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Abstract

The object of this article is to present the computational solution of one-
dimensional space-time fractional Schrödinger equation occurring in quan-
tum mechanics. The method followed in deriving the solution is that of
joint Laplace and Fourier transforms. The solution is derived in a closed
and computational form in terms of the H-function. It provides an elegant
extension of a result given earlier by Debnath, and by Saxena et al. The
main result is obtained in the form of Theorem 1. Three special cases of
this theorem are given as corollaries. Computational representation of the
fundamental solution of the proposed equation is also investigated.
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1. Introduction

Feynman and Hibbs [8] reconstructed the Schrödinger equation by mak-
ing use of the path integral approach by considering a Gaussian probability
distribution. This approach is further extended by Laskin [16, 17, 18] in for-
mulating the fractional Schrödinger equation by generalizing the Feynman
path integrals from Brownian-like to Levy-like quantum mechanical paths.
The Schrödinger equation thus obtained contains space and time fractional
derivatives. In a similar manner, one obtains a time fractional equation if
non-Marcovian evolution is considered. In a recent paper, Naber [22] dis-
cussed certain properties of time fractional Schrödinger equation by writing
the Schrdinger equation in terms of fractional derivatives as dimensionless
objects. Time fractional Schrödinger equations are also discussed by Deb-
nath [4], Bhatti [1], and Debnath and Bhatti [6].

In a recent paper [29], the authors investigated the solution of the fol-
lowing generalized one dimensional fractional Schrödinger equation of a free
particle of mass m defined by

∂αN

∂tα
= (i~/2m)

∂β

∂xβ
N(x, t), −∞<x<∞, t>0, 0<α≤1, β>0, (1.1)

N(x, 0) = N0(x), −∞ < x < ∞, (1.2)

N(x, t) → 0 as |x| → ∞, (1.3)

where ∂α

∂tα is the Caputo fractional derivative defined by (2.7) and ∂β

∂xβ is
the Liouville fractional space derivative [26], N(x, t) is the wave function,

h = 2π~ = 6.625× 10−27erg sec = 4.14× 10−21MeV sec . (1.4)

is the Planck constant and N0(x) is an arbitrary function.
The probability structure of time fractional Schrödinger equation is dis-

cussed by Tofight [31]. Some physical applications of fractional Schrödinger
equation are investigated by Guo and Xu [9] by deriving the solution for
a free particle and an infinite square potential well. This has motivated
the authors to investigate the solution of one-dimensional space-time frac-
tional generalization of the Schrödinger equation (3.1) occurring in quantum
mechanics containing a fractional generalization of the ordinary Laplace op-
erator ∆α/2, defined by (2.14).

Fractional reaction-diffusion equations are solved by Haubold et al. [10],
Saxena et al. [26, 27, 28], and Henry and Wearne [11].
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2. Mathematical prerequsites

The definitions of the well-known Laplace and Fourier transforms of a
function N(x, t) and their inverses are described below:

The Laplace transform of a function N(x, t) [continuous or partially
continuous and of exponential order as t approaches infinity] with respect
to t is defined by

L{N(x, t)} = N∼(x, s) =
∫ ∞

0
e−stN(x, t)dt, (t > 0, x ∈ R) (2.1)

where <(s) > 0, and its inverse transform with respect to s is given by

L−1{N∼(x, s)} = N(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estN(x, s)ds, (2.2)

γ being a fixed real number.
The Fourier transform of a function N(x, t) with respect to x is defined

by

F{N(x, t)} = N∗(k, t) =
∫ ∞

−∞
eikxN(x, t)dx, (k > 0), (2.3)

and the inverse Fourier transform with respect to k is given by the formula

F−1{N∗(k, t)} = N(x, t) =
1
2π

∫ ∞

−∞
e−ikxN∗(k, t)dk. (2.4)

The space of functions for which the transforms defined by (2.1) and
(2.3) exist is denoted by

LF = L(R+)× F (R).

The right-sided Riemann-Liouville fractional integral of order ν is defined
by Miller and Ross [21, p. 45], Samko et al. [25]:

RL
a D−ν

t N(x, t) =
1

Γ(ν)

∫ t

a
(t− u)ν−1N(x, u)du, (t > a), (2.5)

where Re(ν) > 0. The right-sided Riemann-Liouville fractional derivative
of order µ is defined as

RL
a Dµ

t N(x, t) =
(

d

dx

)n

(In−µ
a N(x, t)) (Re(µ) > 0, n = |Re(µ)|+1), (2.6)
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where [x] represents the integral part of the number x.
The following fractional derivative of order α > 0 is introduced by Ca-

puto [3] in the form (if m− 1 < α ≤ m, Re(α) > 0,m ∈ N):

c
0D

α
t f(x, t) =

1
Γ(m− α)

∫ t

0

f (m)(x, τ)dτ

(t− τ)α+1−m
, (2.7)

and: =
∂mf(x, t)

∂tm
, if α = m. (2.8)

where ∂m

∂tm f is the mth partial derivative of order m of the function f(x, t)
with respect to t. The Laplace transform of this derivative is given in [15,
19, 20, 21, 24] in the form:

L{c
0D

α
t f(x, t); s} = sαF (x, s)−

m−1∑

r=0

sα−r−1f (r)(x, 0+), (m− 1 < α ≤ m).

(2.9)
The above formula is useful in deriving the solution of differential and in-
tegral equations of fractional order governing certain physical problems of
reaction and diffusion. In this connection, one can refer to the monograph
by Podlubny [24], Samko et al. [25] and Kilbas et al. [15], Haubold et al.
[10], and Saxena et al. [26, 27, 28].

A generalization of the Riemann-Liouville fractional derivative operator
(2.6) and Caputo fractional derivative operators (2.7) is given by Hilfer [12],
by introducing a right-sided fractional derivative operator of two parameters
of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 in the form

0D
µ,ν
a+ N(x, t) =

(
I

ν(1−µ)
a+

∂

∂x

(
I

(1−ν)(1−µ)
a+ N(x, t)

))
, (2.10)

It is interesting to observe that for ν = 0, (2.10) reduces to the classical
Riemann-Liouville fractional derivative operator (2.6). On the other hand,
for ν=1 it yields the Caputo fractional derivative operator defined by (2.7).
The Laplace transformation formula for this operator is given by Hilfer [12]

L
{

0D
µ,ν
0+ N(x, t); s

}
= sµN(x, s)− sν(µ−1)I

(1−ν)(1−µ)
0+ N(x, 0+) (0 < µ < 1),

(2.11)
where the initial value term

I
(1−ν)(1−µ)
0+ N(x, 0+), (2.12)

involves the Riemann-Liouville fractional integral operator of order (1 −
ν)(1 − µ) evaluated in the limit as t → 0+. It being understood that the
integral
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N(x, s) =
∫ ∞

0
e−stN(x, t)dt (2.13)

where <(s) > 0, exists.
In the study of fractional diffusion equations, there often occurs a sym-

metric fractional generalization of the Laplace operator. Following Brock-
mann and Sokolev [2, p.419] its one-dimensional variant can be defined as

∆α/2 =
1

2 cos(πα/2)
{−∞Dα

x + xDα
∞} , 0 < α ≤ 2, (2.14)

where the operators on the right of (2.14) are defined by

−∞Dα
xf(x) =

1
Γ(n− α)

dn

dxn

∫ x

−∞

f (n)(u)
(x− u)α+1−n

du, (n = [α]+1), (2.15)

and

xDα
∞f(x) =

1
Γ(n− α)

dn

dxn

∫ ∞

x

f (n)(u)
(u− x)α+1−n

du, (n = [α] + 1), (2.16)

The Fourier transform of the operator ∆α/2 is given by [2, p.420]

F{∆α/2N(x, t); k} = −|k|αN(k, t), 0 < α ≤ 2. (2.17)

Note 1. The operator, defined by (2.10) also occurs in recent papers
by Hilfer [13, 14] and Srivastava et al. [30].

Note 2. Applications of fractional calculus in the solution of applied
problems can be found in the works [15, 20, 21 23, 24, and 25].

The H-function is defined by means of a Mellin-Barnes type integral in
the following manner [26, p.2]:

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣(ap,Ap)

(bq ,Bq)

]

= Hm,n
p,q

[
z

∣∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq ,Bq)

]
=

1
2πi

∫

L
Θ(ξ)z−ξdξ, (2.18)

where i = (−1)1/2,

Θ(ξ) =

[∏m
j=1 Γ(bj + Bjξ)

]
[
∏n

i=1 Γ(1− aj −Ajξ)][∏q
j=m+1 Γ(1− bj −Bjξ)

] [∏p
i=n+1 Γ(aj + Ajξ)

] , (2.19)



182 R.K. Saxena, R. Saxena, S.L. Kalla

and an empty product is always interpreted as unity; m,n, p, q ∈ N0 with
0 ≤ n ≤ p, 1 ≤ m ≤ q, Ai, Bj ∈ R+, ai, bj ∈ R or C (i = 1, . . . , p; j =
1, . . . , q) such that

Ai(bj + k) 6= Bj(ai − `− 1), (k, ` ∈ N0; i = 1, . . . , n; j = 1, . . . , m), (2.20)

where we employ the usual notations: N0 = (0, 1, 2 . . .); R = (−∞,∞); R+ =
(0,∞), and C being the complex number field.

3. Space-time fractional Schrödinger equation

In this section, we will investigate the solution of the one-dimensional space-
time fractional Schrödinger equation (3.1). The main result is given in the
form of the following Theorem 1.

Theorem 1. Consider the following one dimensional space-time frac-
tional Schrödinger equation of a free particle of mass m, defined by

0D
µ,ν
t N(x, t) = (

i~
2m

)∆α/2N(x, t), 0 < α ≤ 2;−∞ < x < ∞, t > 0, (3.1)

with initial conditions
(
I

(1−ν)(1−µ),0
0+

)
N(x, 0+) = N0(x) ; −∞ < x < ∞, 0 < µ < 1, 0 ≤ ν ≤ 1,

(3.2)
and

lim
|x|→∞N(x, t) = 0, (3.3)

where 0D
µ,ν
t is the generalized Riemann-Liouville fractional derivative op-

erator, defined by (2.10),

I
(1−ν)(1−µ)
0+ N(x, 0+), (3.4)

involves the Riemann-Liouville fractional integral operator of order (1 −
ν)(1 − µ) evaluated in the limit as t → 0+. ∆α/2 is the fractional general-
ization of the Laplace operator, defined by (2.14) ~ is the Planck constant
defined by (1.4). N0(x) is an arbitrary function, and N(x, t) is the wave
function. Then for the solution of (3.1), subject to the above constraints,
there holds the formula

N(x, t) =
∫ ∞

−∞
G1(x− τ, t)N0(τ)dτ,
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G1(x, t) =
tµ+ν(1−µ)−1

α|x| H2,1
3,3

[ |x|
η1/αtµ/α

∣∣∣∣
(1,1/α),(µ+ν(1−µ),µ/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
,

(α > 0, η =
i~
2m

), (3.5)

where H2,1
3,3 (.) is the familiar H-function (see [19]).

P r o o f. If we apply the Laplace transform with respect to the time
variable t and Fourier transform with respect to space variable x and use
the initial conditions (3.2)-(3.4) and the formulas (2.9) and (2.11), then the
given equation (3.1) transforms into the form

sµN∼∗(k, s)− sν(µ−1)N0(k) = −η|k|αN∼∗(k, s), (η =
i~
2m

), (3.6)

where according to the convention followed, the symbol ˜ will stand for
the Laplace transform with respect to time variable t and * represents the
Fourier transform with respect to space variable x. Solving for N∼∗(k, s),
it yields

N∼∗(k, s) =
N0(k)sν(µ−1)

sµ + η|k|α . (3.7)

On taking the inverse Laplace transform of (3.7) by means of the formula

L−1{ sβ−1

a + sα
} = tα−βEα,α−β+1(−atα), (3.8)

where <(s) > 0,<(α) > 0,<(α− β) > −1, it is seen that

N∗(k, t) = N0(k)tµ+ν(1−µ)−1Eµ,µ+ν(1−µ)(−ηtµ|k|α), (3.9)

where Eα,β(z) is the Mittag-Leffler function [7]

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, (α, β ∈ C; min{<(α),<(β)} > 0). (3.10)

Taking the inverse Fourier transform of (3.9), we find that

N(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞

−∞
N0(k)Eµ,µ+ν(1−µ),(−ηtµ|k|α) exp(−ikx)dk,

(η =
i~
2m

). (3.11)
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If we now apply the convolution theorem of the Fourier transform to (3.11)
and make use of the following inverse Fourier transform formula given by
Haubold et al. [10]:

F−1
[
Eβ,γ(−atβ|k|α);x

]
=

1
α|x|H

2,1
3,3

[ |x|
a1/αtβ/α

∣∣∣∣
(1,1/α),(γ,β/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
,

(3.12)
where min{<(α),<(β) > 0,<(γ)} > 0, α > 0, it gives the solution in the
form

N(x, t) =
∫ ∞

−∞
G1(x− τ, t)N0(τ)dτ,

where

G1(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞

−∞
exp(−ikx)Eµ,µ+ν(1−µ)(−ηtµ|k|α)dk

=
tµ+ν(1−µ)−1

α|x| H2,1
3,3

[ |x|
η1/αtµ/α

∣∣∣∣
(1,1/α),(µ+ν(1−µ),µ/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
, (α > 0, η =

i~
2m

),

(3.13)
where min{<(α),<(µ),<(µ + ν(1− µ)} > 0, α > 0.

This completes the proof of the theorem.

4. Special cases

If we set ν = 0, then the Hilfer fractional derivative (2.10) reduces to
a Riemann-Liouville fractional derivative (2.6), and the theorem yields the
following:

Corollary 1.1. Consider the following one dimensional space-time
fractional Schrödinger equation of a free particle of mass m, defined by

RL
0 Dµ

t N(x, t) = (
i~
2m

)∆α/2N(x, t), −∞ < x < ∞; t > 0, 0 < α ≤ 2, (4.1)

with the initial conditions

RL
0 D

(µ−1)
t N(x, 0)=N0(x); [RL

0
D

(µ−2)
t N(x, 0)] = 0, −∞ < x < ∞, 1 < µ ≤ 2,

(4.2)
and

lim
|x|→∞N(x, t) = 0, (4.3)
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where RL
0

Dµ
t is the Riemann-Liouville fractional derivative operator of or-

der µ defined by (2.6), [RL
0 D

(µ−1)
t N(x, 0)] means the Riemann-Liouville frac-

tional partial derivative of N(x, t) with respect to t of order (µ−1) evaluated

at t = 0. Similarly [0D
(µ−2)
t N(x, 0)] means the Riemann-Liouville fractional

partial derivative of N(x, t) with respect to t of order (µ − 2) evaluated at
t = 0, ∆α/2 is the fractional generalization of the Laplace operator defined
by (2.14), ~ is the Planck constant N0(x) is an arbitrary function, and
N(x, t) is the wave function. Then for the solution of (4.1), subject to the
above constraints, there holds the formula

N(x, t) =
∫ ∞

−∞
G2(x− τ, t)N0(τ)dτ,

where

G2(x, t) =
tµ−1

α|x|H
2,1
3,3

[ |x|
η1/αtµ/α

∣∣∣∣
(1,1/α),(µ,µ/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
,

(α > 0, η =
i~
2m

). (4.4)

When ν = 1, then the Hilfer fractional space derivative (2.10) reduces
to a Caputo fractional derivative operator (2.7), and it yields the following
result obtained by the authors in a slightly different form [29]:

Corollary 1.2. Consider the following one dimensional space-time
fractional Schrödinger equation of a free particle of mass m, defined by

c
0
Dµ

t N(x, t) =
i~
2m

∆α/2N(x, t), 0 < µ ≤ 1, 0 < α ≤ 2,−∞ < x < ∞, t > 0,

(4.5)
with initial conditions

N(x, 0+) = N0(x), −∞ < x < ∞, (4.6)

and
lim
|x|→∞N(x, t) = 0, (4.7)

where c
0D

µ
t is the Caputo fractional derivative operator, defined by (2.7),

∆α/2 is the fractional generalization of the Laplace operator, defined by
(2.14), ~ is the Planck constant defined by (1.4), N0(x) is an arbitrary
function, and N(x, t) is the wave function. Then for the solution of (4.5),
subject to the above constraints, there holds the formula

N(x, t) =
∫ ∞

−∞
G3(x− τ, t)N0(τ)dτ,
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where

G3(x, t) =
t

α|x|H
2,1
3,3

[ |x|
η1/αtµ/α

∣∣∣∣
(1,1/α),(1,µ/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
(α > 0, η =

i~
2m

). (4.8)

For N0(x) = δ(x), where δ(x) is the Dirac-delta function, Theorem 1
yields the following:

Corollary 1.3. Consider the following one dimensional space-time
fractional Schrödinger equation of a free particle of mass m, defined by

0D
µ,ν
0+ N(x, t) = (

i~
2m

)∆α/2N(x, t); −∞ < x < ∞, t > 0, 0 < α ≤ 2, (4.9)

with the initial condition(
I

(1−ν)(µ−1),0
0+

)
N(x, 0+) = δ(x), −∞ < x < ∞, 0 < µ < 1, 0 ≤ ν ≤ 1,

(4.10)
and

lim
|x|→∞N(x, t) = 0, (4.11)

where 0D
µ,ν
0+ is the Hilfer fractional derivative, defined by (2.11), ∆α/2 is

the fractional generalization of Laplace operator defined by (2.14), ~ is the
Planck constant defined by (1.4), and δ(x) is the Dirac-delta function. Then
for the fundamental solution of (4.9) with the initial conditions (4.10)-(4.11)
there holds the formula

N(x, t) =
tµ+ν(1−µ)−1

α|x| H2,1
3,3

[ |x|
η1/αtµ/α

∣∣∣∣
(1,1/α),(µ+ν(1−µ),µ/α),(1, 1

2
)

(1,1/α),(1,1),(1, 1
2
)

]
,

(α > 0; η =
i~
2m

). (4.12)

Note 3. We note that for α = 2, ν = 1, (4.12) gives

N(x, t) =
1

2|x|H
1,0
1,1

[ |x|
(ηtα)1/2

∣∣∣∣
(1, µ/2)
(1, 1)

]
, (α > 0, η =

i~
2m

), (4.13)

which is the explicit form of the solution discussed by Debnath [4, p.152].

Note 4. It is interesting to note that if we set α = 2. ν = 1, µ = 1 in
(3.5), then the classical Gaussian density [5, p.118] is recovered:

1√
4πat

exp
(
− x2

4at

)
. (4.14)
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5. Computational representations
of the fundamental solution (4.12)

In this section, we will derive the computational representation of the
fundamental solution (4.12), which can be expressed in terms of the Mellin-
Barnes type integral with the help of the definition of the H-function (2.18)
as

N(x, t) =
1

πx

tµ+ν(1−µ)−1

2πi

∫

L

Γ(s)Γ(1− s)Γ(1− sα)
Γ(µ + ν(1− µ)− sµ)

sin
[πsα

2

] [
xα

ηtµ

]s

ds,

(5.1)
where L = Liτ∞ (τ ∈ R) is an infinite contour, which extends from τ−i∞ to
τ+i∞, and separates all the poles of Γ(1−s) at the points s = 1+n (n ∈ N0)
and Γ(1− sα) at the points s = 1+n

α (α > 0l, n ∈ N0) to the left and all the
poles of Γ(s) at the points s = −n (n ∈ N0) to the right of it.

Let us assume that the poles of the gamma functions in the integrand
of (5.1) are all simple. Now evaluating the sum of residues in ascending
powers of xα by calculating the residues at the poles of Γ(1−s) at the points
s = 1 + n, (n ∈ N0) and Γ(1 − sα), at the points s = (1 + n)/α, (n ∈ N0),
we obtain the following representation of the fundamental solution (4.12) in
terms of two convergent series in ascending powers of xα:

N(x, t) =
tµ+ν(1−µ)−1

πx

∞∑

n=1

(−1)n−1 Γ(1− αn)
Γ(µ + ν(1− µ− nµ)

sin
[nπα

2

] [
xα

ηtµ

]n

+
tµ+ν(1−µ)−1

πxα

∞∑

n=1

Γ(1− n/α)Γ(1 + n/α)
n!Γ(µ + ν(1− µ)− nµ/α)

[−xα

ηtµ

]n/α

, (0 < x < 1),

(5.2)
where

{∣∣∣ xα

ηtµ

∣∣∣
}

< 1, η = i~
2m , α > 0 .

Finally, if we calculate the residues at the poles of Γ(s) of the integrand
of (4.1) at the points s = −n, (n ∈ N0), it gives

N(x, t) =
tµ+ν(1−µ)−1

πx

∞∑

n=0

Γ(1 + αn)
Γ(µ + ν(1− µ) + nµ)

sin
[−nπα

2

] [−xα

ηtµ

]−n

(0 < x < ∞), (5.3)

where
{∣∣∣ xα

ηtµ

∣∣∣
}

> 1,η = i~
2m , α > 0.
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