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USING INSIDE-OUTSIDE ALGORITHM FOR ESTIMATION

OF THE OFFSPRING DISTRIBUTION IN MULTITYPE

BRANCHING PROCESSES

Nina Daskalova
∗

Abstract. Multitype branching processes (MTBP) model branching struc-
tures, where the nodes of the resulting tree are particles of different types.
Usually such a process is not observable in the sense of the whole tree, but
only as the “generation” at a given moment in time, which consists of the
number of particles of every type. This requires an EM-type algorithm to
obtain a maximum likelihood (ML) estimate of the parameters of the branch-
ing process. Using a version of the inside-outside algorithm for stochastic
context-free grammars (SCFG), such an estimate could be obtained for the
offspring distribution of the process.

1. Introduction. Multitype branching processes (MTBP) are sto-

chastic models in population dynamics, where particles are of different types.

ACM Computing Classification System (1998): G.3, F.4.2.
Key words: multitype branching processes, offspring distribution, maximum likelihood esti-

mation, expectation maximization, stochastic context-free grammars, inside-outside algorithm.
*The research was partly supported by appropriated state funds for research allocated to

Sofia University (contract 112/2010), Bulgaria.



464 Nina Daskalova

The theory and application of such processes can be found in several books

[1, 2, 8, 13]. Statistical inference in MTBP depends on the kind of observation

available, whether the whole family tree has been observed, or only the particles

existing at given moment t, or sometimes even the relative frequencies of types

at that moment.

We consider a MTBP Z(t) = (Z1(t), Z2(t), . . . Zd(t)), where Zk(t) denotes

the number of particles of type Tk at time t, k = 1, 2, . . . d. Some estimators as to

whether the entire tree has been observed could be found in [7, 17], but usually

we don’t have such information about the process. Yakovlev and Yanev in [16]

develop some statistical methods for obtaining ML estimators for the offspring

characteristics, based on observation on the relative frequencies of types at time

t. Other approaches use simulation and Monte Carlo methods [6, 9, 10].

When the entire tree is not observed, but only the particles existing at

given moment, an Expectation Maximization (EM) algorithm could be used,

considering the tree as the hidden data. Such algorithms exist for strictures

called Stochastic Context-free Grammars (SCFG). A number of sources point

out the relation between MTBPs and SCFGs [5, 15].

SCFGs are used in linguistics and, since recently, in bioinformatics to

model the hidden structure of sequences of words or symbols [5, 4]. SCFGs are

actually a kind of MTBPs and their properties could be obtained through the

theory of branching processes [15]. Our purpose is to use the well developed

methods for estimating parameters of SCFGs to estimate offspring distribution

probabilities in some MTBPs.

The paper is organized as follows. In Section 2 the EM algorithm is

briefly explained. Section 3 shows how an EM algorithm could be constructed

to estimate the offspring probabilities of a branching process. In Section 4 the

well-known inside-outside algorithm for SCFG is explained. The next Section

5 proposes how this algorithm could be used for branching processes and an

example is given at the end of the paper.

2. The EM Algorithm. The EM algorithm was explained and given

its name in a paper by Dempster, Laird, and Rubin [3]. It is a method for

finding maximum likelihood estimates of parameters in statistical models, where

the model depends on unobserved latent variables. Let a statistical model be

determined by parameters θ, x be the observation and Y be some “hidden” data

which determines the probability distribution of x. Then the joint probability of
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the “complete” observation is P (x, Y |θ) and the probability of the “incomplete”

observation is the marginal probability P (x|θ) =
∑

y P (x, y|θ). The aim is to

maximize the log likelihood

log L(θ|x) = log P (x|θ) = log
∑

y

P (x, y|θ).

For given θ(i), using P (x, Y |θ) = P (Y |x, θ)P (x|θ) it follows that log L(θ|x) =

log P (x, Y |θ) − log P (Y |x, θ), so

log L(θ|x) =
∑

y

P (y|x, θ(i)) log P (x, y|θ) −
∑

y

P (y|x, θ(i)) log P (y|x, θ)

Write

Q(θ|θ(i)) =
∑

y

P (y|x, θ(i)) log P (x, y|θ).

We want the model with parameters θ to be better than the one with parameters

θ(i), so log L(θ|x) > log L(θ(i)|x). But

log L(θ|x)− log L(θ(i)|x) = Q(θ|θ(i))−Q(θ(i)|θ(i))+
∑

y

P (y|x, θ(i)) log
P (y|x, θ(i))

P (y|x, θ)

The last term above is the relative entropy of P (Y |x, θ(i)) relative to P (Y |x, θ),

so it is non-negative and

log L(θ|x) − log L(θ(i)|x) ≥ Q(θ|θ(i)) − Q(θ(i)|θ(i))

with equality only if θ = θ(i), or if P (Y |x, θ(i)) = P (Y |x, θ) for some other

θ 6= θ(i). Choosing θ(i+1) = argmaxθQ(θ|θ(i)) will make the difference positive

and the likelihood will increase untill a maximum is reached. The Expectation

Maximization Algorithm is usually stated formally like this:

• E-step: Calculate function Q(θ|θ(i)).

• M-step: Maximize Q(θ|θ(i)) with respect to θ.

More about the theory and applications of the EM algorithm could be

found in [12].
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3. The EM Algorithm for MTBP. Let x be the observed set of

particles, π is the unobserved tree structure and θ is the set of parameters—the

offspring probabilities. Then the joint probability of the “complete” observation

is:

P (x, π|θ) =
∏

ω

θ(ω)c(ω;π,x) =
∏

Tv→A

p(Tv → A)c(Tv→A;π,x),

where Tv → A is the rule that a particle of type Tv produces the set of particles

A and c is a count function. We have
∑

A p(Tv → A) = 1. The probability of

the “incomplete” observation is the marginal probability P (x|θ) =
∑

π P (x, π|θ).

For the EM algorithm we need to compute the function

Q(θ|θ(i)) = Eθ(i)(log P (x, π|θ)) =
∑

π

P (π|x, θ(i)) log P (x, π|θ)

=
∑

π

P (π|x, θ(i))
∑

Tv→A

c(Tv → A;π, x) log p(Tv → A)

=
∑

Tv→A

∑

π

P (π|x, θ(i))c(Tv → A;π, x) log p(Tv → A)

=
∑

Tv→A

Eθ(i)c(Tv → A) log p(Tv → A)

Taking a partial derivative with respect to p(Tv → A) and using the Lagrangian

multiplier
∑

A Eθ(i)(Tv → A) = λ, we get to the result that the re-estimating

parameters are the normalized expected counts

p(i+1)(Tv → A) =
Eθ(i)c(Tv → A)∑
A Eθ(i)c(Tv → A)

=
Eθ(i)c(Tv → A)

Eθ(i)c(Tv)

where the expected number of times a particle of type Tv appears in the tree π

is:

Eθ(i)c(Tv) =
∑

π

P (π|x, θ(i))c(Tv ;π, x).

The M-step is explicitly solved, so no effort on maximization is needed.

The problem is that, in general, enumerating all possible trees π is of exponential

complexity. We propose using the inside-outside algorithm for stochastic context-

free grammars to reduce complexity.

4. Estimation in SCFG. Grammars are a well-developed tool for

modelling strings of symbols in computational linguistics. Stochastic grammars
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give a probabilistic approach to the problems in that field. A stochastic context-

free grammar (SCFG) consists of a number of symbols and a number of produc-

tion rules of the form α → β, where α and β are sequences of these symbols. The

symbols can be of two kinds—abstract nonterminal and terminal that actually

appear in an observation. There are also probabilities assigned to the rules. For

a SCFG to be in Chomsky normal form it is necessary for the rules to be of the

form X → Y Z or X → a, where X,Y,Z are nonterminals and a is a terminal

symbol. Every CFG can be represented in Chomsky normal form. For such gram-

mars there exists an EM-type algorithm, called the inside-outside algorithm [11],

which finds an ML estimator of the parameters θ of that grammar, namely the

probabilities of the rules, called the transition and emission probabilities respec-

tively for the first and the second type of rules above. It is a three-dimensional

dynamic programming algorithm. Let x be the observed sequence of terminals

of length L, and there be M different nonterminals W1, W2, . . . , WM . Pro-

duction rules are of the form Wv → WxWy and Wv → a with transition and

emission probabilities tv(x, y) and ev(a) respectively. The algorithm consists of

three parts—inside, outside and EM re-estimation, which are shown below.

The Inside part calculates the probability α(i, j, v) of a parse subtree

rooted at nonterminal Wv for subsequence xi, . . . , xj for all i, j, v. Formally, it

could be written in this way:

• Initialization: for i = 1 to L, v = 1 to N : α(i, j, v) = ev(xi).

• Iteration: for i = 1 to L − 1, j = i + 1 to L, v = 1 to N : α(i, j, v) =∑N
y=1

∑N
z=1

∑j−1
k=i α(i, k, y)α(k + 1, j, z)tv(y, z).

• Termination: P (x|θ) = α(1, L, 1).

The Outside part calculates the probability β(i, j, v) of a complete parse

subtree rooted at the start nonterminal for the complete sequence x, excluding

subsequence xi, . . . , xj rooted at nonterminal Wv for all i, j, v.

• Initialization: β(1, L, 1) = 1; for v = 2 to N : β(1, L, v) = 0.

• Iteration: for i = 1 to L, j = L to i, v = 1 to N : β(i, j, v) =∑N
y=1

∑N
z=1

∑i−1
k=1 α(k, i − 1, z)β(k, j, y)ty(z, v)
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+
∑N

y=1

∑N
z=1

∑L
k=j+1 α(j + 1, k, z)β(i, k, y)ty(v, z).

• Termination: P (x|θ) =
∑N

v=1 β(i, i, v)ev(xi) for any i.

For every Wv ∈ π the expected number of times c(Wv) that Wv is used

in the tree π could be presented as follows:

Eθc(Wv) =
∑

π

P (π|x, θ)c(Wv ;π, x) =
∑

π

P (x, π|θ)

P (x|θ)
c(Wv ;π, x)

=
1

P (x|θ)

∑

π

P (x, π|θ)c(Wv ;π, x) =
1

P (x|θ)

∑

π:Wv∈π

P (x, π|θ)

=
1

P (x|θ)

∑

i

∑

j

α(i, j, v)β(i, j, v),

where α(i, j, v) and β(i, j, v) are the inside and outside probabilities for observa-

tion x.

Similarly, the expected number of times a rule Wv → WyWz is used could

be calculated:

Eθc(Wv → WyWz) =

1

P (x|θ)

L−1∑

i=1

L∑

j=i+1

j−1∑

k=i

β(i, j, v)α(i, k, z)α(k + 1, j, z)tv(y, v),

and the expectation for the rule Wv → a is:

Eθc(Wv → a) =
1

P (x|θ)

∑

i|xi=a

β(i, i, v)ev(a).

Dividing the expectations above, we obtain the EM re-estimation of

the parameters:

t(n+1)
v (y, z) =

L−1∑
i=1

L∑
j=i+1

j−1∑
k=i

β(i, j, v)α(i, k, z)α(k + 1, j, z)t
(n)
v (y, v)

L∑
i=1

L∑
j=i

α(i, j, v)β(i, j, v)
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e(n+1)
v (a) =

∑
i|xi=a

β(i, i, v)e
(n)
v (a)

L∑
i=1

L∑
j=i

α(i, j, v)β(i, j, v)

For several observed sequences the expected numbers in the nominator

and denominator are summed up for all sequences.

The time complexity of the algorithm is O(L3N3).

5. MTBP as a SCFG and using the Inside-Outside Algo-

rithm for MTBP. An MTBP could be represented as a SCFG in the following

way. First our process has to be represented only with “rules”” of the form

X
p
→ {Y,Z},

which means that a particle of type X could produce two particles of types Y

and Z with probability p. For every such rule in the process, the corresponding

SCFG will include nonterminals {X,Y,Z, Y T , ZT }, terminals {y, z} and rules

X
p1
−→ Y Z|ZY, X

p2
−→ Y T Z|ZY T , X

p3
−→ Y ZT |ZT Y,

X
p4
−→ Y T ZT |ZT Y T , Y T 1

→ y, ZT 1
→ z,

and p1 + p2 + p3 + p4 = p.

Here Y T and ZT are nonterminals of “terminal” type, meaning that they

transform into terminals y and z only. We regard these terminals as the ob-

served particles, and the other nonterminals represent the hidden structure of

the process. Thus for a single rule in the process there are six rules in the gram-

mar and the number of types doubles.

To use the Inside-Outside Algorithm for MTBP, we take the following

steps:

1. Construct the corresponding SCFG.

2. Estimate parameters for SCFG using as observed sequences all possible

permutations of the observed set of particles. Thus, if we have observed

2 particles of type X and 1 of type Y , we use as “observed sequences” all

xxy, xyx and yxx.
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3. If the number of permutations is large, a Monte Carlo sample approach

could be used to obtain the estimate.

4. Calculate probabilities in MTBP summing up the ones estimated in SCFG.

6. Examples. We consider an MTBP with three types of particles T1,

T2 and T3, where the third type is terminal—a particle of this type does not

reproduce, and for the other two types all productions are allowed:

Ti→{T1, T2}, Ti→{T1, T3}, Ti→{T2, T3},

Ti→{T1, T1}, Ti→{T2, T2}, Ti→{T3, T3},

for i = 1, 2.

The corresponding SCFG has nonterminals T1, T2, T3, T T
1 , T T

2 and T T
3 ,

terminals t1, t2 and t3, and rules:

T1→T1T2|T2T1, T1→T T
1 T2|T2T

T
1 ,

T1→T1T
T
2 |T T

2 T1, T1→T T
1 T T

2 |T T
2 T T

1 ,

T T
1

1
→ t1, T T

2
1
→ t2,

Table 1. Estimation for the parameters of the SCFG based on all permutations (140)

T1: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0600 0.0000 0.0000 0.1900 0.0000
T2 0.0600 0.0000 0.0000 0.0000 0.0000 0.0650
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

2
0.1900 0.0000 0.0000 0.0000 0.0000 0.1850

T T

3
0.0000 0.0650 0.0000 0.0000 0.1850 0.0000

T2: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500
T2 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T T

1
0.0000 0.2500 0.0000 0.0000 0.0000 0.0000

T T

2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

3
0.2500 0.0000 0.0000 0.0000 0.0000 0.0000
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for the first rule above and similarly for the rest.

Suppose we observe one particle of type t1, three particles of type t2 and

three of type t3, so the observation is {t1, t2, t2, t2, t3, t3, t3}. Using steps 1-4 from

the previous section, we obtain the following results. In Table 1 are given the

estimate for the parameters of the grammar, and after summing up the respective

probabilities, for the process we obtain that the nonzero terms in the offspring

distribution are:

P (T1 → {T1, T2}) = 0.5, P (T1 → {T2, T3}) = 0.5

P (T2 → {T1, T3}) = 0.5, P (T2 → {T1, T2}) = 0.5

To reduce calculations, Monte Carlo samples are taken. Table 2 shows

the results based on the average of three random samples of 20 permutations, and

Table 3 for five samples of 10 permutations. It can be seen that the estimates

for the parameters of the grammar obtained through these simulations slightly

differ, but after summing up the respective terms, the estimates for the offspring

probabilities of the MTBP are the same as with all permutations. Calculations

are made in R (see [14]).

Table 2. Estimation for the parameters of the SCFG based on 3 samples of 20
permutations

T1: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0654 0.0000 0.0000 0.2041 0.0000
T2 0.0535 0.0000 0.0000 0.0000 0.0000 0.0654
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T T

1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

2
0.1770 0.0000 0.0000 0.0000 0.0000 0.1855

T T

3
0.0000 0.0656 0.0000 0.0000 0.1835 0.0000

T2: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.2448
T2 0.0000 0.0000 0.0000 0.2524 0.0000 0.0000
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T T

1
0.0000 0.2476 0.0000 0.0000 0.0000 0.0000

T T

2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

3
0.2552 0.0000 0.0000 0.0000 0.0000 0.0000

7. Conclusions. In this work the connection between MTBP and SCFG

was used in order to estimate the offspring probabilities of a multitype process.
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Table 3. Estimation for the parameters of the SCFG based on 5 samples of 10
permutations

T1: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0542 0.0000 0.0000 0.1331 0.0000
T2 0.0480 0.0000 0.0000 0.0000 0.0000 0.0525
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T T

1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

2
0.2647 0.0000 0.0000 0.0000 0.0000 0.1454

T T

3
0.0000 0.0954 0.0000 0.0000 0.2068 0.0000

T2: T1 T2 T3 T T

1
T T

2
T T

2

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.1692
T2 0.0000 0.0000 0.0000 0.2903 0.0000 0.0000
T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T T

1
0.0000 0.2097 0.0000 0.0000 0.0000 0.0000

T T

2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T T

3
0.3308 0.0000 0.0000 0.0000 0.0000 0.0000

An approach was presented where a grammar corresponding to the process is

constructed, and then a well-known EM algorithm for estimation of the parame-

ters of the grammar is used. The results show that using such an algorithm it is

possible to obtain the estimate in reasonable time. The Monte Carlo sampling

approach also helps to reduce complexity.
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