
Serdica J. Computing 4 (2010), 57–72

QUASI-MONTE CARLO METHODS FOR SOME LINEAR

ALGEBRA PROBLEMS. CONVERGENCE AND

COMPLEXITY*

Aneta Karaivanova

Abstract. We present quasi-Monte Carlo analogs of Monte Carlo meth-
ods for some linear algebra problems: solving systems of linear equations,
computing extreme eigenvalues, and matrix inversion. Reformulating the
problems as solving integral equations with a special kernels and domains
permits us to analyze the quasi-Monte Carlo methods with bounds from
numerical integration. Standard Monte Carlo methods for integration pro-
vide a convergence rate of O(N−1/2) using N samples. Quasi-Monte Carlo
methods use quasirandom sequences with the resulting convergence rate for
numerical integration as good as O((log N)k)N−1). We have shown theo-
retically and through numerical tests that the use of quasirandom sequences
improves both the magnitude of the error and the convergence rate of the
considered Monte Carlo methods. We also analyze the complexity of con-
sidered quasi-Monte Carlo algorithms and compare them to the complexity
of the analogous Monte Carlo and deterministic algorithms.

ACM Computing Classification System (1998): F.2.1, G.1.3, G.3.
Key words: quasi-Monte Carlo methods, matrix computations, Markov chains, quasirandom

sequences.
*This work is supported by the National Science Fund of Bulgaria under Grant

No. D002-146/16.12.2008.

58 Aneta Karaivanova

1. Introduction. In the contemporary literature, a large number
of iterative methods for linear algebra problems have been described based on
different principles. As a rule the computational schemes for these methods are
simple and convenient for use in applied computing. However, each iterative
process has a limited area of application, since in the first place an iterative
process may turn out to be inapplicable for a given system and in the second
place the convergence of the process may be so slow that in practice it turns out
to be impossible to achieve a satisfactory approximation to the solution.

First proposed by von Neumann and Ulam, Monte Carlo methods (MCMs)
for solving linear algebra problems have been known since the middle of the last
century. They give statistical estimates for the elements of the inverse of a matrix
or for components of the solution vector of a linear system by performing ran-
dom sampling of a certain random variable whose expected value is the desired
solution. Perhaps the first application of MCMs in linear algebra appeared in
a paper by Forsythe and Leibler, [14] in 1950. In the following years significant
contributions were made, especially by Wasow [23], Curtiss [6], Halton [17], Ham-
mersly and Handscomb [16] and Sobol [22]. These methods were recognized as
useful in the following situations, [24]: when obtaining a quick rough estimate of
a solution, which will then be refined by other methods; when the problem is too
large or too intricate for any other treatment; when just one component of the
solution vector or one element of the inverse matrix is desired.

There has been renewed interest in MCMs in recent times, for example
[18, 11, 12, 10, 7, 13, 1, 2, 3, 9, 8]. The primary reason for this is the efficiency of
parallel MCMs in the presence of high communication costs. The second reason
for the recent interest in MCMs is that the methods have evolved significantly
since the early days. Much of the effort in the development of Monte Carlo
methods has been in the construction of variance reduction techniques which
speed up the computation by reducing the rate of convergence of crude MCM,
which is O(N−1/2). An alternative approach to acceleration is to change the
type of random sequence, and hence improve the behavior by N . Quasi-Monte
Carlo methods (QMCMs) use quasirandom (also known as low-discrepancy) se-
quences instead of pseudorandom sequences, with the resulting convergence rate
for numerical integration being as good as O((log N)k)N−1). The first results
of using QMCMs for linear algebra problems were presented by Mascagni and
Karaivanova, see for example [19, 20].

Quasi-Monte Carlo methods often include standard approaches for vari-
ance reduction, although such techniques do not necessarily translate directly.
The fundamental feature underlying all QMCMs, however, is the use of a quasi-

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 59

random sequence. In this paper the convergence and the complexity of QMCMs
for estimating the solution of systems of linear algebraic equations (SLAE), in-
verting matrices and finding extremal eigenvalues are studied. An error bound
for computing a matrix-vector product is established. Numerical experiments
with sparse matrices are performed using different quasirandom number (QRN)
sequences. The results indicate that for all of the considered problems improve-
ments in both the magnitude of the error and the convergence rate can be achieved
using QRNs in place of pseudorandom numbers (PRNs).

2. Formulation of the Problems. Given a matrix B = {bij}n
i,j=1,

B ∈ R
n × R

n and a vector b = (b1, . . . , bn)t ∈ R
n consider the following three

problems:

Problem P1. Evaluating the inner product

(1) J(u) = (h, u) =
n
∑

i=1

hiui,

where u ∈ R
n is the unknown solution of the system u = Au + f and h ∈ R

n is
a given vector.

Method. First, choose a matrix M ∈ R
n × R

n such that MB = I − A,
where I ∈ R

n × R
n is the identity matrix and Mb = f , f ∈ R

n. Clearly, this
is possible, and the choice of M depends on the properties of A, [4]. Then the
matrix equation Bu = b becomes

(2) u = Au + f.

It will be assumed that M and A are both non-singular, and that |λ(A)| < 1 for
all eigenvalues of A (all values λ(A) for which Au = λ(A)u is satisfied). Then a
general stationary linear iteration for solving the system Bx = b may be written

u(k+1) = Au(k) + f.

The residual corresponding to u(k) is r(k) = f − (I − A)x(k) = u(k+1) − u(k), and
assuming that ‖A‖ < 1 it can be easily shown that:

‖r(k+1)‖ ≤ ‖A‖k+1‖r(0)‖,

‖u − u(k)‖ ≤ ‖A‖k‖r(0)‖
1 − ‖A‖ .

60 Aneta Karaivanova

The last inequality gives the error of this method.

Problem P2. Inverting matrices, i.e., computing the matrix C such that
CB = I where B ∈ R

n × R
n is a given real matrix.

Our approach. It will be assumed that the matrix B is non-singular,
and that | |λ(B)| − 1| < 1 for all eigenvalues λ(B) of B. Construct the matrix
A = I − B. Under the above assumptions the inverse matrix C = B−1 can be
presented as

(3) C =

∞
∑

i=0

Ai,

and the desired approximation of C is the truncated series (3) with the corre-
sponding truncation error.

Problem P3. Evaluating extremal eigenvalues, λmax and λmin of a ma-
trix A, assuming A is nonsingular and λmin = λn < λn−1 ≤ · · · ≤ λ2 < λ1 = λmax.

Method. Consider the matrix A and also its resolvent matrix Rq =
[I − qA]−1 ∈ R

n×n. The following representation

(4) [I − qA]−m =
∞
∑

i=1

qiCi
m+i−1A

i, |qλ| < 1

is valid because of the well known behavior of the binomial expansion and the
spectral theory of linear operators. The eigenvalues of the matrices Rq and A

are thus connected by the equality µ =
1

1 − qλ
, and the eigenvectors of the two

matrices coincide. The largest eigenvalue can be obtained as follows:

• using the Power Method applied to the matrix A, [11]:

(5) λmax = lim
i→∞

(h,Aif)

(h,Ai−1f)
,

• or using the Power Method applied to the resolvent matrix, [12], for q > 0:

(6) µ(m) =
([I − qA]−mf, h)

([I − qA]−(m−1)f, h)
−→

m→∞
µ =

1

1 − qλ
, f ∈ R

n, h ∈ R
n.

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 61

For computing the smallest eigenvalue we use the fact that for negative values of
q the largest eigenvalue, µmax, of Rq corresponds to the smallest eigenvalue λmin

of the matrix A, so we use (6) with q < 1.

The convergence rate of the power method is O

(

λ2

λ1

)

and the rate of the

resolvent power is O

(

1 − qλn

1 − qλn−1

)

.

3. Monte Carlo Methods for Linear Algebra. To solve these
problems via MCMs (see, for example, [16, 22]) one has to construct for each
problem a random process with mean equal to the solution of the desired problem.
All of these methods are based on computing a matrix-vector product.

3.1. Computing Matrix-Vector Product. Given a matrix A and
vectors f, h ∈ Rn, we want to compute hT Aif for some i using a Monte Carlo
method. Construct a Markov chain: k0 → k1 → . . . → ki, where kj = 1, 2, . . . , n
for j = 1, . . . , i are natural numbers. The rules for constructing the chain are:
P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ, where pα is the probability
that the chain starts in state α and pαβ is the transition probability from state
α to state β. The probabilities pαβ define a transition matrix P . We require

that
n
∑

α=1
pα = 1,

n
∑

β=1

pαβ = 1 for any α = 1, 2, . . . , n, and that the distribution

(p1, . . . , pn)T is permissible to the vector h and similarly the distribution pαβ is
permissible to A [22]. Common constructions are to choose pα = 1/n, pαβ = 1/n,
which corresponds to crude Monte Carlo, or to choose

(7) pα =
|hα|

n
∑

α=1
|hα|

; pαβ =
aαβ

n
∑

β=1

|aαβ|
, α = 1, . . . , n,

which corresponds to importance sampling for matrix computations — the zero
elements will never be visited and the elements with larger magnitude will be
visited more often during the random walks on the elements of the matrix.

Now define weights for our Markov chain using the following recursion
formula:

(8) W0 = 1, Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, . . . , i,

62 Aneta Karaivanova

and the random variable

(9) θ =
hk0

pk0

Wifki
.

Following [22], it is easy to show that

(10) E[θ] = (h,Aif), i = 1, 2,

Convergence. The Monte Carlo error obtained when computing a matrix-
vector product is well known to be [22]:

|hT Aif − 1

N

N
∑

s=1

(θ)s| ≈ V ar(θ)1/2N−1/2,

where V ar(θ) = {(E[θ])2−E[θ2]}. If the row sums of A are a constant,
∑n

j=1 aij =
a, and if all the elements of the vector f are constant, and if we furthermore define
the initial and transition densities as in (7), then V ar[θ] = 0, [20]. For the com-
mon case we have V ar[θ]=(E[hk0

Wmfkm
])2−E[(hk0

Wmfkm
)2]≤(E[hk0

Wmfkm
])2

≤
n
∑

i=1
|ak0i|.

n
∑

i=1
|ak1i| . . .

n
∑

i=1
|akm−1i|, for f and h normalized.

3.2. Monte Carlo estimations. To solve Problem 1, define the
random variables θ[h]:

(11) θ[h] =
hk0

pk0

∞
∑

j=0

Wjfkj
.

It is known [22] that the mathematical expectation of this random variable is
E[θ[h]] = (h, u). The partial sum corresponding to (11) is defined as

θi[h] =
hk0

pk0

i
∑

j=0
Wjfkj

. Thus the Monte Carlo estimate for (h, x) is

(h, x) ≈ 1

N

N
∑

s=1

ls
∑

i=0

(

hk0

pk0

Wifki

)

s

,

where N is the number of chains and θi[h]s is the value of θi[h] taken over the
s-th chain. This estimate has a statistical error of size O(V ar(θi)

1/2N−1/2).
If we are interested in one component of the solution, xr, then we choose

the vector h with coordinates h(i) = 0 for i 6= r, and h(r) = 1, then xr = E[θ[h]]
for the above defined random variable θ.

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 63

To solve Problem 2, i.e., to compute the element crr′ of the matrix
inverse to A, we use the following equality, [22]:

(12) crr′ = E

∑

i|ki=r′

Wi

,

where (i|ki = r′) means summation only for weights Wi for which ki = r′ and
C = {crr′}n

r,r′=1. The Monte Carlo estimation is then:

crr′ ≈
1

N

N
∑

s=1

∑

(j|kj=r′)

Wj

s

.

To solve Problem 3, we use the equality (10) and also the following one,
([12]):

E

[

∞
∑

i=0

qiCi
i+m−1

hk0

pk0

Wif(xi)

]

= (h, [I − qA]−mf), m = 1, 2, . . . ,

which allow us to express the estimates (5) and (6) as:

(13) λmax ≈ E[Wifki
]

E[Wi−1fki−1
]
.

and

(14) λ ≈ 1

q

(

1 − 1

µ(m)

)

=

E

[

∞
∑

i=1
qi−1Ci−1

i+m−2Wif(xi)

]

E

[

∞
∑

i=0
qiCi

i+m−1Wif(xi)

] .

We use MCM for an approximate calculation of these expected values:

λmax ≈

N
∑

s=1
(Wmfkm

)s

N
∑

s=1
(Wm−1fkm−1

)s

λmin =≈

N
∑

s=1

([

l
∑

i=0
qiCi−1

i+m−1Wi+1f(xi+1)

])

s
N
∑

s=1

([

l
∑

i=0
qiCi

i+m−1Wif(xi)

])

s

.

64 Aneta Karaivanova

We note that in (13) the length of the Markov chain, l, is equal to the number
of iterations, i, in the power method. However in (14) the length of the Markov
chain is equal to the number of terms in the truncated series for the resolvent
matrix. In this second case the parameter m corresponds to the number of power
iterations.

4. Quasi-Monte Carlo Methods for Matrix Computations.

Recall that all presented methods are based on computing hT Aif (see (5) and
(6)). But computing hT Aif is equivalent to computing an (i + 1)-dimensional
integral. Thus we may analyze using QRNs with bounds from numerical integra-
tion. We do not know Ai explicitly, but we do know A and we perform random
walks on the elements of the matrix to compute approximately hT Aif .

If we define G = [0, n), Gi = [i − 1, i), f(x) = fi for x ∈ Gi, a(x, y) = aij

for x ∈ Gi, y ∈ Gj , h(x) = hi for x ∈ Gi, where i, j = 1, . . . , n, we can consider
computing hT Aiu to be equivalent to computing a (i + 1)-dimensional integral.
Now, first consider the scalar product hT Af bearing in mind that the vectors h,
f and the matrix A are normalized with factors of 1/

√
n and 1/n respectively

and denoted by hN , AN and fN . In this case

hT
NANfN =

∫ 1

0

∫ 1

0
h(x)a(x, y)f(y)dxdy =

n
∑

i=1

n
∑

j=1

∫ i
n

i−1

n

∫
j

n

j−1

n

hiaijfjdxdy =

n
∑

i=1

n
∑

j=1

hiaijfjvij ,

where vij =
1

n2
is the volume of the Box(ij) =

[

i − 1

n
,

i

n

)

×
[

j − 1

n
,
j

n

)

.

On the other hand, consider a two-dimensional sequence of N points
(xs, ys), then

1

N

N
∑

s=1

h(xs)a(xs, ys)f(ys) =
1

N

∑

of boxes

∑

(xs,ys)∈Box(ij)

h(xs)a(xs, ys)f(ys)

 =

1

N

n
∑

i=1

n
∑

j=1

hiaijfj[# of points in Box(ij)]

 .

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 65

Thus, the difference between the scalar product and its estimated value becomes:

|hT
NANfN − 1

N

N
∑

s=1

h(xs)a(xs, ys)f(ys)| ≤
n
∑

i=1

n
∑

j=1

|hiaijfj|D∗
N = |h|T |A||f |.D∗

N ,

where |h| = {|hi|}n
i=1, A = {|aij |}n

i,j=1 and |f | = {|fi|}n
i=1.

Analogously, considering hT Alf and an l + 1-dimensional sequence we have

(15) |hT
NAl

NfN − 1

N

N
∑

s=1

h(xs)a(xs, ys) . . . a(zs, ws)f(ws)| ≤ |h|T |A|l|f |.D∗
N .

0 2 4 6 8 10
Matrix power

0

0.2

0.4

0.6

0.8

Relative Errors in Computing h
T
A

k
f

(for sparse matrix 2000 x 2000)

PRN
Sobol QRN
Halton QRN

Fig. 1. Relative errors in computing hT Akf for k = 1, 2, . . . , 10 for a sparse matrix 2000
× 2000. The corresponding Markov chains are realized using PRN, Sobol and Halton

sequences

Let A be a general sparse matrix with di nonzero elements per row. The
following mapping procedure corresponds to the importance sampling approach:

G = [0, 1)

66 Aneta Karaivanova

Gi =

i−1
∑

k′=1

|aik′ |
n
∑

k′=1

|aik′ |
,

i
∑

k′=1

|aik′ |
n
∑

k′=1

|aik′ |

, i = 1, . . . , n

and summation on k′ means summation only on nonzero elements.

a(x, y) = aij , x ∈ Gi, y ∈ Gj , i = 1, . . . , n, j = 1, . . . , d.

Often, the vectors f and h are chosen to be (1, 1, . . . , 1), so h(x) = 1, x ∈ G,
f(x) = 1, x ∈ G.

In this case after similar calculation we prove that the bound on the error
(for non-normalized matrix) is given by:

|hT Af − 1

N

N
∑

s=1

h(xs)a(xs, ys)f(ys)| ≤ (d‖A‖)lD∗
N ,

where d is the mean value of the nonzero elements per row, l is the length of the
Markov chain, D∗

N is the star discrepancy of the sequence used, and ‖A‖ < 1.

Let us recall that usually the average number d of nonzero entries per
row is much smaller than the size of the matrix n, d ≪ n. Thus the order of the
above estimation is the order of D∗

N which is O((logl N)N−1).

Convergence and Complexity. In the Monte Carlo methods there are
two kinds of errors that control the convergence: systematic, which comes from
the method, and stochastic, which comes from the approximation of the mean
value with an averaged sum. The complexity of a Monte Carlo method is the
product of the expected value of the length of the corresponding walk (Markov
chain), and a number of walks (chains). For the problems that we considered in
this paper, we have:

• Scalar product of the solution (x = Ax + f) and an element of the inverse
matrix A−1 = C = {crr′}:
The computational complexity is lN , where l is the length of the performed
walks (Markov chain) which for MCM is l = E [ls] , and for QMCM l the
dimension of the quasirandom sequence; l depends on the spectrum of the
matrix A. Let us note that the first few steps of a random (quasirandom)
walk tend to improve results greatly, whereas many additional steps would
be necessary to refine the result to sufficient accuracy. We suggest using
these methods with a relatively small l for a quick rough estimation.

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 67

The convergence for MCM and QMCM in this case is

O

(

‖A‖l‖r(0)‖
1 − ‖A‖ + σN−1/2

)

and O

(

‖A‖l‖r(0)‖
1 − ‖A‖ + (logl N)N−1

)

correspondingly.

• Largest eigenvalue:

Here the computational complexity is mN where m is the power in the
power method, it is independent of the size of the matrix n.

The convergence for MCM and QMCM in this case is O

(∥

∥

∥

∥

λ2

λ1

∥

∥

∥

∥

m

+ σN−1/2

)

and O

(∥

∥

∥

∥

λ2

λ1

∥

∥

∥

∥

m

+ (logm N)N−1

)

correspondingly.

• Smallest eigenvalue:

Computational complexity: 4lN where l = E [ls] for MCM, and l the di-
mension of the quasirandom sequence for QMCM; here l depends on again
on the spectrum of the matrix A.

The convergence for MCM and QMCM in this case is O

(∥

∥

∥

∥

µ2

µ1

∥

∥

∥

∥

m

+ σN−1/2

)

and O

(∥

∥

∥

∥

µ2

µ1

∥

∥

∥

∥

m

+ (logl N)N−1

)

correspondingly.

Thus, the corresponding MCM and QMCM have the same computational
complexity, while their errors from approximate calculation of mean values are:

• Products of two factors (first depends on A, second on the sequence). The
order is N−1/2 for MCM and (logm+1 N)N−1 for QMCM.

• Probabilistic error bound for MCM, worst-case bound (inequality) for
QMCM.

5. Numerical Results. Why are we interested in quasi-MCMs for
the eigenvalue problem? Because the computational complexity of QMCMs is
bounded by O(lN) where N is the number of chains, and l is the mathematical
expectation of the length of the Markov chains, both of which are independent
of matrix size n. This makes QMCMs very efficient for large, sparse problems,
for which deterministic methods are not computationally efficient.

68 Aneta Karaivanova

1e+05 2e+05 3e+05 4e+05 5e+05
Number of walks

0

0.2

0.4

0.6

0.8

E
rr

or

PRN
QRN(Sobol)

Fig. 2. Accuracy versus number of walks for computing (h, x), where x is the solution
of a system with 2000 equations

0 20000 40000 60000 80000 1e+05
Number of walks

0

0.0005

0.001

0.0015

A
cc

ur
ac

y

PRN
QRN(Halton)
QRN(Sobol)
QRN(Faure)

Fig. 3. Accuracy versus number of walks for computing one component, x64, of the
solution for a system with 1024 equations2

Numerical tests were performed on general sparse matrices using PRNs
and Sobol, Halton and Faure QRNs. The relative errors in computing hT Akf
with A a sparse matrix of order 2000 and h = f = (1, 1, . . . , 1) are presented in
Figure 1. The results confirm that the QRNs produce higher precision results
than PRNs. The more important fact is the smoothness of the quasirandom
“iterations” with k. This is important because these eigenvalue algorithms com-

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 69

pute a Raleigh quotient which requires the division of values from consecutive
iterations.

The accuracy when computing a scalar product of a given vector h and
the solution of a system of size 2000 is presented in Figure 2. The accuracy in
computing x64 is presented in Figure 3 The results confirm that using QRNs we
obtain much higher accuracy than using PRNs.

0 50000 1e+05 1.5e+05 2e+05
0

0.02

0.04

0.06

0.08

Relative error versus number of trajectories
(matrix of size 2000)

Relative error using Sobol QRNs
Relative error using PRNs

Fig. 4. Relative errors in computing λmax using power MCM and quasi-MCM with
different length of Markov chains for a sparse matrix 2000 × 2000

Figure 4 graphs the relative errors of the power Monte Carlo algorithm
and power quasi-Monte Carlo algorithm (using the Sobol sequence) for computing
the dominant eigenvalue for a sparse matrix of size 2000. Note that with 20000
points our Sobol sequence achieves about the same accuracy as when 100000
or more PRNs are used. The fact that similar accuracy with these kinds of
calculations can be achieved with QRNs in a fraction of the time required with
PRNs is very significant. This is the major reason for using QRNs over PRNs:
an overall decreased time to solution.

70 Aneta Karaivanova

6. Conclusions. Quasi-Monte Carlo methods and QRNs are powerful
tools for accelerating the convergence of ubiquitous MCMs. For computing the
solution of a system of linear equations, scalar products of the solution and any
given vector, elements of the inverse matrix, and extremal eigenvalues of a matrix,
it is possible to accelerate the convergence of well-known Monte Carlo methods
with QRNs. Moreover, we have seen smoother convergence with the increasing
length of the walks which is very important for computing the eigenvalues. In
the same time MCMs and QMCMs have the same computational complexity.

REFERE NC ES

[1] Alexandrov V., A. Karaivanova. Parallel Monte Carlo Algorithms for
Sparse SLAE using MPI. Lecture Notes in Computer Science, Springer,
1697 (1999), 283–290.

[2] Alexandrov V., I. Dimov, A. Karaivanova, C. J. Tan. Parallel Monte
Carlo ALgorithms for Information retrieval. Mathematics and Computers

in Simulation, Elsevier, 62 (2003), 289–295.

[3] Alexandrov V., A. Karaivanova. Finding the smallest eigenvalue by
the Inverse Monte Carlo Method with Refinement. Lecture Notes in Com-
puter Science, 3516 (2005), Springer, 766–774.

[4] Burden R. L., J. D. Faires. Numerical Analysis. Fifth Edition,
Brooks/Cole Publishing Company, Pacific Grove, California, 1996.

[5] Caflisch R. E. Monte Carlo and quasi-Monte Carlo methods. Acta Nu-

merica, 7 (1998), 1–49.

[6] Curtiss J. H. Monte Carlo methods for the iteration of linear operators.
Journal of Mathematical Physics, 32 (1954), 209–323.

[7] Danilov D., S. Ermakov, J. Halton. Asymptotic complexity of Monte
Carlo methods for solving linear systems. Journal of Statistical Planning

and Inference, 85 (2000.), 5–18.

[8] Dimov I. T., B. Philippe, A. Karaivanova, C. Weinbrauch. Robust-
ness and Applicability of Markov Chain Monte Carlo Algorithms for Eigen-
value Problems. Journal of Applied Mathematical Modelling 32 (2008),
1511–1529.

Quasi-Monte Carlo Methods for Some Linear Algebra Problems 71

[9] Dimov I., V. Alexandrov, R. Papancheva, C. Weihrauch. Monte
Carlo Numerical Treatment of Large Linear Algebra Problems. Lecture
Notes in Computer Science, 4487 (2007), Springer, 747–754.

[10] Dimov I., V. Alexandrov, A. Karaivanova. Resolvent Monte Carlo
Methods for Linear Algebra Problems. Mathematics and Computers in Sim-

ulations, 55 (2001), 25–36.

[11] Dimov I., A. Karaivanova. Iterative Monte Carlo algorithms for lin-
ear algebra problems, Lecture Notes in Computer Science, 1196 (1996),
Springer, 66–77.

[12] Dimov I., A. Karaivanova. Parallel computations of eigenvalues based
on a Monte Carlo approach. Monte Carlo Methods and Applications. 4

(1998), No 1, 33–52.

[13] Fathi B., B. Liu, V. Alexandrov. Mixed Monte Carlo Parallel Algo-
rithms for Matrix Computation. Lecture Notes in Computer Science, 2330

(2002), part II, Springer, 609–618.

[14] Forsythe G., R. Leibler. Matrix Inversion by a Monte Carlo Method.
Math. Tables and Other Aids to Computation, 4 (1950), 127–147.

[15] Golub G. H., C. F. Van Loon. Matrix computations. The Johns Hopkins
Univ. Press, Baltimore, 1996.

[16] Hammersley J. M. , D. C. Handscomb. Monte Carlo methods, John
Wiley & Sons, inc., New York, London, Sydney, Methuen, 1964.

[17] Halton J. Sequential Monte Carlo. In: Proceedings of the Cambridge
Philosophical Society, 58 part, 1 (1962), 57–78.

[18] Halton J. H. Sequential Monte Carlo Techniques for the Solution of Lin-
ear Systems. SIAM Journal of SC, 9 (1994), 213–257.

[19] Mascagni M., A. Karaivanova. Matrix Computations Using Quasiran-
dom Sequences. Lecture Notes in Computer Science, 1988 (2001), Springer,
552–559.

[20] Mascagni M., A. Karaivanova, A Parallel Quasi-Monte Carlo Method
for Computing Extremal Eigenvalues. Lecture Notes in Statistics, (Eds
K.-T. Fang, F. J. Hickernell, H. Niederreiter), Springer, 2002, 369–380.

72 Aneta Karaivanova

[21] Niederreiter H. Random number generation and quasi-Monte Carlo
methods. SIAM, Philadelphia, 1992.

[22] Sobol, I. M. Monte Carlo numerical methods. Nauka, Moscow, 1973 (in
Russian).

[23] Wasow W. A note on the inversion of matrices by random walks. Math.

Tables and Other Aids to Computation, 6 (1952), 78–78.

[24] Westlake J. A Handbook of Numerical Matrix Inversion and Solution of
Linear Equations, J. Wiley & Sons, New York, London, Sydney, 1968.

Institute for Parallel Processing

Bulgarian Academy of Sciences

Acad. G. Bonchev Str. Bl. 25 A

1113 Sofia, Bulgaria

e-mail: anet@parallel.bas.bg

Received November 21, 2009

Final Accepted February 4, 2010

