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Abstract

In this survey we present a brief history and the basic ideas of the gener-
alized fractional calculus (GFC). The notion “generalized operator of frac-
tional integration” appeared in the papers of the jubilarian Prof. S.L. Kalla
in the years 1969-1979 when he suggested the general form of these opera-
tors and studied examples of them whose kernels were special functions as
the Gauss and generalized hypergeometric functions, including arbitrary G-
and H-functions. His ideas provoked the author to choose a more peculiar
case of such kernels and to develop a theory of the corresponding GFC that
featured many applications. All known fractional integrals and derivatives
and other generalized integration and differential operators in various areas
of analysis happened to fall in the scheme of this GFC.
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1. Introduction to the classical fractional calculus

One of the trends of the contemporary fractional calculus is the so-called
generalized fractional calculus (GFC). Along with the expansion of numer-
ous and even unexpected recent applications of the operators of the classical
fractional calculus (FC), the GFC is another powerful tool stimulating the
development of this field.
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It is also generating new classes of special functions (special functions
of fractional calculus) and integral transforms, as well as providing new
transmutation operators applicable to solve more complicated problems in
analysis via their reduction to simpler ones. The GFC poses also: new chal-
lenges for interpretations of its operators, similar to the recently found for
the classical fractional integrals and derivatives (see e.g. Podlubny [27]);
and new open problems for their applications in solving not only theoreti-
cal models of fractional (multi-)order differential and integral eqations, but
mathematical models of real phenomena and events (as it is now well illus-
trated for the classical FC).

The classical FC is based on several (almost equivalent) definitions for
the operators of integration and differentiation of arbitrary (including real
fractional or complex) order, as continuation of the classical integration and
differentiation operators and their integer order powers (n ∈ N), namely -
the n-fold integration

Rnf(z) =
∫ z

0
dt1

∫ t1

0
dt2 . . .

∫ tn−2

0
dtn−1

∫ tn−1

0
f(tn)dtn

=
1

(n− 1)!

∫ z

0
(z − t)n−1f(t)dt, (1)

and n-th order derivatives Dnf(z) = f (n)(z). For definiteness, further we
have in mind the so-called Riemann-Liouville (R-L) definition. The essence
of the mathematical problem for defining integrals and derivatives of frac-
tional order consists in the following: for each function f(z), z = x + iy,
of sufficiently large class and for each number δ (rational, irrational, com-
plex), to set up a correspondence to a function g(z) = Dδf(z) satisfying the
conditions:

• If f(z) is an analytic function of z, the derivative Dδf(z) is an analytic
function of z and δ.

• The operation Dδ gives the same result as the usual differentiation of
order n, when δ = n is a positive integer, and the same effect as the
n-fold integration, if δ = −n is a negative integer (i.e. D−n = Rn).
Moreover, Dδf(z) should vanish at the initial point z = 0 (or z = c)
together with its first (n− 1) derivatives.

• The operator of order δ = 0 is the identity operator.
• The fractional operators are linear:

Dδaf(z) + bg(z) = aDδf(z) + bDδg(z).
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• For fractional integrations of arbitrary orders α > 0, β > 0 (<α > 0,
<β > 0) the additive index law (semigroup property) holds:

D−αD−βf(z) = D−(α+β)f(z), i.e. RαRβ = RβRα = Rα+β,

as the denotation Rδf(z) := D−δf(z),<δ > 0 will be used further in
the case of derivative of negative (or with negative real part) order.

The definition for the Riemann-Liouville (R-L) fractional integral (in
the whole survey we discuss only the so-called left-hand sided variants of
operators, denoted in the literature also as Iδ

0+):

Rδf(z) = D−δf(z) =
1

Γ(δ)

∫ z

0
(z − t)δ−1f(t)dt = zδ

∫ 1

0

(1− σ)δ−1

Γ(δ)
f(zσ)dσ,

(2)
is easily seen to satisfy all the above conditions, and in particular, coincides
with the repeated (n-fold) integration represented by the Dirichlet formula
in the form (1). If z = x+iy is a complex variable, the above representation
can be modified to the Cauchy integral formula. The R-L definition (2)
concerns integrations of (real part) positive orders and could not be used
directly for a differentiation (<δ < 0). However, a little trick is helpful for
a suitable expression. For noninteger δ > 0 we set n := [δ] + 1 (the smallest
integer greater than δ), then we can define properly the R-L fractional
derivative by means of the differ-integral expression

Dδf(z) = Dn Dδ−nf(z) =
(

d

dz

)n

Rn−δf(z)

=
(

d

dz

)n {
1

Γ(n− δ)

∫ z

0
(z − t)n−δ−1f(t)dt

}
, (3)

since n− δ > 0. In suitable functional spaces,

DδRδf(z) = f(z), i.e. the inversion formula holds:
{

Rδ
}−1

= Dδ .

One more interesting fact, to compare this with the classical calculus, follows
from the formula

Dδ {zα} =
Γ(α + 1)

Γ(α + 1− δ)
zα−δ, δ > 0, α > −1,

whence, for α = 0 we obtain:
Dδ{c} = c

z−δ

Γ(1− δ)
,

i.e. a fractional derivative of a constant is zero only for positive integer
values δ = n = 1, 2, 3, . . . .
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The classical fractional calculus can be thought as originated as early
as probably in 1695, when l’Hospital asked Leibnitz in a letter: “What if
n be 1/2 in dny/dxn?” and he replied, “It will lead to a paradox. From
this apparent paradox, one day useful consequences will be drawn”. Since
then, many known analysts and applied scientists contributed to the devel-
opment of this “strange” calculus, but the first book and the first conference
dedicated specially to that topic took place 279 years after the mentioned
correspondence! The detailed history, theory and its various applications,
by the years of 1987-1993 can be seen in the ”FC Encyclopedia” [33].

2. Introduction to the generalized fractional calculi

Besides the R-L definitions of the fractional calculus operators, several
modifications and their generalizations are widely used. The most useful
classical fractional integrals however seem to be the Erdélyi-Kober (E-K)
operators (see e.g. Sneddon [34] for the case β = 2), whose generalizations
in the form

Iγ,δ
β f(z) = z−β(γ+δ)

∫ z

0

(zβ − τβ)δ−1

Γ(δ)
τβγf(τ) d(τβ)

=
∫ 1

0

(1− σ)δ−1σγ

Γ(δ)
f(zσ

1
β ) dσ, γ ∈ R, β > 0, (4)

are used essentially in our works and in the present survey.
Several authors, like Love [22], Saxena [32], Kalla and Saxena [11], Saigo

[29, 30], McBride [26], also Tricomi, Sprinkhuizen-Kuiper, Koornwinder,
etc., have studied and used different modifications of the so-called hyperge-
ometric operators of fractional integration

Hf(z) =
µz−γ−1

Γ(1− δ)

∫ z

0
2F1

(
δ, β + m; η; a(

t

z
)
µ
)

tγf(t)dt, (5)

involving the Gauss hypergeometric function.
An example of fractional integration operators involving other special

functions, is given by the operators of Lowndes [23, 24]:

Iλ(η, ν + 1)f(z) =
2ν+1

λν
z−(ν+η+1)

∫ z

0
t2η+1(z2 − t2)

ν
2 Jν(λ

√
z2 − t2)f(t)dt,

(6)
related to the second order Bessel type differential operator
Bη = z−2η−1(d/dz)z2η+1(d/dz).

One of the most general fractional integration operators of type (2) can
be obtained when the kernel-function is an arbitrary Meijer G-function, as
in Kalla [7], also in Parashar, Rooney, etc.:
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IGf(z) = z−γ−1

∫ z

0
Gm,n

p,q

[
a(

t

z
)r

∣∣∣∣
(aj)

p
1

(bk)
q
1

]
tγf(t)dt, (7)

or its further generalization,the Fox H-function, as in Kalla [6], also in
Srivastava and Buschman [35], and others:

IHf(z) = z−γ−1

∫ z

0
Hm,n

p,q

[
a(

t

z
)r

∣∣∣∣
(aj , Aj)

p
1

(bk, Bk)
q
1

]
tγf(t)dt. (8)

In his papers [7, 8] of years 1970-1979, Kalla suggested that all the above
operators of R-L type (2) can be considered as “generalized operators of
fractional integration” of the general form (here we mention only the left-
hand sided type integrations):

If(z) = z−γ−1

∫ z

0
Φ(

t

z
) tγf(t)dt, (9)

where the kernel Φ(z) is an arbitrary continuous function so that the above
integral makes sense in sufficiently large functional spaces. Kalla established
a series of their general properties, analogous to those of the classical frac-
tional integrals, and also studied their special cases. By suitable choices of
the kernel-function Φ, operators (9) can be shown to include all the other
known fractional integrals as particular cases.

Nowadays, there exist a great number of articles, surveys and books,
and proceedings of conferences, entirely devoted to fractional calculus, its
generalizations and applications. For those before 1987 one can see detailed
references in the encyclopaedic book of Samko, Kilbas and Marichev [33].
Afterwards, several new books and volumes of collected papers appeared,
and many newer research papers, surveys and references can be seen in the
“FCAA” journal [5].

3. Some definitions

Definition 1. (see [36],[28],[17, App.]) By a Fox’s H-function we
mean the generalized hypergeometric function defined by means of the con-
tour integral

Hm,n
p,q (σ) = Hm,n

p,q

[
σ

∣∣∣∣
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]

= Hm,n
p,q

[
σ

∣∣∣∣
(aj , Aj)

p
1

(bk, Bk)
q
1

]
=

1
2πi

∫

L
Hm,n

p,q (s)σsds,
(10)

where the integrand in (10) has the form
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Hm,n
p,q (s) =

m∏
k=1

Γ(bk −Bks)
n∏

j=1
Γ(1− aj + Ajs)

q∏
k=m+1

Γ(1− bk + Bks)
p∏

j=n+1
Γ(aj −Ajs)

and L is a suitable contour in C; the orders (m,n; p, q) are nonnegative
integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ q; the parameters Aj , j = 1, . . . , p
and Bk, k = 1, . . . , q are positive and aj , j = 1, . . . , p, bk, k = 1, . . . , q are
arbitrary complex numbers such that
Aj(bk + l) 6= Bk(aj− l′−1); l, l′ = 0, 1, 2, . . . ; j = 1, . . . , p, k = 1, . . . , q.

In particular, when all Aj = Bk = 1, we obtain the so-called Meijer’s
G-function ([4, vol.1]):

Hm,n
p,q

[
σ

∣∣∣∣
(aj , 1)p

1

(bk, 1)q
1

]
= Gm,n

p,q

[
σ

∣∣∣∣
(aj)

p
1

(bk)
q
1

]
, (11)

that is,

Gm,n
p,q

[
σ

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

]
=

1
2πi

∫

L

m∏
k=1

Γ(bk − s)
n∏

j=1
Γ(1− aj + s)

q∏
k=m+1

Γ(1− bk + s)
p∏

j=n+1
Γ(aj − s)

σsds.

(12)
The operators (7) and (8) involve arbitrary Meijer’s G-functions and

Fox’s H-functions, and thus appear as the most general operators of GFC,
being in the classes of the convolutional type G- and H-integral transforms.
However, in order to develop a meaningful detailed theory with practical
applications, we have chosen the kernel-functions Φ in (9) (resp. in (7),(8))
as suitable peculiar cases of the G- and H-functions:

Gm,0
m,m

[
σ

∣∣∣∣
(γk + δk)m

1

(γk)m
1

]
, Hm,0

m,m

[
σ

∣∣∣∣∣
(γk + δk + 1− 1

βk
, 1

βk
)m
1

(γk + 1− 1
βk

, 1
βk

)m
1

]
(13)

Thus, in Kiryakova [17] (also [13]-[16]) we defined a class of generalized frac-
tional derivatives and integrals by means of single (differ-)integrals involving
the generalized hypergeometric functions (13). This allowed to develop a
detailed theory of GFC, with operational properties analogous to these of
the classical R-L and E-K fractional integrals and derivatives, with numer-
ous applications in solving problems for differential and integral equations
(including integer ordered), for classes of analytic functions in geometric
functions theory, in operational calculus and integral transforms, and with
a great impact in the theory of special functions, see [17], [18], [20], [19], [1].



A BRIEF STORY ABOUT THE OPERATORS . . . 209

Definition 2. ([13, 14, 3, 17] Let m ≥ 1 be integer, β > 0, γ1, ..., γm

and δ1 ≥ 0, ..., δm ≥ 0 be arbitrary real numbers. By a generalized (multiple,
m-tuple) Erdélyi-Kober (E.-K.) operator of integration of multi-order δ =
(δ1, ..., δm) we mean an integral operator

I
(γk),(δk)
β,m f(z) =

∫ 1

0
Gm,0

m,m

[
σ

∣∣∣∣
(γk + δk)m

1

(γk)m
1

]
f(zσ

1
β ) dσ. (14)

Then, each operator of the form

Rf(z) = zβδ0I
(γk),(δk)
β,m f(z) with arbitrary δ0 ≥ 0, (15)

is said to be a generalized (m-tuple) operator of fractional integration of
Riemann-Liouville type, or briefly: a generalized (R.-L.) fractional integral.

Generalizing further the operators of fractional calculus, in Kiryakova
[15, 16, 9, 10, 17] we introduced also operators involving classes of Fox’s H-
functions instead of the G-functions in (14),(15). They are called in the same
way, namely generalized (multiple) E.-K. operators (fractional integrals):

I
(γk),(δk)
(βk),m f(z)

=





1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣
(γk + δk + 1− 1

βk
, 1

βk
)m
1

(γk + 1− 1
βk

, 1
βk

)m
1

]
f(zσ)dσ, if

m∑
k=1

δk > 0,

f(z), if δ1 = δ2 = · · · = δm = 0.

(16)
Thus, along with the multi-order of integration (δ1, ..., δm) and the multi-

weight (γ1, ..., γm), we introduced also a multi-parameter (β1 > 0, ..., βm > 0)
(different βk’s) instead of the same β > 0 in the case with a G-function.
Note that due to relation (a generalization of (11)),

Hm,n
p,q

[
σ

∣∣∣∣∣
(a1,

1
β ), . . . , (ap,

1
β )

(b1,
1
β ), . . . , (bq,

1
β )

]
= β Gm,n

p,q

[
σβ

∣∣∣∣
(aj)

p
1

(bk)
q
1

]
, β > 0, (17)

operator (16) involving a H-function reduces to its simpler form (14)

for β1 = β2 = ... = βm = β > 0 : I
(γk),(δk)
(β,β,...,β),m = I

(γk),(δk)
β,m . (18)

Now let us introduce the corresponding generalizations of the classical
Riemann-Liouville fractional derivatives (3).

Definition 3. With the same parameters as in Def. 2 and the integers

ηk =

{
δk if δk is integer,
[δk] + 1, if δk is noninteger,

k = 1, . . . , m, (19)
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we introduce the auxiliary differential operator

Dη =




m∏

r=1

ηr∏

j=1

(
1
βr

z
d

dz
+ γr + j

)
 . (20)

Then, we define the multiple (m-tuple) Erdélyi-Kober fractional derivative
of multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) by means of the differ-integral
operator:

D
(γk),(δk)
(βk),m f(z) = Dη I

(γk+δk),(ηk−δk)
(βk),m f(z)

= Dη

1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣
(γk + ηk + 1− 1

βk
, 1

βk
)m
1

(γk + 1− 1
βk

, 1
βk

)m
1

]
f(zσ) dσ.

(21)
In the case (18) of equal βk’s, we obtain a simpler representation involv-

ing the Meijer’s G-function, corresponding to generalized fractional integral
(14):

D
(γk),(δk)
β,m f(z) = Dη I

(γk+δk),(ηk−δk)
β,m

=




m∏

r=1

ηr∏

j=1

(
1
β

z
d

dz
+ γr + j

)
 I

(γk+δk),(ηk−δk)
β,m f(z).

(22)
More generally, all differ-integral operators of the form

Df(z) = D
(γk),(δk)
β,m z−δ0f(z) = z−δ0D

(γk− δ0
β

),(δk)

β,m f(z) with δ0 ≥ 0, (23)

are called generalized (multiple, multi-order) fractional derivatives.
Generalized derivatives (22),(23) are the counterparts of the generalized

fractional integrals (14),(15).
Let us note that the hint for introducing the operators below (yet in

Kiryakova [13, 14]) was the extended study on the Bessel-type differential
operators of arbitrary (integer!) order m > 1 (called afterwards as hyper-
Bessel operators, [17, Ch.3]) and on the related integral transform of Laplace
type. In a series of papers, started by [2], Dimovski introduced these oper-
ators and developed operational calculi for them, based on the Mikusinski’s
algebraic scheme as well as on the Obrechkoff integral transform. The con-
tinuation of these studies in papers by Dimovski-Kiryakova, and Kiryakova,
lead to involving the Meijer G-functions into the theory of hyper-Bessel op-
erators and equations, as their solutions and as kernel-functions of related
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integral transforms and transmutation operators. Especially, the integral
representations for fractional powers Lλ of the hyper-Bessel operators (see
Dimovski and Kiryakova [3]) resulted in an integral operator of the form
(14) with all equal δk = λ, k = 1, ..., m, the operator L himself being thus
an integration of multi-integer order (1,...,1)! Similar results were predicted
also by an earlier paper by McBride [26]. More details and references related
to the theory and applications of the hyper-Bessel operators and Obrechkoff
integral transform, can be seen in [17, Ch.3].

4. Basic results of the GFC

The particular choice (13) of the kernel-functions ensures a decompo-
sition of our operators (called also multiple Erdélyi-Kober operators) into
products of commuting classical Erdélyi-Kober (E.-K.) operators (4). Thus,
complicated multiple integrals or differ-integral expressions can be repre-
sented alternatively, by means of single integrals involving special functions.
The beauty and succinctness of notations and properties of these functions
allow the development of a full chain of operational rules, mapping proper-
ties and convolutional structure of the generalized fractional integrals as well
as an appropriate explicit definition of the corresponding generalized deriva-
tives. On the other hand, the frequent appearance of compositions of clas-
sical Riemann-Liouville and Erdélyi-Kober fractional operators in various
problems of applied analysis gives the key to the great number of applications
and known special cases of our generalized fractional differ-integrals.

The main functional spaces discussed in our papers on GFC are the
weighted spaces of continuous, Lebesgue integrable or analytic functions:
Let α, µ be arbitrary real, k ≥ 0 and 1 ≤ p < ∞ be integers, the variables
x, z be real or complex, running resp. over the interval [0,∞) or in the
domain Ω ⊂ C, starlike with respect to the origin z = 0 and let H(Ω) stand
for the space of analytic functions in Ω. We use the denotations:

C(k)
α :=

{
f(x) = xpf̃(x); p > α, f̃ ∈ C(k)[0,∞)

}
, C(0)

α := Cα;

Lµ,p(0,∞) :=
{

f(x) : ||f ||µ,p =
[ ∞∫

0

xµ−1|f(x)|dx
] 1

p
< ∞

}
;

Hµ(Ω) =
{

f(z) = zµf̃(z); f̃(z) ∈ H(Ω)
}

, H0(Ω) := H(Ω).

To study the generalized fractional integrals, we have used essentially the
theory of the G- and H-functions, appearing as kernel-functions of (14),(16).
To this end, we refer the reader to the recently appeared books on special
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functions and fractional calculus, for example [12] as well as to “classics”
[4, vol. 1, Ch.5], [28], [36]; or [17, App.]. Note also, that the Gm,0

m,m- and
Hm,0

m,m-functions have three regular singular points σ = 0, 1 and ∞, they
vanish for |σ| > 1 and are analytic functions in the unit disk |σ| < 1.
Their asymptotic behaviour near σ = 0, 1 is already well-known (see e.g.
[28], [12]) and ensures the correctness of definitions (14),(16) in the above
spaces, under suitable conditions on parameters.

Most of the basic results for the operators of the generalized fractional
calculus have been stated in Kiryakova [17] separately for the cases of G- and
H-functions and for all the above mentioned spaces. Here we expose them
in one version only and in the most characteristic space and only mention
the analogues for the others.

Theorem 1. Each multiple E.-K. fractional integral (16) preserves the
power functions in Cα, α ≥ max

k
[−β(γk + 1)] up to a constant multiplier:

I
(γk),(δk)
(βk),m {xp} = cpx

p, p > α, where cp =
m∏

k=1

Γ(γk + p
βk

+ 1)

Γ(γk + δk + p
βk

+ 1)
, (24)

and it is an invertible mapping I
(γk),(δk)
(βk),m : Cα 7→ C

(η1+···+ηm)
α ⊂ Cα. If the

index α of Cα is fixed, then the conditions on the parameters are as follows:

γk ≥ − α

βk
− 1, δk > 0, ηk :=

{
[δk] + 1, for noninteger δk,

δk, for integer δk,
k = 1, . . . ,m.

(25)
Similar proposition holds also in the space Hµ(Ω), stated as follows.

Theorem 2. Let the conditions

γk > − µ

βk
− 1, δk > 0, k = 1, . . . , m (26)

be satisfied. Then, the multiple E.-K. operator (16) maps the class Hµ(Ω)
into itself, preserving the power functions up to constant multipliers like in
(24) and the image of a power series

f(z) = zµ
∞∑

n=0

anzn = zµ(a0 + a1z + . . . ) ∈ Hµ(∆R), ∆R = {|z| < R},

where R =
{

lim supn→∞ n
√
|an|

}−1
, is given by the series

I
(γk),(δk)
(βk),m f(z) = zµ

∞∑

n=0

{
an

m∏

k=1

Γ(γk + n+µ
βk

+ 1)

Γ(γk + δk + n+µ
βk

+ 1)

}
zn, (27)

having the same radius of convergence R > 0 and the same signs of the
coefficients.
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Operator (16) can be rewritten in the form

I
(γk),(δk)
(βk),m f(z) =

1
z

z∫

0

Hm,0
m,m

[
t

z

∣∣∣∣∣
(γk + δk + 1− 1

βk
, 1

βk
)m
1

(γk + 1− 1
βk

, 1
βk

)m
1

]
f(t)dt,

and thus, it can be put in the form of a convolutional type integral transform,
namely:

I
(γk),(δk)
(βk),m f(z) =

∞∫

0

k
z

t
f(t)

dt

t
= (k ◦ f) (z),

where ◦ denotes the Mellin convolution. Thus we obtain the following

Lemma 3. Multiple E.-K. fractional integral (16) has the following con-
volutional type representation in Lµ,p:

I
(γk),(δk)
(βk),m f(z) = Hm,0

m,m

[
1
z

∣∣∣∣∣
(γk + δk + 1, 1

βk
)m
1

(γk + 1, 1
βk

)m
1

]
◦ f(z) , (28)

and for 1 ≤ p ≤ 2 its Mellin transformation is given by the equality

M
{

I
(γk),(δk)
(βk),m f(z); s

}
=

[
m∏

k=1

Γ(γk − s
βk

+ 1)

Γ(γk + δk − s
βk

+ 1)

]
M{f(z); s}. (29)

Using representation (28) and following the pattern of [33] (a lemma de-
scending from Hardy, Littlewood and Polya), it is easy to prove the following
proposition.

Theorem 4. Let the parameters of the multiple E.-K. fractional inte-
gral (16) satisfy the conditions

βk(γk + 1) >
µ

p
, δk > 0, k = 1, . . . , m. (30)

Then, I
(γk),(δk)
(βk),m f(z) exists almost everywhere on (0,∞) and it is a bounded

linear operator from the Banach space Lµ,p into itself. More exactly,∥∥∥I
(γk),(δk)
(βk),m f

∥∥∥
µ,p
≤ hµ,p ‖f‖µ,p, i.e.

∥∥∥I
(γk),(δk)
(βk),m f

∥∥∥ ≤ hµ,p (31)

with hµ,p =
m∏

k=1

Γ(γk − µ
pβk

+ 1) / Γ(γk + δk − µ
pβk

+ 1) < ∞.

From the properties of the H- and G-functions some immediate corol-
laries of definitions (14),(16) follow.
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Theorem 5. Suppose conditions (25) for Cα, (26) for Hµ or (30) for
Lµ,p hold. Then, in the above spaces the following basic operational rules
of the multiple E.-K. fractional integrals hold:

I
(γk),(δk)
(βk),m {λf(cz) + ηg(cz)} = λ

{
I

(γk),(δk)
(βk),m f

}
(cz)+η

{
I

(γk),(δk)
(βk),m g

}
(cz) (32)

(bilinearity of (16));

I
(γ1,...,γs,γs+1,...,γm),(0,...,0,δs+1,...,δm)
(β1,...,βm),m f(z) = I

(γs+1,...,γm)(δs+1,...,δm)
(βs+1,...,βm),m−s f(z) (33)

(if δ1 = δ2 = · · · = δs = 0, then the multiplicity reduces to (m− s));

I
(γk),(δk)
(βk),m zλf(z) = zλI

(γk+ λ
βk

),(δk)

(βk),m f(z), λ ∈ R (34)

(generalized commutability with power functions);

I
(γk),(δk)
(βk),m I

(τj),(αj)

(εj),n
f(z) = I

(τj),(αj)

(εj),n
I

(γk),(δk)
(βk),m f(z) (35)

(commutability of operators of form (16));

the left-hand side of (35) = I
((γk)m

1 ,(τj)
n
1 )((δk)m

1 ,(αj)
n
1 )

((βk)m
1 ,(εj)n

1 ),m+n f(z) (36)

(compositions of m-tuple and n-tuple integrals (16) give (m + n)-tuple in-
tegrals of same form);

I
(γk+δk),(σk)
(βk),m I

(γk),(δk)
(βk),m f(z)=I

(γk),(σk+δk)
(βk),m f(z), ifδk > 0, σk > 0, k = 1, . . . , m

(37)
(law of indices, product rule or semigroup property);{

I
(γk),(δk)
(βk),m

}−1
f(z) = I

(γk+δk),(−δk)
(βk),m f(z) (38)

(formal inversion formula).

The above inversion formula follows from the index law (37) for σk =
−δk < 0, k = 1, . . . ,m and definition (16) for zero multi-order of integration,
since:

I
(γk+δk),(−δk)
(βk),m I

(γk),(δk)
(βk),m f(z) = I

(γk),(0,...,0)
βk,m f(z) = f(z).

But symbols (16) have not yet been defined for negative multi-orders of
integration −δk < 0, k = 1, . . . , m. The problem has been to propose an
appropriate meaning for them and hence to avoid the divergent integrals
appearing in (38). The situation is exactly the same as in the classical
case when the R.-L. and E.-K. operators of fractional order δ > 0 can
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be inverted by appealing to an additional differentiation of suitable integer
order η = [δ]+1. In this case, we have used the following differential formula
for the kernel H-function (see Kiryakova [17, Lemma 5.1.7 or Lemma B.3,
App.], resp. for the H- or the G-function): Let ηk ≥ 0, k = 1, ..., m be
arbitrary integers, then

Hm,0
m,m

[
t

z

∣∣∣∣∣
(ak,

1
βk

)m
1

(bk,
1
βk

)m
1

]
= DηH

m,0
m,m

[
t

z

∣∣∣∣∣
(ak + ηk,

1
βk

)m
1

(bk,
1
βk

)m
1

]
, (39)

with differential operator Dη being polynomial of z(d/dz) of degree η =
η1 + · · ·+ ηm:

Dη =
m∏

r=1

ηr∏

j=1

(
1
βr

z
z

dz
+ ar − 1 + j

)
.

This formula is helping to increase the parameters ak, k = 1, . . . ,m of
the H-function in the upper row by arbitrary integers ηk ≥ 0, k = 1, . . . ,m,
by using a suitable operator Dη. Choosing appropriately the necessary
parameters, as in Def. 3, we have proved that D

(γk),(δk)
(βk),m , the operator of

form (21), is indeed a generalized fractional derivative with a linear right
inverse operator I

(γk),(δk)
(βk),m , namely:

D
(γk),(δk)
(βk),m I

(γk),(δk)
(βk),m f(z) = f(z), f ∈ Lµ,p, Cα or Hµ. (40)

In other words, we have for example in Lµ,p the following

Theorem 6. Let f ∈ Lµ,p, let conditions (30) be satisfied and g(z) =
I

(γk),(δk)
(βk),m f(z). Then, the following inversion formula holds with the general-

ized fractional derivative defined in (21): f(z) = D
(γk),(δk)
(βk),m g(z), i.e.

f(z) =
{

I
(γk),(δk)
(βk),m

}−1
g(z) = D

(γk),(δk)
(βk),m g(z) for g ∈ I

(γk),(δk)
(βk),m (Lµ,p) . (41)

Next, we shall state the basic result for the generalized fractional inte-
grals (14),(16) suggesting their alternative name “multiple (m-tuple)” frac-
tional integrals.

Theorem 7. (Composition/Decomposition theorem) Under the condi-
tions (30) (resp. (25),(26)), the classical E.-K. fractional integrals of form

(4): Iγk,δk
βk

, k = 1, . . . , m, commute in the space Lµ,p and their product

Iγm,δm

βm

{
I

γm−1,δm−1

βm−1
. . .

(
Iγ1,δ1
β1

f(z)
)}

=

[
m∏

k=1

Iγk,δk
βk

]
f(z)
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=

1∫

0

. . .
(m)

1∫

0

[
m∏

k=1

(1− σk)δk−1σγk
k

Γ(δk)

]
f

(
zσ

1
β1
1 . . . σ

1
βm
m

)
dσ1 . . . dσm (42)

can be represented as an m-tuple E.-K. operator (16), i.e. by means of a
single integral involving the H-function:[

m∏

k=1

Iγk,δk
βk

]
f(z) = I

(γk),(δk)
(βk),m f(z) (43)

=

1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣
(γk + δk + 1− 1

βk
, 1

βk
)m
1

(γk + 1− 1
βk

, 1
βk

)m
1

]
f(zσ)dσ, f ∈ Lµ,p (resp. Cα,Hµ).

Conversely, under the same conditions, each multiple E.-K. operator of form
(16) can be represented as a product (42).

Let us note that the same proposition, under additional restrictions,
holds for the generalized fractional derivatives (21),(22) as well: they can be
seen as products of E.-K. fractional derivatives (analogues of R-L derivatives
(3) corresponding to E-K integrals (4)) of the form

Dγ,δ
β f(z) := Dγ,δ

β,1f(z) = DηI
γ+δ,η−δ
β f(z)

=




η∏

j=1

(
1
β

z
d

dz
+ γ + j

)


1∫

0

(1− σ)η−δ−1σγ+δ

Γ(η − δ)
f(zσ

1
β )dσ ,

(44)

namely:
D

(γk),(δk)
(βk),m = Dγ1,δ1

β1
Dγ2,δ2

β2
... Dγm,δm

βm
. (45)

Remark. Very recently, Luchko and Trujillo [21] have introduced and
studied the so-called E-K fractional derivatives of Caputo type, as extensions
of the Caputo modification of the R-L fractional derivatives. About the
Caputo derivatives, see e.g. the survey papers in [5], vol. 10, No 3 (2007).

Combination of Theorems 6 and 7, leads to the next step in clarifying
the structure of variety of known operators: generalized or classical, frac-
tional or integer order integrations, differentiations or differ-integrations.
Namely, in [17] we introduce an unified theory based on the common notion
“generalized fractional differ-integrals”. By now, operators I

(γk),(δk)
(βk),m with all

δk ≥ 0, k = 1, ..., m have been considered as (fractional) integrals while those
with all δk < 0, k = 1, ..., m have been undertaken as formal denotations for

the generalized fractional derivatives (cf. (38) and (41)): I
(γ
′
k+δ

′
k),(−δ

′
k)

(βk),m =
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D
(γ
′
k),(δ

′
k)

(βk),m , i.e. I
(γk),(δk)
(βk),m = D

(γk+δk),(−δk)
(βk),m . Now, having a decomposition the-

orem in mind, we may consider both symbols I
(γk),(δk)
(βk),m , D

(γk),(δk)
(βk),m as general-

ized fractional differ-integrals. If not all of the components of multi-order of
“differ-integration” δ = (δ1, ..., δm) are of the same sign, we simply interpret
them as “mixed” products of E.-K. fractional integrals and derivatives. For
example, if δ1 < 0, ..., δs < 0, δs+1 = ... = δs+j = 0, δs+j+1 > 0, ..., δm > 0,
then

I
(γk),(δk)
(βk),m := D

(γ1+δ1,...,γs+δs),(−δ1,...,−δs)
(β1,...,βs),s

I
(γs+j+1,...,γm),(δs+j+1,...,δm)

(βs+j+1,...,βm),m−s−j (46)

=
s∏

i=1

Dγi+δi,−δi

βi

m∏

k=s+j+1

Iγk,δk
βk

, a (m− j)-tuple fractional differ-integral.

Remark. A statement more general than Theorem 7, can be found for
example in Kalla and Kiryakova [9, 10], and [17, Th.5.2.3]. It deals with
products of commuting E-K fractional integrals both of forms (4) (R-L type)
and their right-hand sided analogues (so-called Weyl type). Then the result
is GFC operator involving kernel-functions of form Hm,n

m+n,m+n instead (13).
Theorem 7 is the key to the numerous applications of the GFC operators.

Some of them can be seen in the monograph [17] and articles [18, 20, 19, 1].
For other properties of these operators, images of elementary and special
functions and details of the GFC sketched here, see [17], Chs. 1 and 5.

5. Examples

1) In the case m = 1, the ”multiple” E-K operators (14),(16) and
(21),(45) reduce to the classical (”single”) E-K operators (4), (44).

2) For m = 2 the operators of our GFC reduce to the hypergeometric
operators (5), since G2,0

2,2 is expressed via the Gauss hypergeometric function.
3) For m = 3 the kernel-function G3,0

3,3 gives the so-called Horn’s (Ap-
pell’s) F3-function. Such operators of form (14) have been considered by
Marichev [25], Saigo et al. [31].

4) Let m > 1 be arbitrary, but all δk = 1, k = 1, . . . , m. Then, the op-
erators of form (14),(22): L = czβI

(γk),(1,...,1)
β,m , B = (1/c)D(γk),(1,...,1)

β,m z−β are
the hyper-Bessel integral operators, resp. hyper-Bessel differential operators

B = zα0
d

dz
zα1 . . .

d

dz
zαm = z−β

m∏

k=1

(
z

d

dz
+ βγk

)
, β > 0. (47)

5) A more general case than 4) gives a fractional indices analogue of
the hyper-Bessel operators. The operators L = zI

(µk−1),(1/ρk)
(ρk),m of form (16)
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happen to be analytical extension of the Gel’fond-Leontiev operators of gen-
eralized integration (resp. differentiation) with respect to the multi-index
Mittag-Leffler functions, introduced in Kiryakova [19].

6) Many linear integration and differentiation operators used in geomet-
ric functions theory, in studies on classes of univalent functions, are GFC
operators, see e.g. [20], also Kiryakova in [5], vol. 9, No 2 (2006), 159-176.

For more extensive list of other particular cases of the GFC operators,
including transmutation operators, see [17, 1] and other recent papers.
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fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249-267.

[22] E.R. Love, Some integral equations involving hypergeometric func-
tions. Proc. Edinburgh Math. Soc. 15, No 3 (1967), 169-198.

[23] J.S. Lowndes, On some generalizations of Riemann-Liouville and Weyl
fractional integrals and their applications. Glasgow Math. J. 22, No 2
(1981), 173-180.

[24] J.S. Lowndes, On two new operators of fractional integration. In: Proc.
Fractional Calculus, Workshop held in Glasgow 1984 = Research Notes
in Math. 138, Pitman Publ., Boston etc. (1985), 87-98.

[25] O. I. Marichev, Volterra equation of Mellin convolutional type with a
Horn function in the kernel (in Russian). Izv. AN BSSR Ser. Fiz.-Mat.
Nauk, No.1 (1974), 128-129.



220 V. Kiryakova

[26] A. McBride, Fractional powers of a class of ordinary differential oper-
ators. Proc. London Math. Soc. (III) 45 (1982), 519-546.

[27] I. Podlubny, Geometric and physical interpretation of fractional inte-
gration and fractional differentiation, Fract. Calc. Appl. Anal. 5, No 4
(2002), 367-386.

[28] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series,
Vol. 3: More Special Functions. Gordon and Breach Sci. Publ., N.
York-London-Paris-Tokyo, etc. (1990).

[29] M. Saigo, A remark on integral operators involving the Gauss hyper-
geometric functions. Math. Rep. College General Ed. Kyushu Univ. 11
(1978), 135-143.

[30] M. Saigo, A generalization of fractional calculus. In: Fractional
Calculus (Proc. Internat. Workshop held at Ross Priory, Univ. of
Strathclyde). Pitman, Boston and London (1985), 188-198.

[31] M. Saigo, N. Maeda, More generalization of fractional calculus. In:
Transform Methods & Special Functions, Varna’96 (Proc. Second In-
ternat. Workshop). SCTP, Singapore (1998), 386-400.

[32] R.K. Saxena, On fractional integration operators. Math. Zeitschr 96
(1967), 288-291.

[33] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Deriva-
tives. Theory and Applications. Gordon & Breach. Sci. Publ., London-
N. York (1993); Russian 1st Ed.: Fractional Integrals and Derivatives
and Some of Their Applications, Nauka i Tekhnika, Minsk (1987).

[34] I. N. Sneddon, The use in mathematical analysis of Erdélyi-Kober
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