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COMPUTING WITH THE SQUARE ROOT OF NOT

Alexis De Vos, Jan De Beule, Leo Storme

Abstract. To the two classical reversible 1-bit logic gates, i.e. the identity
gate (a.k.a. the follower) and the NOT gate (a.k.a. the inverter), we add an
extra gate, the square root of NOT. Similarly, we add to the 24 classical re-
versible 2-bit circuits, both the square root of NOT and the controlled square
root of NOT. This leads to a new kind of calculus, situated between classical
reversible computing and quantum computing.

1. Introduction. Reversible logic circuits, acting on m bits, form a
group, isomorphic to the symmetric group Sn of degree n and order n!, where n
is a short-hand notation for 2m. Quantum circuits, acting on m qubits, form a
group, isomorphic to the unitary group U(n). Whereas Sn is finite, U(n) is an
infinite group, i.e. a Lie group (with an uncountably infinite order, i.e. ∞n2

) with
dimension n2.

Although Sn is a subgroup of U(n), the step from Sn to U(n) is huge.
Therefore, the question arises whether groups X exist that are simultaneously a
subgroup of U(n) and a supergroup of Sn:

(1) Sn ⊂ X ⊂ U(n).
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Such group may exist in three different kinds:

• either a finite group with order > n!,

• or a discrete group with a countable infinity as order,

• or a Lie group (i.e. a group with an uncountable infinity as order) with
dimension < n2.

Each of these possibilities deserves our attention. The larger the group X, the
more difficult it is to implement it into hardware, but the more powerful is the
resulting computer. Assuming that for a lot of interesting problems the quan-
tum computer, based on the whole group U(n), is an ‘overkill’, we have to look
for a satisfactory compromise between simplicity (found close to Sn) and com-
putational power (found close to U(n)). Such a computer we may refer to as
‘reversible plus’ or ‘quantum light’.

We may tackle this problem in two ways: either bottom-up or top-down.
For bottom-up we start from the symmetric group and add some extra group
generators. For top-down we start from the unitary group and impose some
restrictions. In the present paper, we apply the former approach. We limit
ourselves to the cases m = 1 (thus n = 2) and m = 2 (thus n = 4).

2. One-(qu)bit calculations. A qubit can be in a state a0Ψ0 +a1Ψ1,
where Ψ0 and Ψ1 are its two eigenstates. The complex coefficients a0 and a1 are
the two amplitudes. In quantum computing they can have any value, as long as
a0a0 + a1a1 = 1.

The classical reversible gates on one bit are represented by the two 2× 2

permutation matrices ϕ =

(

1 0
0 1

)

(i.e. the follower) and ν =

(

0 1
1 0

)

(i.e.

the inverter or NOT gate), which form a group isomorphic to the symmetric group
S2. We may enlarge the group by adding generators. In the literature [1, 2], the

2× 2 Pauli matrices

(

0 −i
i 0

)

and

(

1 0
1 −1

)

have been proposed, leading to

the Pauli group (of order 16). In the present paper, on the contrary, we investigate
what happens if we introduce the generator

σ =
1

2

(

1 + i 1 − i
1 − i 1 + i

)

,
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which satisfies σ2 = ν. Thus, σ is the notorious square root of NOT [3, 4, 5, 6].
It generates a group of order four with elements

ϕ =

(

1 0
0 1

)

, σ =

(

ω ω
ω ω

)

, ν =

(

0 1
1 0

)

, and σ =

(

ω ω
ω ω

)

,

where the number ω is given by

ω =
1

2
+ i

1

2

and ω is its complex conjugate:

ω =
1

2
− i

1

2
.

The matrix σ obeys σ2 = ν and thus is the ‘other’ square root of NOT. Together,
the four matrices form a group with respect to the operation of ordinary matrix
multiplication, isomorphic to the cyclic group of order 4, i.e. to Z4. Indeed, we
have σ2 = ν, σ3 = σ, and σ4 = ϕ. Each of the four matrices has all line sums
(i.e. row sums and column sums) equal to 1.

Any of the four matrices transforms the input state a0Ψ0 + a1Ψ1 into an
output state p0Ψ0 + p1Ψ1:

(

p0

p1

)

=

(

U11 U12

U21 U22

)(

a0

a1

)

.

Because the matrix U is unitary, we automatically have p0p0 + p1p1 = 1. If the
input is in an eigenstate (either (a0, a1) = (1, 0) or (a0, a1) = (0, 1)), then the
output is in a superposition. E.g.

(

p0

p1

)

=

(

ω ω
ω ω

)(

1
0

)

=

(

ω
ω

)

.

But, as the output of one circuit may be the input of a subsequent circuit, we have
to consider the possibility of (a0, a1) being in such a superposition of eigenstates.
In fact, we have to consider all possible values of (a0, a1) and (p0, p1), which may
be transformed into one another. These values turn out to be either a column or a
row of one of the four matrices. Thus, in total, four states have to be considered:
(1, 0), (0, 1), (ω, ω), and (ω, ω). Such an object, which may be in four different
states, we can call a squabit, in order to distinguish it from a qubit, which can
be in as many as ∞3 different states, and from a bit, which can be in only two
different states.
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We see that, besides a0a0 + a1a1 = 1, the amplitudes a0 and a1 fulfil one
more restriction, namely a0 + a1 = 1. Because each of the four transformation
matrices has constant line sum equal to 1, the property a0 +a1 = 1 automatically
induces p0+p1 = 1. Table 1 displays how each of the matrices acts on the column
matrix (a0, a1)

T . The tables constitute the truth tables of the four reversible
transformations. Each of these tables expresses a permutation of the four objects
(1, 0), (0, 1), (ω, ω), and (ω, ω). Together they therefore form a permutation
group which is a subgroup of the symmetric group S4.

Table 1. The members of the group with m = 1: (a) follower, (b) square root of NOT,
(c) NOT, and (d) square root of NOT

a0a1 p0p1

1 0 1 0
0 1 0 1
ω ω ω ω
ω ω ω ω

(a)

a0a1 p0p1

1 0 ω ω
0 1 ω ω
ω ω 0 1
ω ω 1 0

(b)

a0a1 p0p1

1 0 0 1
0 1 1 0
ω ω ω ω
ω ω ω ω

(c)

a0a1 p0p1

1 0 ω ω
0 1 ω ω
ω ω 1 0
ω ω 0 1

(d)

3. Two-(qu)bit calculations
Two qubits exist in a superposition a00Ψ00 + a01Ψ01 + a10Ψ10 + a11Ψ11

with
∑

aklakl = 1. Here, additionally we have
∑

akl = 1. The subset of 2-qubit
circuits we investigate has to comprise the circuit calculating the square root of
NOT of qubit # 2. This circuit is represented by the matrix

(2) σ2 =









ω ω 0 0
ω ω 0 0
0 0 ω ω
0 0 ω ω









.

This matrix is the generator of a group isomorphic to Z4. The wanted set of
2-qubit circuits should also contain all classical reversible 2-bit circuits. Those
are generated by two generators

a =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









and b =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,
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generating a group isomorphic to S4.

Straightforward calculations (with the help of the computer algebra pack-
age GAP [7]) reveal that the group generated by the three generators {σ2, a, b} has
order 192. It constitutes the closure of the group (isomorphic to Z4) generated
by the first generator and the group (isomorphic to S4) generated by the two
other generators. We call this closure Υ. All 192 different 4× 4 unitary matrices

of Υ have entries from the set

{

0, 1, ω, ω,−1

2
,
1

2
,− i

2
,
i

2

}

and all have line sums

equal to 1. We have

• 24 matrices with entries from {0, 1},

• 72 matrices with entries from {0, ω, ω},

• 72 matrices with entries from

{

1

2
,− i

2
,
i

2

}

, and

• 24 matrices with entries from

{

−1

2
,
1

2

}

.

The four classes of matrices are the four double cosets in which the group Υ is
partitioned by its S4-subgroup. Representatives of these double cosets are e.g.









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









ω ω 0 0
ω ω 0 0
0 0 ω ω
0 0 ω ω









,
1

2









i 1 1 −i
1 i −i 1
1 −i i 1

−i 1 1 i









,

and
1

2









−1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1









.

Figure 1 shows the four representative circuits.

We may note that the number 192 is really an ‘ordinary order’ for a finite
group. Indeed, according to Conway et al. [8], there are 6013 different groups
with order smaller than 200. Among them, not fewer than 1543 (i.e. about 26%)
have an order precisely equal to 192. With the GAP command IdGroup(), we
find that the group Υ has the GAP library number [192, 944]. The group is
isomorphic to (Z4× Z4× Z2) : S3, where × denotes the direct product and :



364 Alexis De Vos, Jan De Beule, Leo Storme

Fig. 1. Four representative circuits: (a) follower, (b) square root of NOT, (c) double
square root of NOT, and (d) a more complicated circuit

denotes the semidirect product of two groups. Its subgroup isomorphic to Z4×
Z4× Z2 is generated by the three generators

1

2









1 1 −i i
1 1 i −i

−i i 1 1
i −i 1 1









,
1

2









1 −i 1 i
−i 1 i 1
1 i 1 −i
i 1 −i 1









,

and
1

2









1 −1 1 1
−1 1 1 1

1 1 1 −1
1 1 −1 1









.

Noteworthy is the fact that a matrix like

(3) c =









1 0 0 0
0 1 0 0
0 0 ω ω
0 0 ω ω









,

which may be interpreted as a ‘controlled square root of NOT’ (or as a ‘square root
of controlled NOT’), is not a member of the group Υ. In contrast, the ‘controlled
NOT’, i.e.









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









,

is a member of Υ. Also automatically a member is the circuit calculating the
square root of NOT of qubit # 1:

σ1 =









ω 0 ω 0
0 ω 0 ω
ω 0 ω 0
0 ω 0 ω









.
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The group Υ may be regarded as a permutation group, provided we
introduce the necessary number of quantum superpositions. These states, again,
correspond to rows/columns of the matrices. E.g. Table 2 shows an example
of a truth table. Both this permutation table and the matrix (2) constitute a
representation of the same circuit in Figure 1b.

We see that, in order to guarantee that the set of input words (a00, a01, a10,
a11) equals the set of output words (p00, p01, p10, p11), we need to consider not
fewer than 32 different words. Therefore, the group of circuits generated by the
three generators will be a subgroup of S32. This group Υ of 2-qubit circuits can
thus be represented by a subset of the 32! different 32×32 permutation matrices.
We may summarize that the 192 matrices of the group Υ simultaneously form a
supergroup of the symmetric group S4 and a subgroup of the symmetric group
S32:

S4 ⊂ Υ ⊂ S32.

With the GAP command SmallerDegreePermutationRepresentation(Image

(RegularActionHomomorphism())) we find that the matrix group is isomorphic
to a particular group of even permutations of twelve objects:

S4 ⊂ Υ ⊂ A12,

where An denotes the alternating group of degree n (with order n!/2).
If we add the matrix (3) as a fourth generator, the group Υ is enlarged to

a new group Ω (i.e. the closure of Υ and c ), which, according to GAP, has infinite
order. However, this result seems to be only a warning [9] that the order of one
of its elements ‘must be larger than 1000’. We thus will explicitly prove that the
new group has order equal to the countable infinity ℵ0. For this purpose, below
we will

• first demonstrate that the order is smaller than or equal to ℵ0 and

• then demonstrate that the order is greater than or equal to ℵ0.

First, we note that each element of Ω is a matrix with 16 entries, all of
the form a + bi, with both a and b rational numbers. The non-singular matrices
with such entries form a group. The latter group has order equal to ℵ32

0 − ℵ30
0 ,

i.e. order ℵ0. Our group Ω is a subgroup of it and therefore has an order smaller
than or equal to ℵ0.

Next, we note that the group generated by the four generators {σ2, a, b, c}
equals the group generated by the three generators {a, b, c}. Indeed, gate σ2 can
be realized by combining two gates c with two NOT gates. See Figure 2. Then we
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Table 2. The truth table of member σ2 of the group Υ

a00 a01 a10 a11 p00 p01 p10 p11

0 0 0 1 0 0 ω ω
0 0 1 0 0 0 ω ω
0 1 0 0 ω ω 0 0
1 0 0 0 ω ω 0 0

0 0 ω ω 0 0 1 0
0 0 ω ω 0 0 0 1
0 ω 0 ω −i

2

1

2

1

2

i

2

0 ω ω 0 −i

2

1

2

i

2

1

2

0 ω 0 ω 1

2

i

2

−i

2

1

2

0 ω ω 0 1

2

i

2

1

2

−i

2

ω 0 0 ω 1

2

−i

2

1

2

i

2

ω 0 ω 0 1

2

−i

2

i

2

1

2

ω ω 0 0 1 0 0 0
ω 0 0 ω i

2

1

2

−i

2

1

2

ω 0 ω 0 i

2

1

2

1

2

−i

2

ω ω 0 0 0 1 0 0

1

2

1

2

−i

2

i

2

1

2

1

2

1

2

−1

2

1

2

1

2

i

2

−i

2

1

2

1

2

−1

2

1

2

1

2

−i

2

1

2

i

2
0 ω ω 0

1

2

i

2

1

2

−i

2
ω 0 0 ω

1

2

−i

2

i

2

1

2
0 ω 0 ω

1

2

i

2

−i

2

1

2
ω 0 ω 0

−i

2

1

2

1

2

i

2
ω 0 ω 0

i

2

1

2

1

2

−i

2
0 ω 0 ω

−i

2

1

2

i

2

1

2
ω 0 0 ω

i

2

1

2

−i

2

1

2
0 ω ω 0

−i

2

i

2

1

2

1

2

1

2

−1

2

1

2

1

2

i

2

−i

2

1

2

1

2

−1

2

1

2

1

2

1

2

1

2

1

2

1

2

−1

2

1

2

1

2

i

2

−i

2

1

2

1

2

−1

2

1

2

1

2

1

2

−i

2

i

2

1

2

−1

2

1

2

1

2

i

2

−i

2

1

2

1

2

−1

2

1

2

1

2

1

2

−i

2

i

2

1

2

1

2
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Ö Ö Ö

Fig. 2. An uncontrolled gate as a sequence of two controlled gates

note that, in order to prove that the order of a matrix group is infinite, it suffices
to demonstrate that one of its elements has infinite order. We chose the element

(4) y = abc =









0 0 ω ω
0 1 0 0
0 0 ω ω
1 0 0 0









.

The proof that matrix y has infinite order is given in the Appendices: Appendix A
treats the case of an arbitrary unitary matrix x, whereas Appendix B treats
the particular case of the matrix y defined by equation (4). Thus the group
{1, y, y2, y3, . . . } has an order equal to ℵ0. Our group Ω is a supergroup of it and
therefore has an order greater than or equal to ℵ0.

4. Conclusions. There exist 2 reversible logic circuits acting on 1 bit
(forming a group isomorphic to S2); there exist 24 reversible logic circuits acting
on 2 bits (forming a group isomorphic to S4). Adding to the former set the logic
gate called the ‘square root of NOT’ leads to a group of four circuits (isomorphic
to Z4). Adding the same square root of NOT to the latter set leads to a group Υ

of 192 circuits. Additionally adding the ‘controlled square root of NOT’ leads to a
group Ω with a (countable) infinity of circuits. This suggests that there might be
limited room for groups X satisfying (1), in contrast to what one would expect
from the huge difference between Order(Sn) and Order(U(n)).
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A. Order of an arbitrary unitary matrix x. We consider an n×n
unitary matrix x. The matrix x has infinite order if the sequence {x0, x1, x2, . . . }
is not periodic, i.e. if all xj with j > 0 are different from x0 = 1. The matrix
recursion equation xj = xj−1x yields n2 scalar recursion equations. These fall
apart into n sets of n equations. Within a set the row number k is fixed and the
column number q takes all values from 1 to n :

(xj)kq =
∑

p

(xj−1)kp xpq.

Let X be the Z-transform of the matrix sequence x0, x1, x2, . . . . Then:

Xkq =
∑

p

Xkp

z
xpq

or
∑

p

xpqXkp − zXkq = 0,

a set of n homogeneous equations, which has a non-zero solution iff

det(x − z) = 0 .

The solutions z of this equation are the eigenvalues of the given matrix x. Thus
the n poles zk of the Z-transform of the matrix sequence {xj} are the n eigenvalues
of x itself. Thus, if all eigenvalues zk of x are different, then

(5) xj =

n−1
∑

k=0

xkz
j
k,

with n appropriate matrices xk, each to be determined as a linear superposition
of the n initial conditions x0 = 1, x1, . . . , and xn−1. This result is strongly
related to the Cayley–Hamilton theorem. Because of (5), xj can only be periodic
if all the eigenvalues zk are located on the unit circle with rational phase angles.
Here, we call an angle rational iff it is a rational multiple of π.

Because x is unitary, automatically all its eigenvalues are on the unit
circle, so that we only have to check the n phase angles. If x has an eigenvalue zk

with multiplicity s, then, beside a term proportional to zj
k
, also terms proportional

to jzj
k, to j2zj

k, . . . , js−1zj
k appear and xj is not periodic, even if zk has a rational

phase angle (unless the starting values x, x2, . . . , xn−1 of the sequence {xj} are
such that all the coefficients of jzj

k, j2zj
k, . . . , js−1zj

k turn out to be equal to the
zero matrix).
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B. Order of the unitary matrix y. The power sequence {yj} of
the 4 × 4 matrix (4) is of the form

yj = c0z
j
0

+ d0jz
j
0

+ c1z
j
1

+ c2z
j
2
,

with z0, z1, and z2 the three solutions of the eigenvalue equation

(z − 1)2(z2 + ωz + i) = 0

and with appropriate matrices c0, d0, c1, and c2, determined* by the initial
conditions y0 = 1, y1, y2, and y3. We have z0 = 1 (with multiplicity 2),

z1 = −
√

7 + 1

4
+ i

√
7 − 1

4
, and z2 =

√
7 − 1

4
− i

√
7 + 1

4
. As expected, all three

numbers z0, z1, and z2 lie on the unit circle of the complex plane. Their phase

angles are θ0 = 0, θ1 = π/2 − θ, and θ2 = π + θ, where θ = Arccos

(√
7 − 1

4

)

=

Arctan(
√

7 ) − π/4 ≈ 24◦17′43′′.
Neither zj

1
nor zj

2
is periodic, because the angle θ is not a so-called ratio-

nal angle, i.e. an angle which is a rational multiple of π. Indeed, according to
Jahnel [10], the only rational angles (between 0◦ and 90◦) with a cosine equal to
a quadratic irrational are 30◦, 36◦, 45◦, and 72◦ (with cosines equal to respec-
tively

√
3/2,

√
5/4 + 1/4,

√
2/2, and

√
5/4− 1/4). Similarly, according to Calcut

[11], the only rational angles (between 0◦ and 90◦) with a tangent equal to a
quadratic irrational are 15◦, 22◦30′, 30◦, 60◦, 67◦30′, and 75◦ (with tangent equal
to respectively 2 −

√
3,

√
2 − 1,

√
3/3,

√
3,

√
2 + 1, and 2 +

√
3 ).

*Straightforward but lengthy calculations (involving the solution of 16 sets each of four

equations in four unknowns) leads to c0 =
1

3
G, d0 = 0, c1 =

1

6
H +

√

7

21
J + i

√

7

14
K, and

c2 =
1

6
H −

√

7

21
J − i

√

7

14
K, where

G =

0BB� 1 0 1 1
0 3 0 0
1 0 1 1
1 0 1 1

1CCA , H =

0BB� 2 0 −1 −1
0 0 0 0

−1 0 2 −1
−1 0 −1 2

1CCA ,

J =

0BB� −1 0 −1 2
0 0 0 0

−1 0 2 −1
2 0 −1 −1

1CCA , and K =

0BB� 0 0 1 −1
0 0 0 0

−1 0 0 1
1 0 −1 0

1CCA .


