f(t)dt+x

d

dx

(
x−β(γ+1)

∫ x

0
tβ(γ+1)−1f(t)dt

)

= (γ+1)βx−β(γ+1)

∫ x

0
tβ(γ+1)−1f(t)dt−β(γ+1)x−β(γ+1)

∫ x

0
tβ(γ+1)−1f(t)dt

+f(x) ≡ f(x).

Now we have to prove the relation (23) for n = k + 1 under the assumption
that it holds valid for n = k. To reduce the case n = k + 1 to the case
n = k, we just have to check the following relation:

(γ + 1 + k +
1
β

x
d

dx
)(Iγ,k+1

β f)(x) ≡ (Iγ,k
β f)(x).

This can be done by direct differentiation in the same way as it has been done
for the case n = 1 and we omit the long but straightforward calculations.

It is known, that in the general case the E-K fractional derivative is
not a right-inverse operator to the E-K fractional integration operator (4).
To formulate the corresponding result, we introduce a subspace of the space
Cα, where both Erdélyi-Kober fractional derivative (19) and its Caputo-type
modification (that will be introduced in the next section) are well defined.

Definition 3.1. The space of functions Cm
α , α ∈ IR, m ∈ IN consists

of all functions f(x), x > 0, that can be represented in the form f(x) =
xpf1(x) with p > α and f1 ∈ Cm([0,∞)).

For the properties of the space Cm
α , see e.g. [13] or [28].

Theorem 3.1. Let n− 1 < δ ≤ n, n ∈ IN , α ≥ −β(γ + 1) and f ∈ Cn
α .

Then the following relation between the E-K fractional derivative and E-K
fractional integral of order δ holds true:

(Iγ,δ
β Dγ,δ

β f)(x) = f(x)−
n−1∑

k=0

ckx
−β(1+γ+k), (24)

ck =
Γ(n− k)
Γ(δ − k)

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)(Iγ+δ,n−δ

β f)(x). (25)
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P r o o f. First we prove that Dγ,δ
β : Cn

α → Cα, under the conditions of
the theorem. Indeed, using the same reasoning as in the proof of Theorem
2.2 and differentiating the integral representation of the function

f2(x) =
∫ 1

0

(1− τ)δ−1τγ+p/β

Γ(δ)
f1(xτ1/β)dτ,

n-times with respect to the variable x (f1 ∈ Cn([0,∞))!) we can show that
Iγ,δ
β : Cn

α → Cn
α if α ≥ −β(γ + 1)− n. It means that

Iγ+δ,n−δ
β : Cn

α → Cn
α , if α ≥ −β(γ + 1 + δ)− n. (26)

For a function f of the form f(x) = xpf1(x) the relation

(a + bx
d

dx
)(xpf1(x)) = xp(af1(x) + bpf ′1(x)) (27)

is valid that implies the inclusion
n∏

j=1

(γ + j +
1
β

x
d

dx
)f ∈ Cα (28)

for f(x) = xpf1(x), f1 ∈ Cn[0,∞). Combining the relations (26) and (28)
with the definition of the Erélyi-Kober fractional derivative (19) we arrive
at the relation Dγ,δ

β : Cn
α → Cα, α ≥ −β(γ + 1 + δ) − n. Theorem 2.2

ensures now that the expression (Iγ,δ
β Dγ,δ

β f)(x) is well defined on the space
Cn

α , α ≥ −β(γ + 1).
Let us now introduce an auxiliary function according to the rule

g(x) := (Iγ,δ
β Dγ,δ

β f)(x). (29)

Using formula (21), we get then

(Dγ,δ
β g)(x) = (Dγ,δ

β Iγ,δ
β Dγ,δ

β f)(x) = (Dγ,δ
β f)(x),

that implies the relation

(Dγ,δ
β (f − g))(x) ≡ 0, x > 0. (30)

The kernel of the operator Dγ,δ
β consists of all functions h that satisfy the

relation
n−1∏

k=0

(1 + γ + k +
1
β

x
d

dx
)y(x) ≡ 0, y(x) = (Iγ+δ,n−δ

β h)(x).
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The linear homogeneous differential equation of the order n of the so-called
hyper-Bessel-type (first introduced by Dimovski [4], see also [13, Ch.3])

n−1∏

k=0

(1 + γ + k +
1
β

x
d

dx
)y(x) = 0

possesses evidently the system of n linear independent solutions yk(x) =
ckx

−β(1+γ+k), k = 0, ..., n− 1, and the general solution of this equation can
be written in the form

y(x) =
n−1∑

k=0

dkx
−β(1+γ+k). (31)

Using the fact, that the Erdélyi-Kober fractional derivative is a left-inverse
operator to the the Erdélyi-Kober fractional integral (see formula (21)) and
the well known formula (see e.g. [13], [28])

(Dγ,δ
β tp)(x) =

Γ(γ + δ + p/β + 1)
Γ(γ + p/β + 1)

xp, p + β(γ + 1) > 0,

we can solve the equation

(Iγ+δ,n−δ
β h)(x) =

n−1∑

k=0

dkx
−β(1+γ+k)

by applying the operator Dγ+δ,n−δ
β to both sides of this equation:

h(x) =
n−1∑

k=0

dk
Γ(n− k)
Γ(δ − k)

x−β(1+γ+k) =
n−1∑

k=0

ckx
−β(1+γ+k).

This formula together with formula (30) leads to the representation

g(x) = f(x)−
n−1∑

k=0

ckx
−β(1+γ+k). (32)

To finish the proof of the theorem, we need to determine the coefficients
ck, k = 0, 1, ..., n − 1 in the representation (32). To do this, we evaluate
the expression (Iγ+δ,n−δ

β g)(x), g being the auxiliary function (29), in two
different ways. On the one hand, using the relation (7), we get

(Iγ+δ,n−δ
β g)(x) = (Iγ+δ,n−δ

β Iγ,δ
β Dγ,δ

β f)(x) = (Iγ,n
β Dγ,δ

β f)(x) (33)

= (Iγ,n
β

n−1∏

k=0

(1 + γ + k +
1
β

t
d

dt
) z)(x), z(t) := (Iγ+δ,n−δ

β f)(t). (34)
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Because n ∈ IN , the last expression can be evaluated by using integration
by parts. For n = 1, we thus get:

(Iγ,1
β (1 + γ +

1
β

t
d

dt
) z)(x) = βx−β(γ+1)

∫ x

0
tβ(γ+1)−1(1 + γ +

1
β

t
d

dt
) z(t) dt

= βx−β(γ+1)

(
tβ(γ+1)

β
z(t)

∣∣x
0

)
= z(x)− x−β(γ+1) lim

x→0
xβ(γ+1)z(x).

Then we can again apply the principle of the mathematical induction to
prove the formula

(Iγ,n
β

n−1∏

k=0

(1 + γ + k +
1
β

t
d

dt
) z)(x) = z(x)−

n−1∑

k=0

akx
−β(1+γ+k), (35)

ak = lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)z(x),

because the case n = i + 1 can be reduced to the cases n = i und n = 1 in
the following way:

(Iγ,i+1
β

i∏

k=0

(1 + γ + k +
1
β

t
d

dt
) z)(x)

= (Iγ+i,1
β Iγ,i−1

β

i−1∏

k=0

(1 + γ + k +
1
β

t
d

dt
)(1 + γ + i +

1
β

t
d

dt
) z)(x)

= (Iγ+i,1
β Iγ,i−1

β

i−2∏

k=0

(1+ γ + k +
1
β

t
d

dt
)z1)(x), z1(t) := (1+ γ + i+

1
β

t
d

dt
)z(x).

On the other hand, we use representation (32) and the formula

(Iγ,δ
β tp)(x) =

Γ(γ + p/β + 1)
Γ(γ + δ + p/β + 1)

xp, p + β(γ + 1) > 0,

to obtain

(Iγ+δ,n−δ
β g)(x) = z(x)−

n−1∑

k=0

Γ(δ − k)
Γ(n− k)

ckx
−β(1+γ+k), z(x) = (Iγ+δ,n−δ

β f)(x).

Comparing now the last formula with the formulae (29), (32), (33), (34),
(35) we arrive at the formulae (24) and (25) that completes the proof of the
theorem.
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Remark 3.1. The formulae (24) and (25) of Theorem 3.1 are similar
to (but of course a little bit more complicated than) the corresponding
formulae for the Riemann-Liouville fractional integral and derivative (see
e.g. [25], [28]):

(Iα
0+Dα

0+f)(x) =
n∑

k=1

xα−k

Γ(α− k + 1)
lim
x→0

(Dα−k
0+ f)(x),

where

(Iα
0+f)(x) :=

∫ x

0

(x− u)α−1

Γ(α)
f(u)du (36)

is the Riemann-Liouville fractional integral of order α, n− 1 < α ≤ n, n ∈
IN and

(Dα
0+f)(x) :=

(
d

dx

)n

(In−α
0+ f)(x) (37)

is the Riemann-Liouville fractional derivative of order α, n − 1 < α ≤
n, n ∈ IN . The constants lim

x→0
(Dα−k

0+ f)(x), k = 1, ..., n appear also in
the formula for the Laplace transform of the Riemann-Liouville fractional
derivative of order α, n− 1 < α ≤ n, n ∈ IN and, as a consequence, as the
initial conditions in the initial-value problems for the fractional differential
equations with the Riemann-Liouville fractional derivatives. Because there
is no known physical interpretation for the expressions lim

x→0
(Dα−k

0+ f)(x), k =
1, ..., n, the Riemann-Liouville fractional derivatives are not so frequently
used for the modeling of the applied problems. In particular, this was one
of the reasons for introduction of the Caputo fractional derivative in the
form

(∗Dα
0+f)(x) := (In−α

0+ f (n))(x). (38)

The Caputo derivative applied to a constant function is equal to zero and the
Laplace transform of the Caputo derivative of order α, n− 1 < α ≤ n, n ∈
IN of a function f is expressed in terms of the Laplace transform of the
function f and the initial values f(0), ..., f (n−1)(0), that can be interpreted
in applications in a suitable way.

As we have seen in Theorem 3.1, the constants

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)(Iγ+δ,n−δ

β f)(x)

that appear in the formula for the composition of the E-K fractional inte-
gral and E-K fractional derivative Iγ,δ

β Dγ,δ
β (and will appear in the formula

for the Laplace transform of the E-K fractional derivative, too) cannot be
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well interpreted in the applications. Our motivation behind the introduc-
tion and investigation of the Caputo-type modification of the Erdélyi-Kober
fractional derivative is in fact the same as the one by Caputo: we are trying
to define an operator that is similar to the classical Erdélyi-Kober fractional
derivative, but allows the more or less traditional form of initial conditions
while considering fractional differential equations with such type of frac-
tional derivative.

4. Caputo-type modification of the Erdélyi-Kober derivatives

In this section we define and give some basic properties of the Caputo-
type modification of the Erdélyi-Kober fractional derivatives. Let n − 1 <
δ ≤ n, n ∈ IN and m− 1 < α ≤ m, m ∈ IN . The operator

(∗D
γ,δ
β f)(x) := (Iγ+δ,n−δ

β

n−1∏

k=0

(1 + γ + k +
1
β

t
d

dt
)f)(x) (39)

is called the right-hand sided Caputo-type modification of the Erdélyi-Kober
fractional derivative of order δ. The left-hand sided Caputo-type modifica-
tion of the E-K fractional derivative of order α is analogously defined by

(∗P
τ,α
β f)(x) := (Jτ+α,m−α

β

m−1∏

j=0

(τ + j − 1
β

t
d

dt
)f)(x). (40)

In the formulae (39) and (40) the operators Iγ,δ
β and Jτ,α

β are the right- and
the left-hand sided E-K fractional integrals of orders δ and α, respectively,
defined by (4) and (5). In the rest of the section, we deal with the right-hand
sided Caputo-type modification of the Erdélyi-Kober derivative ∗D

γ,δ
β . The

case of the left-hand sided derivative can be considered by analogy. The
main result of the section is given by the following

Theorem 4.1. Let n − 1 < δ ≤ n, n ∈ IN , α ≥ −β(γ + δ + 1) and
f ∈ Cn

α . Then the following relation between the Caputo-type modification
of the Erdélyi-Kober fractional derivative and the Erdélyi-Kober fractional
integral of order δ holds true:

(Iγ,δ
β ∗D

γ,δ
β f)(x) = f(x)−

n−1∑

k=0

pkx
−β(1+γ+k), (41)

pk = lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)f(x). (42)
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P r o o f. First we show that under the conditions of the theorem the
function ∗D

γ,δ
β f belongs to the space Cα if f ∈ Cn

α . To prove this, we first
refer to the relation (27), that implies that

n−1∏

k=0

(1 + γ + j +
1
β

x
d

dx
)f ∈ Cα if f ∈ Cn

α .

The inclusion ∗D
γ,δ
β f ∈ Cα, α ≥ −β(γ + δ + 1) follows then directly from

Theorem 2.2. Using the definition of the Caputo-type modification of the
E-K fractional derivative and the property (7) of the E-K fractional integral,
we obtain the relation

(Iγ,δ
β ∗D

γ,δ
β f)(x) = (Iγ,δ

β Iγ+δ,n−δ
β

n−1∏

k=0

(1 + γ + j +
1
β

t
d

dt
)f)(x) (43)

= (Iγ,n
β

n−1∏

k=0

(1 + γ + j +
1
β

t
d

dt
)f)(x).

The last expression can be represented according to the formula (35) in the
form

(Iγ,n
β

n−1∏

k=0

(1 + γ + k +
1
β

t
d

dt
) f)(x) = f(x)−

n−1∑

k=0

pkx
−β(1+γ+k),

pk = lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)f(x),

that completes the proof of the theorem.

Remark 4.1. As expected, the constants

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)f(x)

in the formulae (41) and (42) depend only on the ordinary derivatives of the
function f with some power weights and do not depend on the limit values
of the fractional integrals at the point x = 0.

Now let us consider the question about the conditions under which the
Caputo-type modification of the Erdélyi-Kober fractional derivative ∗D

γ,δ
β

coincides with the Erdélyi-Kober fractional derivative Dγ,δ
β on the functional

space Cn
α , n− 1 < δ ≤ n, n ∈ IN .
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Theorem 4.2. The Caputo-type modification of the E-K fractional
derivative ∗D

γ,δ
β coincides with the E-K fractional derivative Dγ,δ

β for a func-
tion f ∈ Cn

α , n − 1 < δ ≤ n, n ∈ IN, α ≥ −β(γ + 1), if and only if the
conditions

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)f(x)

=
Γ(n− k)
Γ(δ − k)

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)(Iγ+δ,n−δ

β f)(x)

are fulfilled for all k = 0, 1, ..., n− 1.

P r o o f. For a function f ∈ Cn
α , n − 1 < δ ≤ n, n ∈ IN, α ≥

−β(γ+1) both the Caputo-type modification of the Erdélyi-Kober fractional
derivative ∗D

γ,δ
β and the Erdélyi-Kober fractional derivative Dγ,δ

β exist as
we showed in the proofs of Theorems 4.1 and 3.1, respectively. Now let

(∗D
γ,δ
β f)(x) ≡ (Dγ,δ

β f)(x), x > 0.

Applying the E-K operator Iγ,δ
β to both sides of the above relation, we get

(Iγ,δ
β ∗D

γ,δ
β f)(x) ≡ (Iγ,δ

β Dγ,δ
β f)(x), x > 0.

According to Theorem 4.1,

(Iγ,δ
β ∗D

γ,δ
β f)(x) = f(x)−

n−1∑

k=0

pkx
−β(1+γ+k),

pk = lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)f(x). (44)

Theorem 3.1 states that

(Iγ,δ
β Dγ,δ

β f)(x) = f(x)−
n−1∑

k=0

ckx
−β(1+γ+k),

ck =
Γ(n− k)
Γ(δ − k)

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)(Iγ+δ,n−δ

β f)(x). (45)

From the last three relations it follows that

n−1∑

k=0

pkx
−β(1+γ+k) =

n−1∑

k=0

ckx
−β(1+γ+k),



CAPUTO-TYPE MODIFICATION . . . 263

and, because the functions {x−β(1+γ+k), k = 0, ..., n − 1} are linear inde-
pendent, we have

pk = ck, k = 0, 1, ..., n− 1,

where the coefficients pk and ck are defined by (44) and (45), respectively,
what we wanted to prove.

Now, let the conditions of the theorem be fulfilled, i.e. pk = ck, k =
0, 1, ..., n− 1, where the coefficients pk and ck are defined by (44) and (45),
respectively.

Then it follows from Theorems 3.1 and 4.1 that

(Iγ,δ
β ∗D

γ,δ
β f)(x) ≡ (Iγ,δ

β Dγ,δ
β f)(x), x > 0. (46)

The identity
(∗D

γ,δ
β f)(x) ≡ (Dγ,δ

β f)(x), x > 0

follows then from the formula (21) by applying the Erdélyi-Kober fractional
derivative Dγ,δ

β to both sides of the relation (46).

The last problem we consider in this section is if the Caputo-type mod-
ification of the E-K fractional derivative is a left-inverse operator to the
E-K fractional integral (4), as it was the case for the E-K fractional deriva-
tive (see formula (21)). The corresponding result is given in the following
important

Theorem 4.3. The Caputo-type modification ∗D
γ,δ
β of the Erdélyi-

Kober fractional derivative is a left-inverse operator to the Erdélyi-Kober
fractional integral for the functions from the functional space Cα, α ≥
−β(γ + 1), i.e.,

(∗D
γ,δ
β Iγ,δ

β f)(x) ≡ f(x), f ∈ Cα. (47)

P r o o f. The direct proof of the relation (47) is very long and compli-
cated, so we prefer to employ an indirect approach. Namely, let us introduce
an auxiliary function g according to the rule

g(x) := (Iγ,δ
β f)(x). (48)

We shall now show that for the function g all conditions of Theorem 4.2 are
fulfilled, so that

(∗D
γ,δ
β g)(x) ≡ (Dγ,δ

β g)(x).
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This last formula together with the formula (21) leads to

(∗D
γ,δ
β Iγ,δ

β f)(x) ≡ (∗D
γ,δ
β g)(x) ≡ (Dγ,δ

β g)(x) ≡ (Dγ,δ
β Iγ,δ

β f)(x) ≡ f(x).

Let us prove now that

pk = ck = 0, k = 0, 1, ..., n− 1,

where the coefficients pk and ck are defined by (44) and (45), respectively,
and the function f is replaced by the function g = (Iγ,δ

β f)(x). We begin
with the coefficients pk. For k = n− l, l = 1, ..., n, we get

pn−l = lim
x→0

xβ(γ+1+n−l)
n−1∏

i=n−l+1

(1 + γ + i +
1
β

x
d

dx
)g(x)

= lim
x→0

xβ(γ+1+n−l)xpgl(x) = 0,

because β(γ+1+n−l)+p > β(γ+n)+α ≥ β(γ+n)−β(γ+1) = β(n−l) ≥ 0
and the functions gl, l = 1, ..., n are from the space C([0,∞)), due to
Theorem 2.2 and relation (27).

To calculate the coefficients ck, k = 0, 1, ..., n−1 we employ the formula
(7) for the composition of two Erdélyi-Kober fractional integrals:

(Iγ+δ,n−δ
β g)(x) = (Iγ+δ,n−δ

β Iγ,δ
β f)(x) = (Iγ,n

β f)(x).

Then

ck =
Γ(n− k)
Γ(δ − k)

lim
x→0

xβ(1+γ+k)
n−1∏

i=k+1

(1 + γ + i +
1
β

x
d

dx
)(Iγ,n

β f)(x)

=
Γ(n− k)
Γ(δ − k)

lim
x→0

xβ(γ+1+k)xpfk(x) = 0,

because β(γ+1+k)+p > β(γ+1+k)+α ≥ β(γ+1+k)−β(γ+1) = βk ≥ 0
and the functions fk, k = 0, ..., n− 1 are from the space C([0,∞)), due to
Theorem 2.2 and relation (27). The relation

pk = ck = 0, k = 0, 1, ..., n− 1,

is now proved, so that we can use the reasoning already presented at the
beginning, to complete the proof of the theorem.



CAPUTO-TYPE MODIFICATION . . . 265

Remark 4.2. In the paper, we give the definitions and some of the
basic properties of the Caputo-type modification of the Erdélyi-Kober frac-
tional derivative. As has been mentioned in the Introduction, this type of
operators already found its first applications. We hope, that the Caputo-
type modification of the Erdélyi-Kober fractional derivative can be success-
fully applied in other areas of research and modelling mainly due to the
formulae (41) and (42) that depend only on the ordinary derivatives of the
function f with some power weights and do not depend on the limit values of
the fractional integrals at the point x = 0 as it was the case for the classical
Erdélyi-Kober fractional derivative. Compared with the Riemann-Liouville
fractional derivative a potential advantage of the Caputo-type modifica-
tion of the Erdélyi-Kober fractional derivative for modelling of the applied
problems lie in the fact that in addition to the derivatives order δ it has
two additional parameters (γ and δ) that can be interpreted as two addi-
tional freedom degrees in the Fractional Models. Among other directions of
research connected with the new definition of a fractional derivative we men-
tion the applications of this operators to integral equations, fractional dif-
ferential equations with the Caputo-type modification of the Erdélyi-Kober
fractional derivative, operational calculus for this operator, Leibniz-type
rules, integral transforms of the new fractional derivative and special func-
tions related to it. These open problems will be considered elsewhere.
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