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Abstract

In this paper we prove Bochner-Hecke theorems for the Weinstein trans-
form and we give an application to homogeneous distributions.
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1. Introduction

We consider the Weinstein operator ∆d,α defined on Rd−1×]0,+∞[ by

∆d,α =
d∑

i=1

∂2

∂x2
i

+
2α + 1

xd

∂

∂xd
, α ∈ R, α > −1

2
.

Then
∆d,α = ∆d−1 + `α,

where ∆d−1 is the Laplacian operator in Rd−1 and `α the Bessel operator
with respect to the variable xd defined by

`α =
d2

dx2
d

+
2α + 1

xd

d

dxd
, α > −1

2
.

The Weinstein operator ∆d,α has several applications in Pure and Ap-
plied Mathematics, especially in Fluid Mechanics, [3].
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In this paper we consider the spherical harmonics associated with the
Weinstein operator, and the Weinstein transform studied in [1], [2], [8], [9],
[10].

The principles of constructing of multidimensional Fourier transforms
associated with integral transforms, of the type considered in the paper are
also well discussed in [4].

With the help of the Weinstein transform, the mean value property of
the W -harmonic functions and the translation operator associated with the
Weinstein operator, we prove a Hecke formula, a Funk-Hecke formula and
Bochner-Hecke theorems for the Weinstein transform.

The analogues of these formulas and theorems have been proved in [6],
[7], [12] for the classical Fourier transform on Rd and the Dunkl transform
on Rd.

As application of the Bochner-Heck theorems for the Weinstein trans-
form, we determine the Weinstein transform of some homogeneous distri-
butions on Rd. An analogous application has been studied in the cases of
the classical Fourier transform on Rd and the Dunkl transform on Rd (see
[6], [10], [12]).

The contents of the paper is as follows:

- In Section 2 we give the main results concerning the Weinstein trans-
form. - In Section 3 we study the translation operator associated with the
Weinstein operator. - In Section 4 we define the mean value property of
W -harmonic functions. - Section 5 is devoted to the Hecke formula asso-
ciated with the Weinstein operator. - In Section 6 we give a proof of the
Funk-Hecke formula for the Weinstein transform. - In Section 7 we give
the Bochner-Hecke theorems for the Weinstein transform. - As an applica-
tion of the results of the preceding sections, in Section 8 we determine the
Weinstein transform of some homogeneous distributions on Rd−1×]0, +∞[.

2. The eigenfunction of the operator ∆d,α

and the Weinstein transform

2.1. The eigenfunction of the operator ∆d,α

For all λ = (λ1, ..., λd) ∈ Cd, the system
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∂2u(x)
∂x2

i

= −λ2
i u(x), i = 1, ..., d− 1,

`αu(x) = −λ2
du(x)

u(0) = 1,
∂u

∂xd
(0) = 0,

∂u

∂xj
(0) = −iλj , j = 1, ..., d− 1,

has a unique solution on Rd, denoted by Ψλ, and given by

Ψλ(x) = e−i〈x′,λ′〉jα(xdλd). (2.1)

Here x′ = (x1, ..., xd−1), λ′ = (λ1, ..., λd−1) and jα is the normalized Bessel
function of index α defined by

∀ z ∈ C, jα(z) = Γ(α + 1)
∞∑

n=0

(−1)n( z
2)2n

n!Γ(n + α + 1)
, (2.2)

satisfying the Laplace type integral representation

∀ z ∈ C, jα(z) =
Γ(α + 1)√
πΓ(α + 1

2)

∫ π

0
eiz cos θ(sin θ)2αdθ . (2.3)

Remark 2.1. From the relation (2.3) we deduce by change of variables
that the function jα(tµ) admits for α > −1

2 , the Laplace type integral
representation

jα(tµ) =
2Γ(α + 1)t−2α

√
πΓ(α + 1

2)

∫ t

0
(t2 − y2)α− 1

2 cos(µy)dy,

∀ µ ∈ C, ∀ t ∈ [0, +∞[.
By using [13], p. 165, and the preceding relation, we deduce that the

function jα(tµ) possesses for α ∈] − 1
2 ,−3

2 [ the following type Laplace rep-
resentation

jα(tµ) =
2Γ(α + 2)t−2(α+1)

√
πΓ(α + 3

2)

∫ t

0
(t2−y2)α+ 1

2 [1− µ2(t2 − y2)
2(α + 1)(2α + 3)

] cos(ty)dy,

∀ µ ∈ C, ∀ t ∈ [0, +∞[. As the kernel of this representation contains the
parameter µ, then we cannot built a harmonic analysis associated with the
Bessel operator `α for α ∈]− 1

2 ,−3
2 [, as for the case α > −1

2 . For this reason,
we suppose in this paper the requirement α > −1

2 (see [11]).
The function Ψλ has a unique extension to Cd×Cd. It has the following

properties:

i) ∀ λ, z ∈ Cd, Ψλ(z) = Ψz(λ), (2.4)
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ii) ∀ λ, z ∈ Cd, Ψλ(−z) = Ψ−λ(z), (2.5)

iii) ∀ λ, x ∈ Rd, |Ψλ(x)| ≤ 1. (2.6)

2.2. The Weinstein transform

Notations: We denote by

- C∗(Rd) the space of continuous functions on Rd, even with respect to
the last variable, resp. C∗,c(Rd) denotes the subspace formed by functions
with compact support.

- D∗(Rd) the space of C∞ functions on Rd, even with respect to the last
variable and with compact support.

- S∗(Rd) the space of C∞-functions on Rd, even with respect to the last
variable, and rapidly decreasing together with their derivatives.

The topology of S∗(Rd) is defined by the seminorms P`,m, (`,m) ∈ N2,
given by

P`,m(ϕ) = sup
|µ|≤m
x∈Rd

(1 + ‖x‖2)`|Dµϕ(x)|,

where Dµ =
∂|µ|

∂xµ1
1 ...∂xµd

d

, µ = (µ1, ..., µd), |µ| = µ1 + ... + µd.

- Lp
α(Rd−1 × [0, +∞[), 1 ≤ p ≤ +∞, the space of measurable functions

f on Rd−1 × [0,+∞[ such that

‖f‖α,p =

(∫

Rd−1×[0,+∞[
|f(x)|pdµα(x)

)1/p

< +∞ if p ∈ [1, +∞[,

‖f‖α,∞ = ess supx∈Rd−1×[0,+∞[|f(x)| < ∞, if p = +∞,

where µα is the measure defined by

dµα(x) = x2α+1
d dx = x2α+1

d dx1...dxd.

- E∗(R) the space of C∞-functions on Rd, even with respect to the last
variable.

Definition 2.1. The Weinstein transform FW is defined on L1
α(Rd−1×

[0, +∞[) by

∀ λ ∈ Rd, FW (f)(λ) =
∫

Rd−1×[0,+∞[
f(x)Ψλ(x)dµα(x). (2.7)
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Proposition 2.2.

i) For all f ∈ L1
α(Rd−1 × [0, +∞[), the function FW (f) is continuous on

Rd and we have

‖FW (f)‖α,∞ ≤ ‖f‖α,1. (2.8)

ii) For all f ∈ S∗(Rd) and n ∈ N, we have

∀ λ ∈ Rd, FW (∆n
d,αf)(λ) = Pn(λ)FW (f)(λ). (2.9)

and

∀ λ ∈ Rd, ∆n
d,α(FW (f))(λ) = FW (Pnf)(λ), (2.10)

where Pn(λ) = (−1)n‖λ‖2n = (−1)n(λ2
1 + ... + λ2

d)
n.

Theorem 2.1. The Weinstein transform is a topological isomorphism
from S∗(Rd) onto itself. The inverse transform is given by

∀ x ∈ Rd, F−1
W (f)(x) = CαFW (f)(−x1, ...,−xd−1, xd), (2.11)

where

Cα =
1

(2π)d−122α(Γ(α + 1))2
. (2.12)

Theorem 2.2.

i) Plancherel formula: For all f ∈ S∗(Rd) we have
∫

Rd−1×[0,+∞[
|f(x)|2dµα(x) =

∫

Rd−1×[0,+∞[
|FW (f)(λ)|2dνα(λ),

(2.13)
where dνα(λ) = Cαdµα(λ), with Cα the constant given by (2.12).

ii) Plancherel theorem: The Weinstein transform FW extends uniquely
to an isomorphism isometric from L2

α[Rd−1× [0, +∞[) onto L2
α(Rd−1×

[0,+∞[, dνα(λ)).

3. The translation operator associated
with the Weinstein operator

Definition 3.2. The translation operator Tx, x ∈ Rd−1 × [0, +∞[,
associated with the operator ∆d,α is defined for a continuous function f on
Rd which is even with respect to the last variable and for all y = (y′, yd) ∈
Rd−1 × [0, +∞[ by
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Txf(y) =
Γ(α + 1)√
πΓ(α + 1

2)

∫ π

0
f(x′ + y′,

√
x2

d + y2
d + 2xdyd cos θ)(sin θ)2αdθ.

(3.1)

Proposition 3.1. The translation operator Tx, x ∈ Rd−1 × [0, +∞[,
satisfies the following properties:

i) For all continuous function f on Rd which is even with respect to the
last variable and x, y ∈ Rd−1 × [0, +∞[, we have

Txf(y) = Tyf(x) , T0f = f.

ii) For all f in E∗(Rd) and y ∈ Rd−1 × [0,+∞[, the function x → Txf(y)
belongs to E∗(Rd).

iii) For all x ∈ Rd−1 × [0,+∞[, we have

∆d,α ◦ Tx = Tx ◦ ∆d,α. (3.2)

Proposition 3.2. The space S∗(R) is invariant under the operators
Tx, x ∈ Rd−1 × [0,+∞[.

Proposition 3.3. For all f in E∗(Rd) and g ∈ S∗(Rd) we have
∫

Rd−1×[0,+∞[
Txf(y)g(y)dµα(y) =

∫

Rd−1×[0,+∞[
f(y)Txg(y)dµα(y). (3.3)

Proposition 3.4. For all f in Lp
α(Rd−1 × [0, +∞[), p ∈ [1, +∞], and

x ∈ Rd−1 × [0, +∞[ we have

‖Txf‖p,α ≤ ‖f‖p,α . (3.4)

4. Mean value property of the W -harmonic functions

Definition 4.1. Let u be a function of class C2 on Rd−1 × [0, +∞[,
even with respect to the last variable. We say that the function u is W -
harmonic, if

∀ x ∈ Rd−1 × [0, +∞[, ∆d,αu(x) = 0.

Definition 4.2. The mean value associated with the Weinstein oper-
ator ∆d,α of a function u in C∗(Rd) is defined by
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Mα
x,r(u) =

1
Ωd,α

∫

Sd−1
+

Txu(rw)w2α+1
d dσd(w), (4.1)

where

Ωd,α =
∫

Sd−1
+

w2α+1
d dσd(w) =

π
d−1
2 Γ(α + 1)

Γ(d+2α+1
2 )

and Sd−1
+ = {(x1, ..., xd−1, xd) ∈ Rd, x2

1 + ... + x2
d−1 + x2

d = 1, xd ≥ 0} and
dσd is the normalized surface measure on Sd−1

+ .

Definition 4.3. Let u be a function in C∗(Rd). We say that u satisfies
the mean value property associated with the Weinstein operator ∆d,α if for
all r > 0 and x ∈ Rd−1 × [0, +∞[. We have

u(x) = Mα
x,r(u).

Theorem 4.1. Let u be a W -harmonic function on Rd−1 × [0, +∞[.
Then u satisfies the mean value property associated with the Weinstein
operator ∆d,α (see [2], p.40).

5. Hecke formula for the Weinstein transform

Notations: We denote by
- Pd

n the space of homogeneous polynomials of degree n.
- Hα

n the space of W -harmonic homogeneous polynomials of degree n.
It is defined by

Hα
n = (ker∆d,α) ∩ Pd

n.

Theorem 5.1. Let H be in Hα
n . Then we have the following relation

∫

Rd−1×[0,+∞[
e−

‖y‖2
2 H(y)Ψy(x)y2α+1

d dy = cα,ne−
‖x‖2

2 H(x), (5.1)

where

cα,n = 2
d−1
2

+απ
d−1
2 inΓ(α + 1). (5.2)

To prove this theorem we need the following lemma.

Lemma 5.1. Let H be in Hα
n , and f be a radial function in S∗(Rd).

Then we have

∫

Rd−1×[0,+∞[
Txf(y)H(y)y2α+1

d dy = H(x)
∫

Rd−1×[0,+∞[
f(y)y2α+1

d dy. (5.3)
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P r o o f. Since H is in Hα
n , then from Theorem 4.1 we have

H(x) = Mα
x,r(H) =

1
Ωd,α

∫

Sd−1
+

TxH(rω)w2α+1
d dσd(ω). (5.4)

Let F be the function on [0, +∞[ given by f(x) = F (‖x‖). From the relation
(3.3) and using the spherical coordinates we obtain∫

Rd−1×[0,+∞[
Txf(y)H(y)y2α+1

d dy

=
∫ +∞

0

∫

Sd−1
+

F (r)TxH(ru)(rud)2α+1rd−1drdσd(u).

Using (5.4) and Fubini’s theorem, we obtain
∫

Rd−1×[0,+∞[
Txf(y)H(y)y2α+1

d dy = H(x)
∫

Rd−1×[0,+∞[
f(y)y2α+1

d dy.

P r o o f o f T h e o r e m 5.1.

We take f(x) = e−
‖x‖2

2 with ‖x‖2 =
d∑

i=1

x2
i . From relation (5.3) and the

fact that ∫

Rd−1×[0,+∞[
e−

‖y‖2
2 y2α+1

d dy = 2α(2π)
d−1
2 Γ(α + 1),

we obtain
∫

Rd−1×[0,+∞[
Tx(e−

‖ξ‖2
2 )(y)H(y)y2α+1

d dy = H(x)(2π)
d−1
2 2αΓ(α + 1).

The relations (2.3), (3.1) give
Tx(e(− ‖ξ‖2

2 )(y) = e−
‖x‖2+‖y‖2

2 ψiy(x),
and then
∫

Rd−1×[0,+∞[
e−

‖x‖2+‖y‖2
2 H(y)ψiy(x) y2α+1

d dy = 2
d−1
2

+απ
d−1
2 Γ(α + 1)H(x).

By changing in this relation x by ix, and using the fact that

∀ x, y ∈ Rd, ψiy(ix) = ψy(x),
we obtain

∫

Rd−1×[0,+∞[
e−

‖y‖2
2 H(y)ψy(x)y2α+1

d dy = cα,ne−
‖x‖2

2 H(x) (5.5)

with cα,n given by (5.2).
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Remark. By a change of variables in (5.5), we obtain
∫

Rd−1×[0,+∞[
e−λ

‖y‖2
2 H(y)jα(xdyd)e−i〈x′,y′〉y2α+1

d dy

= cα,nλ−(n+α+ d
2
+ 1

2
)e−

‖x‖2
2λ H(x). (5.6)

6. Funk-Hecke formula for the Weinstein transform

In this subsection we give a proof of a Funk-Hecke formula for the We-
instein transform.

Theorem 6.1. Let H be in Hα
n . Then for all y ∈ Rd−1 × [0, +∞[, we

have

∫

Sd−1
+

H(u)Ψy(iu)u2α+1
d dσd(u) = aα,n jn+α+ d

2
− 1

2
(‖y‖)H(y), (6.1)

where

aα,n =
cα,n2−n−α− d

2
+ 1

2

Γ(n + α + d
2 + 1

2)
, (6.2)

and jn+α+ d
2
− 1

2
is the normalized Bessel function of first kind and order

n + α + d
2 − 1.

P r o o f. Using the relation (5.6) and spherical coordinates y = ru with
r ∈]0, +∞[ and u ∈ Sd−1

+ , and by making the change of variables r =
√

2s,
we obtain

I =
∫

Rd−1×[0,+∞[
e−

λ
2
‖y‖2H(y)e−i〈x′,y′〉jα(xdyd)y2α+1

d dy

=
∫ +∞

0

∫

Sd−1
+

e−λs(2s)
n+2α+d−1

2 H(u)e−i〈√2sx′,u′〉jα(
√

2sxdud)u2α+1
d dσd(u)ds.

(6.3)
From Fubini’s Theorem,

I = cα,nλ−(n+α+ d+1
2

)e−‖x‖
2/2λH(x).

But from formula of [13], p. 394, we have

λ−(n+α+ d+1
2

)e−
‖x‖2
2λ

=
1

Γ(n + α + d+1
2 )

∫ +∞

0
e−λsjn+α+ d−1

2
(
√

2s‖x‖)sn+α+ d−1
2 ds.

By using this relation in (6.3), we obtain
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∫ +∞

0
e−λss−

n
2[
∫

Sd−1
+

H(u)e−i〈√2sx′,u′〉jα(
√

2sxdud)u2α+1
d dσd(u)]sn+α+d−1

2 ds

=
cα,n2

n+2α+d−1
2 H(x)

Γ(n + α + d+1
2

∫ +∞

0
e−λsjn+α+ d−1

2
(
√

2s‖x‖)sn+α+ d−1
2 ds.

The injectivity of the Laplace transform implies

∀ s > 0,

∫

Sd−1
+

H(u)e−i〈√2sx′,u′〉jα(
√

2sxdud)u2α+1
d dσd(u)

= cα,n
S

n
2 2−

n
2
−α− d−1

2

Γ(n + α + d+1
2 )

jn+α+ d−1
2

(
√

2s‖x‖)H(x).

For s = 1
2 we obtain

∫

Sd−1
+

H(u)e−i〈x′,u′〉jα(xdud)u2α+1
d dσd(u) = aα,nH(x)jn+α+ d−1

2
(‖x‖),

where

aα,n =
2−n−α− d

2
+ 1

2

Γ(n + α + d+1
2 )

cα,n.

7. Bochner-Hecke theorems for the Weinstein transform

In this section we give for the Weinstein transform the analogue of the
classical Bochner-Hecke theorem, studied in [6], p. 66-70 and [7], p. 30-31.

Theorem 7.1. Let H be in Hα
n and f a measurable function on [0, +∞[

such that ∫ +∞

0
|f(x)|2n+2α+d < +∞. (7.1)

Then the function F (x) = f(‖x‖)H(x) belongs to L1
α(Rd−1 × [0, +∞[) and

its Weinstein transform is given by

∀ y ∈ Rd, FW (F )(λ) = cα,nH(λ)Fn+α+ d
2
−1

B (f)(‖λ‖), (7.2)

where Fγ
B is the Fourier-Bessel transform of order γ, γ > −1

2 , given by

Fγ
B(h)(λ) =

1
2γΓ(γ + 1)

∫ +∞

0
h(r)jγ(λr)r2γ+1dr.
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P r o o f. The spherical coordinates and Fubini-Tonelli’s Theorem imply
that the function F belongs to L1

α(Rd−1 × [0, +∞[),

∀ λ ∈ Rd ,FW (F )(λ) =
∫

Rd−1×[0,+∞[
f(‖x‖)H(x)e−i〈x′,λ′〉jα(xdλd)x2α+1

d dx.

By using spherical coordinates, Fubini’s Theorem and Theorem 6.1, we
obtain

∀ λ ∈ Rd, FW (F )(λ) = aα,nH(λ)
∫ +∞

0
jn+α+ d

2
− 1

2
(r‖λ‖)f(r)r2n+2α+ddr

= cα,nH(λ)Fn+α+ d
2
− 1

2
B (f)(‖λ‖),

where cα,n and aα,n are the constants given by (5.2) and (6.2).

To state and prove the second generalized Bochner-Hecke theorem, we
need the following notations and lemmas.

Notations: Let for n ∈ N and H ∈ Hα
n we denote by

- Lp
(n,α)([0,+∞[), p = 1, 2, the space of measurable function f on [0, +∞[

such that

‖f‖(n,α),p =
(∫ +∞

0
|f(r)|pr2n+2α+ddr

)1/p

< +∞.

- L2
(α,H)(R

d) = {f(‖x‖)H(x) ∈ L2
α(Rd−1 × [0,+∞[) with f defined a.e.

in [0,+∞[}.
Lemma 7.1. The operator τH from L2

(n,α)([0, +∞[) into L2
(α,H)(R

d)
defined by

τH(f)(x) = f(‖x‖)H(x),
satisfies

‖τH(f)‖α,2 = k‖f‖(n,α),2,

with

k =

[∫

Sd−1
+

|H(u)|2dσd(u)

]1/2

.

P r o o f. Using the spherical coordinates and Fubini’s theorem, we
obtain

‖τH(f)‖2
α,2 =

∫

Rd−1×[0,+∞[
|τHf(x)|2dµα(x)

=
(∫

Sd−1
+

|H(u)|2u2α+1
d dσd(u)

)(∫ +∞

0
f(r)r2n+2α+ddr

)
= k2‖f‖2

(n,α),2.
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Lemma 7.2. The set of linear combination of the functions r → e−λ r2

2 ,
λ > 0, is dense in L2

(n,α)([0, +∞[).

P r o o f. We have to prove that each function ϕ in L2
(n,α)([0, +∞[) that

satisfies ∫ +∞

0
ϕ(r)e−µr2

r2n+2α+ddr = 0, for all µ > 0, (7.3)

is the function equal to zero.
We consider the function

ψ(x) =

{
0, if x ≤ 0
ϕ(
√

x)xn+α+ d
2
− 1

2 e−
x
2 , if x > 0

By using the substitution x = r2 and the Schwartz inequality, we obtain
∫ +∞

0
|ψ(x)|dx =

∫ +∞

0
|ϕ(
√

x)|xn+α+ d
2
− 1

2 e−
x
2 dx

= 2
∫ +∞

0
|ϕ(r)|r2n+2α+d−1e−

r2

2 rdr

≤ 2
(∫ +∞

0
|ϕ(r)|2r2n+2α+ddr

)( ∫ +∞

0
e−r2

r2n+2α+ddr
)

< +∞.

As supp ψ is contained in [0, +∞[, then the function ψ is integrable on R
with respect to the Lebesgue measure.

On the other hand, for all s > 0, the substitution x = r2 implies∫ +∞

0
ψ(x)e−sxdx = 2

∫ +∞

0
ϕ(r)r2n+2α+de−r2( 1

2
+s)dr.

From this relation and (7.1) we deduce that∫ +∞

0
ψ(x)e−sxdx = 0.

The injectivity of the Laplace transform implies that ψ = 0 and then ϕ = 0.

Theorem 7.2. Let f be in L2
(n,α)([0,+∞[). Then:

i) The function F (x) = f(‖x‖)H(x) belongs to L2
(α,H)(R

d), and its We-
instein transform is of the form

FW (F )(y) = g(‖y‖)H(y), y ∈ Rd , (7.4)

with g in L2
(n,α)([0, +∞[).



BOCHNER-HECKE THEOREMS FOR THE WEINSTEIN . . . 273

ii) If moreover, f belongs to L1
(n,α)([0, +∞[), then we have

∀ r ≥ 0, g(r) = cα,nFn+α+ d
2
− 1

2
B (f)(r), (7.5)

with cα,n the constant given in (5.2).

P r o o f.

i) From Lemma 7.1 it is clear that the function F (x) = f(‖x‖)H(x)
belongs to L2

(α,H)([0, +∞[).

Also from this lemma, up to a constant of normalization, the appli-
cation FW ◦ τH is an isometry from L2

(n,α)([0, +∞[) into L2
α(Rd−1 ×

[0,+∞[). From relation (5.1) this isometry applies to all functions

of the type e−λ
‖x‖2

2 , λ > 0, in the space L2
(α,H)(R

d). Then by using
Lemma 7.2, we deduce that the space L2

(α,H)(R
d) is invariant under

the Weinstein transform. Thus

FW (F )(y) = g(‖y‖)H(y), y ∈ Rd,

with g in L2
(n,α)([0, +∞[).

ii) Moreover, if f belongs to L1
(n,α)([0, +∞[), then we have

∫ +∞

0
|f(r)|rn+2α+ddr =

∫ 1

0
(|f(r)|rn)r2α+ddr+

∫ +∞

1
|f(r)|rn+2α+ddr.

By applying the Schwartz inequality to the first integral and by re-
placing rn by r2n in the second integral, we obtain

∫ +∞

0
|f(r)|rn+2α+ddr ≤

(∫ 1

0
|f(r)rn|2r2α+ddr

)1/2(∫ 1

0
r2α+ddr

)1/2

+
∫ +∞

1
|f(r)|r2n+2α+ddr ≤ 1

2α + d + 1
‖f‖(n,α),2 + ‖f‖(n,α),1 < +∞.

Thus the function f satisfies the condition (7.1), Theorem 7.1, implies
(7.4). We obtain (7.5) from (7.4) and (7.2).
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8. Application

In this section we use the results of the preceding section to obtain the
Weinstein transform of some homogeneous distributions on Rd.

8.1. The Weinstein transform of distributions

Notations: We denote by
- D′∗(Rd) the space of distributions on Rd which are even with respect

to the last variable. It is the topological dual of D∗(Rd).
- S′∗(Rd) the space of tempered distributions on Rd which are even with

respect to the last variable. It is the topological dual of S∗(Rd).

Definition 8.1. The Weinstein transform of a distribution S in
S′∗(Rd) is defined by

〈FW (S), ϕ〉 = 〈S,FW (ϕ)〉 , ϕ ∈ S∗(Rd). (8.1)

Theorem 8.1. The Weinstein transform is a topological isomorphism
from S′∗(Rd) onto itself. The inverse transform is given by

〈F−1
W (S), ϕ〉 = 〈S,F−1

W (ϕ)〉 , ϕ ∈ S∗(R).

8.2. The Weinstein transform of homogeneous distributions

Let β ∈ R. A function f defined on Rd is homogeneous of degree β, if
for all λ > 0, we have

f(λx) = λβf(x). (8.2)

Let f be a locally integrable function on Rd with respect to the Lebesgue
measure, and homogeneous of degree β. We consider the distribution Tfx2α+1

d

of D′∗(Rd) given by the function fx2α+1
d .

For all ϕ in D∗(Rd) and λ > 0 we have

〈Tfx2α+1
d

, ϕλ〉 = λ−(d+2α+β+1)〈Tfx2α+1
d

, ϕ〉, (8.3)

where ϕλ(x) = ϕ(λx) for all x ∈ Rd. Since

〈Tfx2α+1
d

, ϕλ〉 =
∫

Rd−1×[0,+∞[
f(x)ϕλ(x)dµα(x)

=
∫

Rd−1×[0,+∞[
f(x)ϕ(λx)x2α+1

d dx1...dxd,

then by the substitution u = λx we obtain
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〈Tf2α+1
xd

, ϕλ〉 = λ−(d+2α+β+1)

∫

Rd−1×[0,+∞[
f(u)ϕ(u)u2α+1

d du1...dud

= λ−(d+2α+β+1)〈Tfx2α+1
d ,ϕ〉.

The relation (8.2) implies that in the Weinstein theory’s, we say that a
distribution S in D′∗(Rd) is homogeneous of degree β, if for all ϕ in D∗(Rd)
and λ > 0, we have

〈S, ϕλ〉 = λ−(d+2α+β+1)〈S, ϕ〉. (8.4)

Remark. All homogeneous distributions in D′∗(Rd) belong to S′∗(Rd)
(see [5], p. 154).

Proposition 8.1. Let S be in D′∗(Rd), homogeneous of degree β. Then
its Weinstein transform is homogeneous of degree −(d + 2α + β + 1).

P r o o f. By the substitution t = λx, we obtain, for all y ∈ Rd:

FW (ϕλ)(y) =
∫

Rd−1×[0,+∞[
ϕ(t)e−i〈 t′

λ
,y′〉jα(

tdyd

λ
)λ−d−2α−1t2α+1

d dt

= λ−d−2α−1FW (ϕ)(
y

λ
).

From this relation and (8.4), we obtain

〈FW (S), ϕλ〉 = 〈S,FW (ϕλ)〉 = λ−d−2α−1〈Sy,FW (ϕ)(
y

λ
)〉.

Thus,

〈FW (S), ϕλ〉 = λβ〈S,FW (ϕ)〉.
This completes the proof.

Proposition 8.2. Let H be in Hα
n and s ∈ C. Then the function

Gs(x) =
H(x)
‖x‖s

is homogeneous of degree n− s.

Proposition 8.2. The Weinstein transform of the function GS with
n < Res < n + 2α + d + 1 is given by

FW (Gs)(y) = Mα,n,s
H(y)

‖y‖2n+2α+1+d−s
, y ∈ Rd,

where

Mα,n,s =
cα,n

Γ(s/2)
2n+α+ d

2
−s+ 1

2 Γ(n + α +
d

2
− s +

1
2
), (8.5)

and cα,n is given by (5.2).
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P r o o f. We suppose first that

n + α +
1
2

+
d

2
< Res < n + 2α + 1 + d.

We write Gs in the form

Gs(x) = Gs(x)1B(0,1)(x) + Gs(x)1Bc(0,1)(x),

where B(0, 1) is the closed unit ball of Rd and Bc(0, 1) its complementary
domain, and 1B(0,1),1Bc(0,1) are their characteristic functions.

It is clear that Gs(x)1B(0,1)(x) is in L1
α(Rd−1×[0,+∞[) and Gs(x)1Bc(0,1)

is in L2
α(Rd−1 × [0, +∞[).

By applying to these functions Theorems 7.1 and 7.2, we deduce that

FW (Gs)(y) = FW

(H(x)
‖x‖s

)
(y) = g(‖y‖)H(y), y ∈ Rd, (8.6)

with a function g defined (a.e) on [0, +∞[. As from Propositions 8.1, 8.2,
the function FW (Gs) is homogeneous of degree −d − 2α − n + s − 1, then
the function g is homogeneous of degree −d − 2α − 1 − 2n + s. Thus it is
necessarily of the form

g(‖y‖) =
Mn,α,s

‖y‖2n+2α+d+1−s
, (8.7)

where Mn,α,s is a constant. On the other hand, from (8.6), (8.7), for all ϕ
in S∗(Rd) we have

〈GS ,FW (ϕ)〉 = 〈FW (Gs), ϕ〉
=

∫

Rd−1×[0,+∞[

H(x)
‖x‖s

FW (ϕ)(x)dµα(x)

=
∫

Rd−1×[0,+∞[

Mn,α,s

‖x‖2n+2α+d−s
H(x)ϕ(x)dµα(x).

(8.8)

To obtain the value of Mn,α,s we consider the function ϕ(x) = e−
‖x‖2

2 H(x).
Then from (5.1) the relation (8.8) takes the form

cα,n

∫

Rd−1×[0,+∞[

H(x)
‖x‖s

e−
‖x‖2

2 H(x)dµα(x)

= Mn,α,s

∫

Rd−1×[0,+∞[

H2(x)e−
‖x‖2

2

‖x‖2n+2α+d+1−s
dµα(x).

By using spherical coordinates and Fubini’s theorem, we deduce that

cα,n

∫ +∞

0
e−

r2

2 r2n+2α+d−sdr = Mn,α,s

∫ +∞

0
e−

r2

2 rs−1dr.

The definition of the function gamma implies the relation (8.5).
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We have proved the relation (8.8) in the case n + α + 1
2 + d

2 < Res <
n + 2α + 1 + d. But the two members of this relation are analytic functions
of the complex variable s in the strip n < Res < n + 2α + 1 + d.

The identity (8.8) is then true in this strip.
This completes the proof of the theorem.

We consider now the function

G(x) =
H(x)

‖x‖n+2α+1+d
, (8.9)

where H is in Hα
n , with n ≥ 1.

Lemma 8.1. We denote also by G, the distribution defined by the rela-
tion

〈G,ϕ〉 = vp

∫

Rd

G(x)ϕ(x)dµα(x)

= limε→0

∫

‖x‖≥ε>0
G(x)ϕ(x)dµα(x), ϕ ∈ S∗(Rd).

(8.10)

Then this distribution belongs to S′∗(Rd).

P r o o f. We have
∫

Rd

G(x)ϕ(x)dµα(x) =
∫

B(0,1)
G(x)ϕ(x)dµα(x) +

∫

Bc(0,1)
G(x)ϕ(x)dµα(x),

(8.11)
where B(0, 1) is the unit closed ball of Rd and Bc(0, 1) its complementary
domain. As the function G(x)1Bc(0,1)(x) with 1Bc(0,1) the characteristic
function of Bc(0, 1), belongs to L2

α(Rd−1 × [0, +∞[), then we deduce that
there exist ` ∈ N\{0} and a positive constant c1 such that∣∣∣∣∣

∫

Bc(0,1)
G(x)ϕ(x)dµα(x)

∣∣∣∣∣ ≤ c1P`,0(ϕ). (8.12)

On the other hand, as the degree of H is greater than one, then by using
spherical coordinates and Fubini’s theorem and the orthogonality of the
polynomials H, we obtain

∫

ε≤‖x‖≤1
G(x)dµα(x) =

∫ 1

ε

1
r

(∫

Sd−1
+

H(u)dσd(u)

)
dr = 0.

Thus
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∫

ε≤‖x‖≤1
G(x)ϕ(x)dµα(x) =

∫

ε≤‖x‖≤1
G(x)[ϕ(x)− ϕ(0)]dµα(x).

From Taylor’s formula we deduce that

|ϕ(x)− ϕ(0)| ≤ ‖x‖ sup
x∈Rd

| ∂

∂x1
ϕ(x) + ... +

∂

∂xd
ϕ(x)|. (8.13)

As the function ‖x‖G(x)1B(0,1)(x) belongs to L1
α(Rd−1 × [0, +∞[), then

∫

ε≤‖x‖≤1
|G(x)||ϕ(x)− ϕ(0)|dµα(x) ≤ c2 sup

x∈Rd

| ∂

∂x1
ϕ(x) + ... +

∂

∂xd
ϕ(x)|,

with

c2 =
∫

B(0,1)
‖x‖G(x)dµα(x).

Using (8.10), (8.11), (8.12), (8.13), we deduce that there exists a positive
constant C such that

|〈G,ϕ〉| ≤ CP`,1(ϕ).

Thus the distribution G belongs to S′∗(Rd).

Theorem 8.3. The Weinstein transform of the distribution G given by
(8.10) is the distribution TF in S′∗(Rd) given by the function F , with

F (y) = M0
n,α

H(y)
‖y‖n

, y ∈ Rd, (8.14)

where

M0
n,α = Cα2−α− 1

2
− d

2
Γ(n

2 )

Γ(n+2α+1+d
2 )

, (8.15)

where Cα is the constant given by (2.12).

P r o o f. We shall see that to obtain (8.14) it suffices to take s =
n + 2α + 1 + d in Theorem 8.2.

In the proof of Theorem 8.2 we have shown that for n < Res < n+2α+
1 + d, we have

∀ ϕ ∈ S(Rd) , Mn,α,s

∫

Rd

H(y)ϕ(y)
‖y‖2n+2α+1+d−s

dµα(y)=
∫

Rd

H(y)
‖y‖s

FW (ϕ)(y)dµα(y).

(8.16)
It is clear that in the left handside, when s tends to n+2α+1+d, we obtain

M0
n,α

∫

Rd

H(y)
‖y‖n

dµα(y) with M0
n,α given by (8.15). On the other hand, by
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using the fact that
∫

Sd−1
+

H(u)dσd(u) = 0, and by considering the function

ψ = FW (ϕ) in the right handside of (8.16), we obtain

lim
s→n+2α+1+α

∫

Rd

H(y)
‖y‖s

FW (ϕ)(y)dµα(y)

= lim
s→n+2α+1+d

[ ∫

B(0,1)

H(y)
‖y‖s

[ψ(y)−ψ(0)]dµα(y)+
∫

Bc
(0,1)

H(y)
‖y‖ ψ(y)dµα(u)

]

=
∫

B(0,1)
G(y)[ψ(y)− ψ(0)]dµα(y) +

∫

Bc(0,1)
G(y)ψ(y)dµα(y)

= vp

∫

Rd

G(y)ψ(y)dµα(y) = 〈G,ψ〉.

Thus we obtain (8.14).
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