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Abstract

In this paper we prove Bochner-Hecke theorems for the Weinstein trans-
form and we give an application to homogeneous distributions.
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1. Introduction

We consider the \Zfeinstein operator Ay, defined on R4~ x]0, +oo[ by
9> 2a+1 0 1
Ad,a—iZIaT:? 2y B2’ a €R, a>—z.
Then
Aga=Ag—1+ L,
where A4_; is the Laplacian operator in R4 and ¢, the Bessel operator
with respect to the variable x4 defined by

d? L 2ot d .
=—+— —, a>-——.
d."L‘?l xrq dxg 2
The Weinstein operator Ay, has several applications in Pure and Ap-
plied Mathematics, especially in Fluid Mechanics, [3].

la
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In this paper we consider the spherical harmonics associated with the
Weinstein operator, and the Weinstein transform studied in [1], [2], [8], [9],
[10].

The principles of constructing of multidimensional Fourier transforms
associated with integral transforms, of the type considered in the paper are
also well discussed in [4].

With the help of the Weinstein transform, the mean value property of
the W-harmonic functions and the translation operator associated with the
Weinstein operator, we prove a Hecke formula, a Funk-Hecke formula and
Bochner-Hecke theorems for the Weinstein transform.

The analogues of these formulas and theorems have been proved in [6],
[7], [12] for the classical Fourier transform on R? and the Dunkl transform
on R%.

As application of the Bochner-Heck theorems for the Weinstein trans-
form, we determine the Weinstein transform of some homogeneous distri-
butions on R?. An analogous application has been studied in the cases of
the classical Fourier transform on R? and the Dunkl transform on R? (see
6], [10], [12]).

The contents of the paper is as follows:

- In Section 2 we give the main results concerning the Weinstein trans-
form. - In Section 3 we study the translation operator associated with the
Weinstein operator. - In Section 4 we define the mean value property of
W-harmonic functions. - Section 5 is devoted to the Hecke formula asso-
ciated with the Weinstein operator. - In Section 6 we give a proof of the
Funk-Hecke formula for the Weinstein transform. - In Section 7 we give
the Bochner-Hecke theorems for the Weinstein transform. - As an applica-
tion of the results of the preceding sections, in Section 8 we determine the
Weinstein transform of some homogeneous distributions on R4~1x]0, +oc.

2. The eigenfunction of the operator A,
and the Weinstein transform

2.1. The eigenfunction of the operator A,

For all A = (A1, ..., \y) € C?, the system
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0%u(r)
8$? __>\,L2'LL(.Z‘), 221, 7d_17
lou(z) = —N2u(z)
ou ou
U(O) 78l’d (0) 0’ 61’3 (O) ZA]? ] 9 9 )

has a unique solution on R, denoted by ¥, and given by
Uy (z) = e_i<””/’)‘,>ja(:z:d)\d). (2.1)
Here ' = (z1,...,24-1), N = (A1, ..., \q_1) and j, is the normalized Bessel

function of index « defined by
=y

VzeC, ja(z)=T 1 — 2 2.2
: o Jal?) (o )nzz;) nT'(n+a+1)’ (22)
satisfying the Laplace type integral representation
: la+1) /7r 2080 (i )2
VzeC, Z) = ——— e %(sin 6)°“df . 2.3

REMARK 2.1. From the relation (2.3) we deduce by change of variables
that the function j,(tp) admits for o > —%, the Laplace type integral

representation
_ 20(a+ 1)t

Ja(tu) = Jal(a + %)
V peC,vte|0,+ool
By using [13], p. 165, and the preceding relation, we deduce that the
function j,(tu) possesses for o €] — &, —3[ the following type Laplace rep-

207 2
resentation

t
/ (2 — y?)*~7 cos(uy)dy,
0

joltp) = o DD
“ Val(a+32)

VueC, Vte[0,4+00[. As the kernel of this representation contains the

parameter y, then we cannot built a harmonic analysis associated with the
Bessel operator ¢, for a €] — %, —%[, as for the case o > —%. For this reason,

we suppose in this paper the requirement o > —3 (see [11]).

! atl P = y?)
| i e s costtay,

The function ¥ has a unique extension to C% x C?. It has the following
properties:

i) VA zeCl Wy(z)=U,(N), (2.4)
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i) VA zeCl Wy(—2)=T_,(2), (2.5)

iii) VA2 € R, |Wy(2)] < 1. (2.6)

2.2. The Weinstein transform
NoTATIONS: We denote by

- C,(R?) the space of continuous functions on R?, even with respect to
the last variable, resp. C*,C(Rd) denotes the subspace formed by functions
with compact support.

- D, (R?) the space of C* functions on RY, even with respect to the last
variable and with compact support.

- S4(R?) the space of C™-functions on R?, even with respect to the last
variable, and rapidly decreasing together with their derivatives.

The topology of S,(R?) is defined by the seminorms Py, (¢,m) € N2,
given by

Prn(p) = sup (1 + [[z]*) |D" ()],
[u|<m
z€RY
here D — " )l = g+ +
where = 8.%}1“8.1'5(1’”_ K1y eees Hd)s ] = K1 T e T -

- LH(RI1 x [0, 400[),1 < p < 400, the space of measurable functions
f on R1 x [0, 400 such that

1/p
[ flla,p = (/ If(x)lpdua(iv)> < +4oo ifpe[l,+oo,
Rd—1 %[0, +00]

||f”01700 = €s8 SupmeRd*1X[0,+oo[|f(x)| < o9, if p = +o0,
where pi, is the measure defined by

dpe(x) = :Jcio‘ﬂdx = x?la"'ldxl...dxd.

- £.(R) the space of C*®-functions on R%, even with respect to the last
variable.

DEFINITION 2.1. The Weinstein transform Fyy is defined on L} (R?~1 x
[0, +00[) by
VAR, AN = [ @@ o). (27)

RA=1x[0,+00]
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PROPOSITION 2.2.

i) For all f € L} (R x [0, +00[), the function Fy (f) is continuous on
R¢ and we have

[ Fw (F)llooo < Nl flla1- (2.8)
ii) For all f € Sx(R%) and n € N, we have
VAERY,  Fw(Afa /)N = BN Fw (f)(N). (2.9)
and
VAERY  ALL(Fw()N) =Fw(Paf)N),  (2.10)

where P(\) = (—1)"[[A[2" = (—1)"(A2 + ... + A2)".

THEOREM 2.1. The Weinstein transform is a topological isomorphism
from S, (R?) onto itself. The inverse transform is given by

Vo eRY  F () (@) = CoFw(f) (21, —Ta—1,Tq), (2.11)

where
1

(2m)d=t22(T(a +1))?

C, = (2.12)
THEOREM 2.2.

i) Plancherel formula: For all f € S.(R?%) we have

/ (@) Pdpa(z) = / B ()N Padva(N),
RA=1x[0,+00] R4=1x[0,+00[

(2.13)
where dv,(A) = Codpa(X), with Cy, the constant given by (2.12).

ii) Plancherel theorem: The Weinstein transform Fy extends uniquely
to an isomorphism isometric from L2[R%~1 x [0, +-00]) onto L2 (R4~1 x
[0, +00, dva(A)).

3. The translation operator associated
with the Weinstein operator

DEFINITION 3.2. The translation operator T,z € R%~! x [0, 4o0],
associated with the operator Ay, is defined for a continuous function f on
R¢ which is even with respect to the last variable and for all y = (/,3q) €
R4 x [0, 4-00[ by
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MNa+1) g , , . N2
T, f(y _/ f@' + 4, \/x2 + y2 + 224y, cos 0)(sin 0)**d6.
() Vrl(a+ 1) Jo ( d = od > )( ) 5.1)
3.1

PROPOSITION 3.1. The translation operator Ty, z € R4~! x [0, 4o0],
satisfies the following properties:

i) For all continuous function f on R? which is even with respect to the
last variable and xz,y € R! x [0, +00], we have

Tof(y) =Tyf(x), Tof =f.

ii) For all f in £,(R?%) and y € R*1 x [0, +-o00[, the function x — Ty f(y)
belongs to Ex(RY).

iii) For all x € R4™! x [0, +-00[, we have
Ad@ o Tx :TgC o Ad,w (32)
PROPOSITION 3.2. The space Si(R) is invariant under the operators
T, € RI1 x [0, +oo|.

PROPOSITION 3.3. For all f in £,(R?) and g € S,(R?) we have

/ T, f (1)(y)dtaly) = / F) oo dpaly).  (33)
Rd—1 0,400 Rd—1 %[0, 00

PROPOSITION 3.4. For all f in LB(R*1 x [0,400[),p € [1,+00], and
x € R4L x [0, +oo[ we have

1Tz fllpa < 1 Fllpo - (3.4)

4. Mean value property of the W-harmonic functions

DEFINITION 4.1. Let u be a function of class C? on R4~! x [0, +o0],
even with respect to the last variable. We say that the function u is W-
harmonic, if

Ve R X [0,400], Agau(z)=0.

DEFINITION 4.2. The mean value associated with the Weinstein oper-
ator Ay, of a function u in Cx(RY) is defined by
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1
M (u) = Tou(rw)w?* M dog(w), (4.1)
o Qaa S ‘

where
T T(a+1)
_ 2041 _ T
Qd,a—/sd_1 wy™ " dog(w) = F(d+22a+1)

+
and Sﬁlr_l = {(z1, .y 24_1,7q4) € RY 22 + .. + 22 +23=1, 14> 0} and
dog is the normalized surface measure on Si‘l.
DEFINITION 4.3. Let u be a function in C,(RY). We say that u satisfies

the mean value property associated with the Weinstein operator A, if for
all 7 > 0 and x € R x [0, +0o[. We have

u(w) = M2, (u).
THEOREM 4.1. Let u be a W-harmonic function on R4~! x [0, +o0[.

Then wu satisfies the mean value property associated with the Weinstein
operator Ag ., (see [2], p.40).

5. Hecke formula for the Weinstein transform

NoTATIONS: We denote by
- 73,‘;]’ the space of homogeneous polynomials of degree n.

- HY the space of W-harmonic homogeneous polynomials of degree n.
It is defined by

HS = (kerAgq) NPL

THEOREM 5.1. Let H be in HYf. Then we have the following relation

. 2
/ e H) ()3 dy = cane™ 2 H(z),  (5.1)
R4=1x[0,400]

where ] .
-1 -1
Can =272 1z i"T'(a+1). (5.2)
To prove this theorem we need the following lemma.

LEMMA 5.1. Let H be in H¢

@ and f be a radial function in S,(R?).
Then we have

/ waﬂwﬁwwsz/ F)y2dy. (5.3)
RA=1x[0,+00[ RA=1x[0,+00]
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Proof. Since H is in H}}, then from Theorem 4.1 we have

1
H(z) =M ,.(H) = a; /S d_szH(rw)wflaHdad(w). (5.4)
706 JF

Let F be the function on [0, +-00[ given by f(x) = F(||z||). From the relation
(3.3) and using the spherical coordinates we obtain

/ T, £ (y) H (y)y2+dy
Rd-1 >é£0,+oo[

+
_/ L F(T)TmH(ru)(rud)20‘+1rd_1d7“dad(u).
o Jsi-

Using (5.4) and Fubini’s theorem, we obtain

/ Tof(y)H(y)y, " dy = H() / FW)yg™dy.
Rdflx[O,—i—oo[ Rd*lx[oj_’_oo[

Proof of Theorem 5.1.

d
2|12
We take f(x) = e~ 5" with lz||? = fo From relation (5.3) and the

i=1
fact that
llw )12 -
e 2 y2Hdy = 2°(2m) 7 T(a + 1),
RA—1x[0,+00]
we obtain
—M 2a+1 a—1 o
To(e” 2 )(y)H(y)y," " dy = H(x)(2m) 2 2°T(a +1).
RA—1x[0,+00|

The relations (2.3), (3.1) give
(_w _ el ®+llwl?
Ty(e 2 )(y)=e 2 Yiy(),
and then
_ lel®+lyli? 2a+1 =1, d-1
e P H(y) iy () yy® dy =22 "n 2 T'(a+ 1)H(x).
R4=1x[0,+00[

By changing in this relation x by iz, and using the fact that
Vo, y € RY, by, (iz) = by (2),

we obtain

N

llw)1? ll]l

/ efTH(y)lby(x)ygo‘de =cane 2 H(x) (5.5)
RA=1x[0,400]

with ¢, given by (5.2). ]
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REMARK. By a change of variables in (5.5), we obtain

i ) o
/ e A2 H(y)jo(waya)e ™ @V y2et Ly
RA—1x[0,+00]
= oA D ). (56)

6. Funk-Hecke formula for the Weinstein transform
In this subsection we give a proof of a Funk-Hecke formula for the We-
instein transform.

THEOREM 6.1. Let H be in HY. Then for all y € R™! x [0, +-00], we
have

[ O () o) = 0 g (WDHG).  (6)
+
where Y
2*”*a*§+§
Qon = Coun s (62)
F(n +a+ § + 5)
and j, .. a_1 is the normalized Bessel function of first kind and order
2 2
n+o+g-1.

P roof. Using the relation (5.6) and spherical coordinates y = ru with
r €]0, +oo and u € Si_l, and by making the change of variables r = /2s,
we obtain

1:/ e 3 WP F (y)e=ite' ) ja(zaya)y2edy
RA=1x[0,+00]

+oo B
:/ /Sd 167)\5(28)7#2@;,1 IH( Je —i(v/2s2’ ') (\/>$dud) a+1d0d(u)ds.

0 _
(6.3)

From Fubini’s Theorem,
I=c, n)\—(n+a+ﬂ) *”xHQ/Q)‘H(x).
But from formula of [13], p. 394, we have

HwH

N~ (ot ) — 155

1 /+°° Xs V25 +at il
= e d— 1( |2]])s" T2 “ds.
F(TL +oa+ d;l) 0 n+a+

By using this relation in (6.3), we obtain
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+OO—)\8 -z i{V2sz’ W/ 20+ notEL
e s 2] L 1H(u)e ja(\/ sxquq)uy” dog(u)]s 2 ds
0 S

n+2a+d—1

_ Can? H(z)
F'n+a+ %

+oo
/ e Inardzt L (V2s||z||)sm Tt T ds.
0

The injectivity of the Laplace transform implies

Vs>0, SdilH(u) W22 (V282 qua)u T do g (u)
+

§59-5—a—43t
P(n+a+ dgl)

Intar izt (V2s]|z]) H (z).

= Ca,n

For s = % we obtain

i H(u)e ) jo (wqua)ui™ ™ dog(u) = anH ()7, o ar ([|2]]),
+

where
9—n—a-— %Jr
d

Con-
L(n+a+ % o

+ =

aOé,’n =

Y)

7. Bochner-Hecke theorems for the Weinstein transform
In this section we give for the Weinstein transform the analogue of the
classical Bochner-Hecke theorem, studied in [6], p. 66-70 and [7], p. 30-31.

THEOREM 7.1. Let H bein HY and f a measurable function on [0, +o00[
such that

/ ” |f ()P 2ot < oo (7.1)
0

Then the function F(z) = f(||z||)H (x) belongs to LL (R x [0, +00[) and
its Weinstein transform is given by

Yy eR:  Fuw(F)N) = canHNFR 0D, (72)

where .7-'% is the Fourier-Bessel transform of order v,y > —%, given by

Frh)(A) = ! ), Oy
B(h)( )_W/o (r)jy(Ar)r T.
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P roof. Thespherical coordinates and Fubini-Tonelli’s Theorem imply
that the function F' belongs to L} (R™! x [0, +-o0]),

VAR Fr(P() = [ F(lal) H (@)e™ o ()3
R4=1x[0,+00]

By using spherical coordinates, Fubini’s Theorem and Theorem 6.1, we
obtain

+00
VAERL FFIN) = aonHO) [ durasg-y(ADIO)

ntat+d—1
= CcanHNFp 2 2 (A,
where cq 5, and aq, are the constants given by (5.2) and (6.2). (]

To state and prove the second generalized Bochner-Hecke theorem, we
need the following notations and lemmas.

NoTATIONS: Let for n € N and H € H) we denote by

-IP
(n,a)

such that

([0, 4+o0]),p = 1,2, the space of measurable function f on [0, 4o00|

“+oo ; 1/p
s = ([ 17O ) < o

- L%Q’H)(Rd) = {f(|z])H (z) € L2(R¥! x [0, +oc[) with f defined a.e.
in [0, +o0[}.
LEMMA 7.1. The operator Tg from L%n Ol)([(), +oo[) into L%a H)(Rd)
defined by
T (f)(x) = f(ll=]))H (2),

satisfies

I7e (F)lla,2 = Kl fll (n,a),25

1/2
= u 2 gqlu .
k—[/gder( R >]

+

with

P r o o f. Using the spherical coordinates and Fubini’s theorem, we
obtain

I ()2, = / 722 (@) )

RA=1x[0,+00]
2y 2ot o 2n+2a+d 2| 712
= (/si—l | H (u)]“uy dad(u)) (/0 f(r)r dr) =k Hf”(n,a),Q'
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[V

LEMMA 7.2. The set of linear combination of the functions r — e 7,

A > 0, is dense in L%n a)([O, +00[).
P r oo f. We have to prove that each function ¢ in L%n o) ([0, +00) that
satisfies
+o0 5
/ @(rye Hrop2nt2oatdg. — o for all u > 0, (7.3)
0

is the function equal to zero.
We consider the function

0, ifz<0
b(w) = { n+a+%_%e_%, ifz>0

By using the substitution # = 2 and the Schwartz inequality, we obtain

+o0o +o0
/ W(@)de = / p(Va)amreri—te S da
0 0

+oo -2
= 2/ |g0(r)|r2"+2a+d_le_7rdr
0

“+o00 “+00 9
< 2(/ ‘¢(T)|2T2n+2a+dd7“> (/ e r2n+2a+ddr> < +00.
0 0

As supp v is contained in [0, +oo[, then the function % is integrable on R
with respect to the Lebesgue measure.
On the other hand, for all s > 0, the substitution 2 = 72 implies

+oo Loo »
(a:)efsxdx = 2/ S0(7,)7.27“L+2a+d€77« (§+S)d7“.
0 0
From this relation and (7.1) we deduce that

+o0
(x)e **dx = 0.

The injectivity of the Laplace transform implies that ¢ = 0 and then ¢ = 0.
[

THEOREM 7.2. Let f be in L? ([0, +ool). Then:

(n,cx)

i) The function F(x) = f(||z||)H (x) belongs to L%O[’H) (R9), and its We-
instein transform is of the form

Fw(F)(y) = g(lylDH(y), yeR?, (7.4)
with g in L? ([0, +00]).

(n,c)
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ii) If moreover, f belongs to L} ([0, +0c[), then we have

(n,a)
o e
Vr>0, g(r)= Ca,n}—B (f)(r), (7.5)

with ¢, the constant given in (5.2).

Proof.

i)

ii)

From Lemma 7.1 it is clear that the function F(x) = f(||z|)H (x)
belongs to L%Q’H)([O, +00[).
Also from this lemma, up to a constant of normalization, the appli-

cation Fy o Ty is an isometry from L%n a)([O, +00[) into L2 (R4~1 x

[0, +00[). From relation (5.1) this isometry applies to all functions
z 2
of the type e~ %,)\ > 0, in the space L(2a7H) (RY). Then by using

Lemma 7.2, we deduce that the space L%a H) (R9) is invariant under
the Weinstein transform. Thus

Fw(F)(y) = g(llyNH(y), yeR?,
with g in L? ([0, 4+o0]).

(n,c)

Moreover, if f belongs to Lt ([0, +oc[), then we have

(n,a)
+o0o
J

By applying the Schwartz inequality to the first integral and by re-
placing ™ by 72" in the second integral, we obtain

too 1 1/2 1 1/2
/ ’f(?“) ’rn+2a+ddr < (/ ’f(T)Tn’2T2a+dd’r’> </ T2a+dd7‘)
0 0 0

o0 1
2n+2a+d
[ I < e s + [ < o

1 +o0
FO = = [l [ 5 ar
0 1

Thus the function f satisfies the condition (7.1), Theorem 7.1, implies
(7.4). We obtain (7.5) from (7.4) and (7.2).
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8. Application

In this section we use the results of the preceding section to obtain the
Weinstein transform of some homogeneous distributions on R<.

8.1. The Weinstein transform of distributions

NotATIONS: We denote by

- D’.(RY) the space of distributions on R? which are even with respect
to the last variable. It is the topological dual of D, (R?).

- 8! (R?) the space of tempered distributions on R? which are even with
respect to the last variable. It is the topological dual of S, (R?).

DEFINITION 8.1. The Weinstein transform of a distribution S in
S’ (R%) is defined by

(Fw(S),9) = (S, Fw(p)), ¢ € Su(RY). (8.1)

THEOREM 8.1. The Weinstein transform is a topological isomorphism
from S’(R?) onto itself. The inverse transform is given by

(Fa' (9),0) = (S, Fy' (9)) . @ € Su(R).

8.2. The Weinstein transform of homogeneous distributions

Let 8 € R. A function f defined on R? is homogeneous of degree (3, if
for all A > 0, we have

fOa) =N f(). (8.2)

Let f be a locally integrable function on R? with respect to the Lebesgue
measure, and homogeneous of degree 5. We consider the distribution foia-o—l

of D'.(R?) given by the function f:z:?f‘“.
For all ¢ in D*(Rd) and A > 0 we have

<Tf1'3a+1 R (’0)\> g Af(d+2a+ﬁ+1) <fo3a+1 B (,0>, (83)

where @y (z) = p(Azx) for all z € R?. Since
R | F(@)pr () dpalz)
Rd—1 %[0, 40|
= / f(@)p(Ar)22 T day...dzg,
Rd—1 %[0, 40|

then by the substitution © = Ax we obtain
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(Ti2a+1,02) = A~ (20454 / fu)p(u) 2t duy...dug
“d RA=1x[0,+00[
— )\ —(d+20+p+1) <sz?la+1 ©)-

The relation (8.2) implies that in the Weinstein theory’s, we say that a
distribution S in D’ (R%) is homogeneous of degree 3, if for all o in D, (R?)
and A > 0, we have

<57 90)\> _ )\—(d+2a+ﬁ+1) <57 90>- (8.4)

REMARK. All homogeneous distributions in D’ (R?) belong to S’ (R%)
(see [5], p. 154).

PROPOSITION 8.1. Let S be in D’.(R%), homogeneous of degree 3. Then
its Weinstein transform is homogeneous of degree —(d 4+ 2a + (3 + 1).

P r o o f. By the substitution t = Az, we obtain, for all y € R%:

—3 ﬁ /. t Y —d—2a— «Q
Ao = [ plt)e 5 (1) 2 2 gy
RA—1x[0,+00]

Cd—2a— ]
= AETE )

From this relation and (8.4), we obtain

(Fw(S),02) = (S, Fw (p2)) = A4S, Fur () (3)).
Thus,
(Fw (), x) = NS, Fw ().
This completes the proof. [
PROPOSITION 8.2. Let H be in HY and s € C. Then the function

Gy() = ﬁ(ﬁ’)

is homogeneous of degree n — s.

PROPOSITION 8.2. The Weinstein transform of the function Gg with
n < Res <n+2a+d+1 is given by

H{(y) d
Fw (Gs)(y) = Man,s Hy||2n+2a+1+dfs , yeRY
where
C d_g 1 d 1
Ma,n,s:ﬁQnJ’_o‘—"_? S+2I‘(n—|—a—|—§—s—|—§), (8,5)

and cqy, is given by (5.2).
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P r oo f. We suppose first that

1 d
n+a+§+§<Res<n+20¢+1+d.

We write G4 in the form

Gs(7) = Gs()1p(0,1) () + Gs(2)1ge(o,1) (),
where B(0,1) is the closed unit ball of R? and B¢(0, 1) its complementary
domain, and 1pg 1), 1 ge(o,1) are their characteristic functions.
It is clear that G4 ()1 1)(x) is in L} (R x[0, +00[) and G4 ()1 pe(g 1)
is in L2 (R4 x [0, 4-00]).
By applying to these functions Theorems 7.1 and 7.2, we deduce that

F G0 = Fr (L) ) = gy H@w). veRL (56

[ ]|*
with a function ¢g defined (a.e) on [0,+00[. As from Propositions 8.1, 8.2,
the function Fy(Gs) is homogeneous of degree —d — 2ac — n + s — 1, then
the function g is homogeneous of degree —d — 2ac — 1 — 2n + s. Thus it is
necessarily of the form

My s
g(HyH) = Hy”2n+2a+d+1_8, (8'7)

where M, o s is a constant. On the other hand, from (8.6), (8.7), for all ¢
in S, (R?%) we have

(Gs, Fw(p)) = (Fw(Gs),») b
-/ ) oy () (@)dpa(2)

d=1x[0,4-00[ || (8.8)
_ Ve g d _
0 oo o Prr2ois 1 (PP (2)
z 2
To obtain the value of M, , s we consider the function ¢(z) = e~ ! 2“ H(z)

Then from (5.1) the relation (8.8) takes the form

H(x) _l=1?
can [ @) o B @)dya(@)
Ri—1x[0, 400 [|Z]]
ll[12
H?(z)e™ 2
= Mn,a754dlx[0 +Oo[ Hx“2n+2a+d+1—8dua($)'

By using spherical coordinates and Fubini’s theorem, we deduce that
+00 2 d +oo -2
Ca,n/ e~z pPntlatd=s g, — Mn,a,s/ ez N r.
0 0

The definition of the function gamma implies the relation (8.5).
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We have proved the relation (8.8) in the case n + o + % + % < Res <
n+2a+ 1+ d. But the two members of this relation are analytic functions
of the complex variable s in the strip n < Res <n +2a+1+d.

The identity (8.8) is then true in this strip.

This completes the proof of the theorem. ]
We consider now the function
H(z)
Glo) = e (8.9)

where H is in HY, with n > 1.

LEMMA 8.1. We denote also by GG, the distribution defined by the rela-
tion

(Gop) = on [ Glaola)dua(a)

= lim._,o G(x)p(z)dua(z), @ € S.(RY).
[zl >e>0

(8.10)

Then this distribution belongs to S.(R%).
P roof We have

G (@) dpio(x) = /B o CE@e@dal) + / G(2)p(@)dta(2),

Be(0,1)

(8.11)
where B(0,1) is the unit closed ball of R? and B¢(0, 1) its complementary
domain. As the function G(7)1pec(o1)(z) with 1pge ) the characteristic
function of B¢(0,1), belongs to L2(R?! x [0, 40c[), then we deduce that
there exist £ € N\{0} and a positive constant ¢; such that

/ G(2)p (@) dpia(x)
B<(0,1)

Rd

S 61Pg70(g0). (8.12)

On the other hand, as the degree of H is greater than one, then by using
spherical coordinates and Fubini’s theorem and the orthogonality of the
polynomials H, we obtain

1
/ G2)dpr () = / 1( d_lH(u)dad(u)> dr = 0.
c<llel<1 e \Jse

Thus



278 Ch. Chettaoui, Kh. Trimeche

/ G(@) () dpia(x) = / (@) () — 9(0)]djia(x).
e<|lz]|<1 e<|lz||<1
From Taylor’s formula we deduce that

0 0
— < — e+ =— . .
p(2) = @(0)] < ||| sup g2, $1) + ot 5 #(2)] (8.13)

As the function [|z[|G(x)1p(1)(z) belongs to LL (R x [0, +00[), then

B d
/ |G(@)]|p(x) — p(0)|dpa(z) < c2 sup [—p(z) + ... + 5 —p(2)],
e<|lz]I<1 cerd 021 dr4

with

& = /B o G @)

)

Using (8.10), (8.11), (8.12), (8.13), we deduce that there exists a positive
constant C' such that

(G, @) < CPa(p).
Thus the distribution G belongs to S.(R%). L]

THEOREM 8.3. The Weinstein transform of the distribution G given by
(8.10) is the distribution Tr in S.(R?) given by the function F, with

Fl) =m0, HW g (8.14)

 lyl

where
0 _ ogatoe  T(F)
Mn,a = Ca2 a—5—5 F(n+2a2+1+d)’

(8.15)

where C, is the constant given by (2.12).

P r o o f. We shall see that to obtain (8.14) it suffices to take s =
n+2a+ 14 d in Theorem 8.2.

In the proof of Theorem 8.2 we have shown that for n < Res < n+2a -+
1+ d, we have

Vo SEY Moo [ dna)= [ T A ()0

a [lyll®
(8.16)
It is clear that in the left handside, when s tends to n+2a+1+d, we obtain

H
M? a/ l (ﬁ})dua(y) with M? , given by (8.15). On the other hand, by
’ Rd y n ’
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using the fact that ) 1H (u)dog(u) = 0, and by considering the function
s

1 = Fw(¢) in the right handside of (8.16), we obtain

: H(y)
1 dpia
om0 ()

_ m H(y) B H(y) .
= sl T O [ 0

= [ @) - 0w + [ G
B(0,1) Be(

0,1)
= op [ Gy)Y(y)dua(y) = (G, ).

R4

Thus we obtain (8.14). [
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