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Abstract

This paper deals with the existence and uniqueness of solutions of two
classes of partial impulsive hyperbolic differential equations with fixed time
impulses and state-dependent delay involving the Caputo fractional deriva-
tive. Our results are obtained upon suitable fixed point theorems.
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1. Introduction

In this paper, we start by studying the existence result for fractional
order initial value problems (IV P for short), for the system

(cDr
0u)(x, y) = f(x, y, u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)))), if (x, y) ∈ J ; x 6= xk, (1)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b]; k = 1, . . . ,m, (2)

u(x, y) = φ(x, y), if (x, y) ∈ J̃ := [−α, a]× [−β, b]\(0, a]× (0, b], (3)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], and y ∈ [0, b], (4)

c© 2010, FCAA – Diogenes Co. (Bulgaria). All rights reserved.



226 S. Abbas, M. Benchohra

where J = [0, a]× [0, b], a, b, α, β > 0, cDr
0 is the fractional Caputo deriva-

tive of order r = (r1, r2) ∈ (0, 1]× (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 =
a, φ : J̃ → Rn is a given function, ϕ : [0, a] → Rn, ψ : [0, b] → Rn are given
absolutely continuous functions such that ϕ(x) = φ(x, 0), ψ(y) = φ(0, y)
for each x ∈ [0, a] and y ∈ [0, b], f : J × C → Rn, ρ1, ρ2 : J × C → R, Ik :
Rn → Rn, k = 1, . . . ,m are given functions and C is the space defined by

C := C(α,β) = {u : [−α, 0]× [−β, 0] → Rn : continuous and there exist

τk ∈ (−α, 0) with u(τ−k , ỹ) and u(τ+
k , ỹ), k = 1, . . . , m, exist for any

ỹ ∈ [−β, 0] with u(τ−k , ỹ) = u(τk, ỹ)
}
.

C is a Banach space with norm

‖u‖C = sup
(x,y)∈[−α,0]×[−β,0]

‖u(x, y)‖.

For any function u defined on [−α, a]× [−β, b] and any (x, y) ∈ J, we denote
by u(x,y) the element of C defined by

u(x,y)(s, t) = u(x + s, y + t); (s, t) ∈ [−α, 0]× [−β, 0],
here u(x,y)(., .) represents the history of the state from time (x − α, y − β)
up to the present time (x, y).

Next we consider the following system of partial hyperbolic differential
equations of fractional order with infinite delay

(cDr
0u)(x, y) = f(x, y, u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)))), if (x, y) ∈ J ; x 6= xk,

(5)
u(x+

k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b]; k = 1, . . . , m, (6)

u(x, y) = φ(x, y), if (x, y) ∈ J̃ ′ := (−∞, a]× (−∞, b]\(0, a]× (0, b], (7)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], and y ∈ [0, b], (8)

where ϕ, ψ, Ik are as in problem (1)-(4), f : J ×B → Rn, ρ1, ρ2 : J ×B →
R, φ : J̃ ′ → Rn and B is called a phase space that will be specified in
Section 4.

Differential equations of fractional order have recently proved to be valu-
able tools in the modeling of many phenomena in various fields of science
and engineering. Indeed, we can find numerous applications in viscoelas-
ticity, electrochemistry, control, porous media, electromagnetic, etc. There
has been a significant development in ordinary and partial fractional dif-
ferential equations in recent years; see the monographs [21, 22, 24, 25], the
papers [1, 2, 7, 9, 12, 27], and the references therein.
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Integer order impulsive differential equations have become important
in some mathematical models of real processes and phenomena studied in
physics, chemical technology, population dynamics, biotechnology and eco-
nomics. There has been a significant development in impulse theory in
recent years, especially in the area of impulsive differential equations and
inclusions with fixed moments; see the monographs [8, 23, 26], and the ref-
erences therein. Very recently, some extensions to impulsive fractional order
differential equations have been obtained in [4, 5, 6, 10].

Functional differential equations with state-dependent delay appear fre-
quently in applications as model of equations and for this reason the study
of this type of equations has received great attention in the last year,
see, for instance, [16, 17] and the references therein. The literature re-
lated to partial functional differential equations with state-dependent delay
is limited, see for instance [19]. The literature related to ordinary and
partial functional differential equations with delay for which ρ(t, .) = t or
(ρ1(x, y, .), ρ2(x, y, .)) = (x, y) is very extensive, see for instance [1, 2, 15]
and the references therein.

In this paper, we shall present existence and uniqueness results for our
problems. These results initiate the study of hyperbolic fractional functional
differential equations with state-dependent delay subject to impulsive effect.
We present two results for each of our problems, the first one is based on Ba-
nach’s contraction principle and the second one on the nonlinear alternative
of Leray-Schauder type.

2. Preliminaries

In this section, we introduce notations and definitions which are used
throughout this paper. By AC(J,Rn) we denote the space of absolutely
continuous functions from J into Rn and L1(J,Rn) is the space of Lebesgue-
integrable functions w : J → Rn with the norm

‖w‖1 =
∫ a

0

∫ b

0
‖w(x, y)‖dydx,

where ‖.‖ denotes a suitable complete norm on Rn.

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = [a1, a] × [0, b], r1, r2 > 0 and
r = (r1, r2). For w ∈ L1(Jz,Rn), the expression

(Ir
z+w)(x, y) =

1
Γ(r1)Γ(r2)

∫ x

a1

∫ y

0
(x− s)r1−1(y − t)r2−1w(s, t)dtds,

where Γ(.) is the Euler gamma function, is called the left-sided mixed
Riemann-Liouville integral of order r.
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Definition 2.1. ([27]) For w ∈ L1(Jz,Rn), the Caputo fractional-order
derivative of order r is defined by the expression

(cDr
z+w)(x, y) = (I1−r

z+

∂2

∂x∂y
w)(x, y).

Set
Jk := (xk, xk+1]× [0, b]

and
J ′ := J\{(x1, y), . . . , (xm, y), y ∈ [0, b]}.

Consider the space

PC := PC(J,Rn)
=

{
u : J → Rn : u ∈ C(Jk,Rn); k = 1, . . . , m, and there exist u(x−k , y)

and u(x+
k , y); k = 1, . . . ,m, with u(x−k , y) = u(xk, y)

}
.

This set is a Banach space with the norm

‖u‖PC = sup
(x,y)∈J

‖u(x, y)‖.

3. Impulsive functional hyperbolic differential equations
with finite delay

Set
P̃C := PC([−α, a]× [−β, b],Rn),

which is a Banach space with the norm

‖u‖
P̃C

= sup{‖u(x, y)‖ : (x, y) ∈ [−α, a]× [−β, b]}.

Definition 3.1. A function u ∈ P̃C whose r-derivative exists on J ′

is said to be a solution of (1)-(4) if u satisfies the condition (3) on J̃ , the
equation (1) on J ′ and conditions (2) and (4) are satisfied on J.

Let h ∈ C([xk, xk+1]× [0, b],Rn), zk = (xk, 0), and

µk(x, y) = u(x, 0) + u(x+
k , y)− u(x+

k , 0), k = 0, . . . , m.

For the existence of solutions for the problem (1)−(3), we need the following
lemma.
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Lemma 3.2. ([3]) A function u ∈ AC([xk, xk+1]×[0, b],Rn); k = 0, . . . , m
is a solution of the differential equation

(cDr
zk

u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]× [0, b],

if and only if u(x, y) satisfies

u(x, y) = µk(x, y) + (Ir
zk

h)(x, y); (x, y) ∈ [xk, xk+1]× [0, b]. (9)

Let

µ := µ0 = u(x, 0) + u(0, y)− u(0, 0) = ϕ(x) + ψ(y)− ϕ(0).

Lemma 3.3. ([3]) Let 0 < r1, r2 ≤ 1 and let h ∈ PC(J,Rn). A function
u is a solution of the fractional integral equation

u(x, y) =





µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0 (x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ [0, x1]× [0, b],

µ(x, y) +
∑k

i=1(Ii(u(x−i , y))− Ii(u(x−i , 0)))
+ 1

Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y
0 (xi − s)r1−1(y − t)r2−1h(s, t)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . , m,

(10)
if and only if u is a solution of the fractional IVP

cDr
zk

u(x, y) = h(x, y), (x, y) ∈ J ′, (11)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), y ∈ [0, b], k = 1, . . . , m. (12)

Set R :=R(ρ−1 ,ρ−2 )

= {(ρ1(s, t, u), ρ2(s, t, u)) : (s, t, u) ∈ J × C, ρi(s, t, u) ≤ 0; i = 1, 2}.

We always assume that ρi : J × C → R; i = 1, 2 are continuous and the
function (s, t) 7−→ u(s,t) is continuous from R into C.

The first result is based on Banach fixed point theorem.

Theorem 3.4. Let f(·, ·, u) ∈ PC(J,Rn) for each u ∈ C. Assume that:
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(H1) There exists a constant l > 0 such that

‖f(x, y, u)−f(x, y, u)‖ ≤ l‖u−u‖C , for each (x, y) ∈ J and each u, u ∈ C.

(H2) There exists a constant l∗ > 0 such that

‖Ik(u)− Ik(u)‖ ≤ l∗‖u− u‖, for each u, u ∈ Rn, k = 1, . . . ,m.

If

2ml∗ +
2lar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (13)

then (1)-(4) has a unique solution on [−α, a]× [−β, b].

P r o o f. We transform the problem (1)-(4) into a fixed point problem.
Consider the operator F : P̃C → P̃C defined by

F (u)(x, y) =





φ(x, y), (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x(Ik(u(x−k , y))− Ik(u(x−k , 0)))

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y
0 (xk − s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds, (x, y) ∈ J.

Clearly, the fixed points of the operator F are solution of the problem (1)-
(4). We shall use the Banach contraction principle to prove that F has a
fixed point. For this, we show that F is a contraction. Let u, v ∈ P̃C, then
for each (x, y) ∈ J, we have

‖F (u)(x, y)− F (v)(x, y)‖

≤
m∑

k=1

(‖Ik(u(x−k , y))− Ik(v(x−k , y))‖+ ‖Ik(u(x−k , 0))− Ik(v(x−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1‖

× f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))− f(s, t, v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))‖dtds
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+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1‖f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))

− f(s, t, v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))‖dtds

≤
m∑

k=1

l∗(‖u(x−k , y)− v(x−k , y)‖+ ‖u(x−k , 0)− v(x−k , 0)‖)

+
l

Γ(r1)Γ(r2)

m∑

k=1

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1

× ‖u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))) − v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))‖Cdtds

+
l

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1

× ‖u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))) − v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))‖Cdtds

≤
[
2ml∗ +

2lar1br2

Γ(r1 + 1)Γ(r2 + 1)

]
‖u− v‖C .

By the condition (13), we conclude that F is a contraction. As a consequence
of Banach’s fixed point theorem, we deduce that F has a unique fixed point
which is a solution of the problem (1)-(4).

In the following theorem we give an existence result for the problem
(1)-(4) by applying the nonlinear alternative of Leray-Schauder type [13].

Theorem 3.5. Let f(·, ·, u) ∈ PC(J,Rn) for each u ∈ C. Assume that
the following conditions hold:

(H3) There exists φf ∈ C(J,R+) and ψ̃ : [0,∞) → (0,∞) continuous and
nondecreasing such that

‖f(x, y, u)‖ ≤ φf (x, y)ψ̃(‖u‖C) for all (x, y) ∈ J, u ∈ C.

(H4) There exists ψ∗ : [0,∞) → (0,∞) continuous and nondecreasing such
that

‖Ik(u)‖ ≤ ψ∗(‖u‖) for all u ∈ Rn.

(H5) There exists an number M > 0 such that

M

‖µ‖∞ + 2mψ∗(M) +
2ar1br2φ0

f ψ̃(M)

Γ(r1+1)Γ(r2+1)

> 1,

where φ0
f = sup{φf (x, y) : (x, y) ∈ J}.
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Then (1)-(4) has at least one solution on [−α, a]× [−β, b].

P r o o f. Consider the operator F defined in Theorem 3.4. We shall
show that the operator F is continuous and completely continuous.

A priori estimate.

For λ ∈ [0, 1], let u be such that for each (x, y) ∈ J we have u(x, y) =
λ(Fu)(x, y).

For each (x, y) ∈ J, then from (H3) and (H4) we have

‖u(x, y)‖ ≤ ‖µ(x, y)‖+
m∑

k=1

(‖Ik(u(x−k , y))‖+ ‖Ik(u(x−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1

× ‖f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1

× ‖f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))‖dtds

≤ ‖µ‖∞ + 2mψ∗(‖u‖) +
2ar1br2φ0

f ψ̃(‖u‖)
Γ(r1 + 1)Γ(r2 + 1)

.

Thus, ‖u‖PC

‖µ‖∞ + 2mψ∗(‖u‖PC) +
2ar1br2φ0

f ψ̃(‖u‖PC)

Γ(r1+1)Γ(r2+1)

≤ 1.

By condition (H5), there exists M such that ‖u‖∞ 6= M .
Let

U = {u ∈ P̃C : ‖u‖
P̃C

< M}.
The operator F : U → P̃C is continuous and completely continuous. From
the choice of U , there is no u ∈ ∂U such that u = λF (u) for some λ ∈ (0, 1).
As a consequence of the nonlinear alternative of Leray-Schauder type [13],
we deduce that F has a fixed point u in U which is a solution of the problem
(1)-(4).
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4. The phase space B

The notation of the phase space B plays an important role in the study
of both qualitative and quantitative theory for functional differential equa-
tions. A usual choice is a semi-normed space satisfying suitable axioms,
which was introduced by Hale and Kato [14] (see also [15, 20]).

For any (x, y) ∈ J denote E(x,y) := [0, x]×{0}∪{0}× [0, y], furthermore
in case x = a, y = b we write simply E. Consider the space (B, ‖(., .)‖B)
is a seminormed linear space of functions mapping (−∞, 0] × (−∞, 0] into
Rn, and satisfying the following fundamental axioms which were adapted
from those introduced by Hale and Kato for ordinary differential functional
equations:

(A1) If z : (−∞, a] × (−∞, b] → Rn, z(x,y) ∈ B for all (x, y) ∈ E and
z ∈ PC, then for every (x, y) ∈ J the following conditions hold:

(i) z(x,y) is in B;

(ii) There exists a positive constant H such that ‖z(x, y)‖ ≤ H‖z(x,y)‖B,

(iii) There exist two functions K,M : R+ × R+ → R+ independent of u,
with K continuous and M locally bounded such that

‖z(x,y)‖B ≤ K(x, y) sup
(s,t)∈[0,x]×[0,y]

‖z(s, t)‖+M(x, y) sup
(s,t)∈E(x,y)

‖z(s,t)‖B,

(A2) The space B is complete.

Denote K = sup(x,y)∈J K(x, y) and M = sup(x,y)∈J M(x, y).

Now, we present some examples of phase spaces (see [11]).

Example 4.1. Let B be the set of all functions φ : (−∞, 0]×(−∞, 0] →
Rn such that for each α, β ≥ 0 we define in C the semi-norms by

‖φ‖B = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is
isometric to the space PC([−α, 0]× [−β, 0],Rn) of all piecewise continuous
functions from [−α, 0]×[−β, 0] into Rn with the supremum norm, this means
that partial differential functional equations with finite delay are included
in our axiomatic model.
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Example 4.2. Let α, β, γ ≥ 0 and let

‖φ‖CLγ = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖+
∫ 0

−∞

∫ 0

−∞
eγ(s+t)‖φ(s, t)‖dtds.

be the seminorm for the space CLγ of all functions φ : (−∞, 0]× (−∞, 0] →
Rn which are measurable on (−∞,−α] × (−∞, 0] ∪ (−∞, 0] × (−∞,−β],
and such that ‖φ‖CLγ < ∞. Then

H = 1, K =
∫ 0

−α

∫ 0

−β
eγ(s+t)dtds, M = 2.

5. Impulsive functional hyperbolic differential equations
with infinite delay

Now we present two existence results for the problem (5)-(8). Let us
start in this section by defining what we mean by a solution of the problem
(5)-(8). Let the space

Ω := {u : (−∞, a]×(−∞, b] → Rn : u(x,y) ∈ B for (x, y) ∈ E and u|J ∈ PC}.

Definition 5.1. A function u ∈ Ω whose r-derivative exists on J ′

is said to be a solution of (5)-(8) if u satisfies the condition (7) on J̃ ′, the
equation (5) on J ′ and conditions (6) and (8) are satisfied on J.

Set R′ :=R′(ρ−1 ,ρ−2 )

= {(ρ1(s, t, u), ρ2(s, t, u)) : (s, t, u) ∈ J×, B ρi(s, t, u) ≤ 0; i = 1, 2}.

We always assume that ρi : J × B → R; i = 1, 2 are continuous and the
function (s, t) 7−→ u(s,t) is continuous from R′ into B.

We will need to introduce the following hypothesis:

(Hφ) There exists a continuous bounded function L :R′(ρ−1 ,ρ−2 ) → (0,∞)
such that

‖φ(s,t)‖B ≤ L(s, t)‖φ‖B, for any(s, t) ∈ R′.

In the sequel we will make use of the following generalization of a conse-
quence of the phase space axioms ([19]).
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Lemma 5.2. If u ∈ Ω, then

‖u(s,t)‖B = (M + L′)‖φ‖B + K sup
(θ,η)∈[0,max{0,s}]×[0,max{0,t}]

‖u(θ, η)‖,

where

L′ = sup
(s,t)∈R′

L(s, t).

Our first existence result for the IVP (5)-(8) is based on the Banach
contraction principle.

Theorem 5.3. Assume that the following hypotheses hold:

(H01) There exists `′ > 0 such that

‖f(x, y, u)−f(x, y, v)‖ ≤ `′‖u−v‖B, for any u, v ∈ B and (x, y) ∈ J.

(H02) There exists a constant l∗ > 0 such that

‖Ik(u)− Ik(u)‖ ≤ l∗‖u− u‖, for each u, u ∈ Rn, k = 1, . . . ,m.

If

2ml∗ +
2K`′ar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (14)

then there exists a unique solution for IV P (5)-(8) on (−∞, a]× (−∞, b].

P r o o f. Transform the problem (5)-(8) into a fixed point problem.
Consider the operator N : Ω → Ω defined by

N(u)(x, y) =





φ(x, y), (x, y) ∈ J̃ ′,
µ(x, y) +

∑
0<xk<x(Ik(u(x−k , y))− Ik(u(x−k , 0)))

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y
0 (xk − s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds, (x, y) ∈ J.

(15)
Let v(., .) : (−∞, a]× (−∞, b] → Rn be a function defined by,

v(x, y) =
{

φ(x, y), (x, y) ∈ J̃ ′,
µ(x, y), (x, y) ∈ J.
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Then v(x,y) = φ for all (x, y) ∈ E. For each w ∈ C(J,Rn) with w(x, y) =
0 for each (x, y) ∈ E we denote by w the function defined by

w(x, y) =
{

0, (x, y) ∈ J̃ ′,
w(x, y) (x, y) ∈ J.

If u(., .) satisfies the integral equation

u(x, y) = µ(x, y)

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds,

we can decompose u(., .) as u(x, y) = w(x, y) + v(x, y); (x, y) ∈ J, which
implies u(x,y) = w(x,y) + v(x,y), for every (x, y) ∈ J, and the function w(., .)
satisfies

w(x, y) =
∑

0<xk<x

(Ik(u(x−k , y))− Ik(u(x−k , 0)))

+
1

Γ(r1)Γ(r2)

∑

0<xk<x

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1

× f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1

× f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds.

Set
C0 = {w ∈ Ω : w(x, y) = 0 for (x, y) ∈ E},

and let ‖.‖(a,b) be the seminorm in C0 defined by

‖w‖(a,b) = sup
(x,y)∈E

‖w(x,y)‖B + sup
(x,y)∈J

‖w(x, y)‖ = sup
(x,y)∈J

‖w(x, y)‖, w ∈ C0.

C0 is a Banach space with norm ‖.‖(a,b). Let the operator P : C0 → C0 be
defined by

P (x, y) =
∑

0<xk<x

(Ik(u(x−k , y))− Ik(u(x−k , 0)))

+
1

Γ(r1)Γ(r2)

∑

0<xk<x

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1

× f(s, t, w(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))) + v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1
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×f(s, t, w(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))) + v(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))))dtds, (16)

for each (x, y) ∈ J. Then the operator N has a fixed point is equivalent to
P has a fixed point, and so we turn to proving that P has a fixed point. We
can easily show that P : C0 → C0 is a contraction map, and hence it has a
unique fixed point by Banach’s contraction principle.

Now we give an existence result based on the nonlinear alternative of
Leray-Schauder type [13]. We will make use of the following generalization
of Gronwall’s lemma for two independent variables and singular kernel.

Lemma 5.4([18]). Let υ : J → [0,∞) be a real function and ω(., .) be
a nonnegative, locally integrable function on J. If there are constants c > 0
and 0 < r1, r2 < 1 such that

υ(x, y) ≤ ω(x, y) + c

∫ x

0

∫ y

0

υ(s, t)
(x− s)r1(y − t)r2

dtds,

then there exists a constant δ = δ(r1, r2) such that

υ(x, y) ≤ ω(x, y) + δc

∫ x

0

∫ y

0

ω(s, t)
(x− s)r1(y − t)r2

dtds,

for every (x, y) ∈ J.

Theorem 5.5. Assume (Hφ) and

(H03) There exist p, q ∈ C(J,R+) such that

‖f(x, y, u)‖ ≤ p(x, y) + q(x, y)‖u‖B, for (x, y) ∈ J and each u ∈ B.

(H04) There exist ck > 0; k = 1, . . . , m such that

‖Ik(u)‖ ≤ ck for all u ∈ Rn.

Then the IV P (5)-(8) has at least one solution on (−∞, a]× (−∞, b].

P r o o f. Let P : C0 → C0 defined as in (16). As in Theorem 3.5, we
can show that the operator P is continuous and completely continuous.

We now show there exists an open set U ⊆ C0 with w 6= λP (w), for
λ ∈ (0, 1) and w ∈ ∂U. Let w ∈ C0 and w = λP (w) for some 0 < λ < 1. By
(H03) and (H04) for each (x, y) ∈ J, we have

‖w(x, y)‖ ≤
m∑

k=1

2ck +
2‖p‖∞ar1br2

Γ(r1 + 1)Γ(r2 + 1)
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+
2

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1q(s, t)‖w(s,t) + v(s,t)‖B dtds.

But Lemma 5.2 implies that

‖w(s,t) + v(s,t)‖B ≤ ‖w(s,t)‖B + ‖v(s,t)‖B

≤ K sup{w(s̃, t̃) : (s̃, t̃) ∈ [0, s]× [0, t]}

+(M + L′)‖φ‖B + K‖φ(0, 0)‖. (17)

If we name z(s, t) the right hand side of (17), then we have

‖w(s,t) + v(s,t)‖B ≤ z(x, y),

and therefore, for each (x, y) ∈ J we obtain

‖w(x, y)‖ ≤ 2
m∑

k=1

ck +
2‖p‖∞ar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
2

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1q(s, t)z(s, t)dtds. (18)

Using the above inequality and the definition of z for each (x, y) ∈ J we
have

z(x, y) ≤ (M + L′)‖φ‖B + K‖φ(0, 0)‖+ 2
m∑

k=1

ck +
2‖p‖∞ar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
2K‖q‖∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1z(s, t)dtds.

Then by Lemma 5.4, there exists δ = δ(r1, r2) such that we have

‖z(x, y)‖ ≤ R + δ
2K‖q‖∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1Rdtds,

where

R = (M + L′)‖φ‖B + K‖φ(0, 0)‖+ 2
m∑

k=1

ck +
2‖p‖∞ar1br2

Γ(r1 + 1)Γ(r2 + 1)
.

Hence
‖z‖∞ ≤ R +

2RδK‖q‖∞ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= M̃.
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Then, (18) implies that

‖w‖∞ ≤ 2
m∑

k=1

ck +
2ar1br2

Γ(r1 + 1)Γ(r2 + 1)
(‖p‖∞ + M̃‖q‖∞) := M∗.

Set
U = {w ∈ C0 : ‖w‖(a,b) < M∗ + 1}.

P : U → C0 is continuous and completely continuous. By our choice of U,
there is no w ∈ ∂U such that w = λP (w), for λ ∈ (0, 1). As a consequence
of the nonlinear alternative of Leray-Schauder type [13], we deduce that N
has a fixed point which is a solution to problem (5)-(8).

6. Examples

Example 1. As an application of our results we consider the following
impulsive partial hyperbolic functional differential equations of the form

(cDr
0u)(x, y) =

e−x−y

9 + ex+y

× |u(x− σ1(u(x, y)), y − σ2(u(x, y)))|
1 + |u(x− σ1(u(x, y)), y − σ2(u(x, y)))| , if (x, y) ∈ [0, 1]× [0, 1], x 6= 1

2
,

(19)

u((
1
2
)+, y) = u((

1
2
)−, y) +

|u((1
2)−, y)|

3 + |u((1
2)−, y)| , y ∈ [0, 1], (20)

u(x, y) = x + y2, (x, y) ∈ [−1, 1]× [−2, 1]\(0, 1]× (0, 1], (21)

u(x, 0) = x, u(0, y) = y2, for each x ∈ [0, 1] and y ∈ [0, 1], (22)

where σ1 ∈ C(R, [0, 1]), σ2 ∈ C(R, [0, 2]). Set

ρ1(x, y, ϕ) = x− σ1(ϕ(0, 0)), (x, y, ϕ) ∈ J × C,

ρ2(x, y, ϕ) = y − σ2(ϕ(0, 0)), (x, y, ϕ) ∈ J × C,

where C := C(1,2). Set

f(x, y, ϕ) =
e−x−y|ϕ|

(9 + ex+y)(1 + |ϕ|) , (x, y) ∈ [0, 1]× [0, 1], ϕ ∈ C,
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and
Ik(u) =

u

3 + u
, u ∈ R+.

A simple computations show that conditions of Theorem 3.4 are satis-
fied which implies that problem (19)-(22) has a unique solution defined
on [−1, 1]× [−2, 1].

Example 2. We consider now the following impulsive fractional order
partial hyperbolic differential equations with infinite delay of the form

(cDr
0u)(x, y) =

cex+y−γ(x+y)|u(x− σ1(u(x, y)), y − σ2(u(x, y)))|
(ex+y + e−x−y)(1 + |u(x− σ1(u(x, y)), y − σ2(u(x, y)))|) ;

if (x, y) ∈ J := [0, 1]× [0, 1], x 6= k

k + 1
; k = 1, ...m, (23)

u

((
k

k + 1

)+

, y

)
= u

((
k

k + 1

)−
, y

)

+

∣∣∣∣u
((

k
k+1

)−
, y

)∣∣∣∣

3mk +
∣∣∣∣u

((
k

k+1

)−
, y

)∣∣∣∣
; y ∈ [0, 1], k = 1, . . . , m, (24)

u(x, 0) = x, u(0, y) = y2, for each x ∈ [0, 1] and y ∈ [0, 1], (25)

u(x, y) = x + y2, (x, y) ∈ J̃ := (−∞, 1]× (−∞, 1]\(0, 1]× (0, 1], (26)

where c = 10
Γ(r1+1)Γ(r2+1) , γ a positive real constant and σ1, σ2 ∈ C(R, [0,∞)).

Let
Bγ = {u ∈ C((−∞, 0]× (−∞, 0],R) : u|J ∈ PC(J,R)

and lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) exists in R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1] → R such that u(x,y) ∈ Bγ for (x, y) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−x+η−y)u(θ, η)
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= eγ(x+y) lim
‖(θ,η)‖→∞

u(θ, η) < ∞.

Hence u(x,y) ∈ Bγ . Finally, we prove that

‖u(x,y)‖γ = K sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}
+M sup{‖u(s,t)‖γ : (s, t) ∈ E(x,y)},

where K = M = 1 and H = 1.
If x + θ ≤ 0, y + η ≤ 0, we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]× (−∞, 0]},
and if x + θ ≥ 0, y + η ≥ 0 then we have

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.
Thus for all (x + θ, y + η) ∈ [0, 1]× [0, 1], we get

‖u(x,y)‖γ = sup
(s,t)∈(−∞,0]×(−∞,0]

|u(s, t)|+ sup
(s,t)∈[0,x]×[0,y]

|u(s, t)|.

Then
‖u(x,y)‖γ = sup

(s,t)∈E
‖u(s,t)‖γ + sup

(s,t)∈[0,x]×[0,y]
|u(s, t)|.

(Bγ , ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.
Set

ρ1(x, y, ϕ) = x− σ1(ϕ(0, 0)), (x, y, ϕ) ∈ J ×Bγ ,

ρ2(x, y, ϕ) = y − σ2(ϕ(0, 0)), (x, y, ϕ) ∈ J ×Bγ ,

f(x, y, ϕ) =
cex+y−γ(x+y)|ϕ|

(ex+y + e−x−y)(1 + |ϕ|) , (x, y) ∈ [0, 1]× [0, 1], ϕ ∈ Bγ

and
Ik(u) =

u

3mk + u
; u ∈ R+, k = 1, . . . ,m.

We can easily show that conditions of Theorem 5.3 are satisfied, and hence
problem (23)-(26) has a unique solution defined on (−∞, 1]× (−∞, 1].
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e-mail: benchohra@univ-sba.dz


