

SOME NOTES ABOUT A CLASS OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

Donka Pashkouleva
This paper is dedicated to the 70th anniversary of Professor Srivastava

Abstract

The object of this paper is to obtain sharp results involving coefficient bounds, growth and distortion properties for some classes of analytic and univalent functions with negative coefficients.

MSC 2010: 30C45, 30C50 Key Words and Phrases: univalent functions with negative coefficients, radius of convexity

1. Introduction and definitions

Let S denote the class of functions of the form:

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

that are analytic and univalent in the unit disk E. We denote by C and S^{*} the classes of convex and starlike functions, respectively.

A function $f(z)$ analytic in E, is said to be starlike of order $\beta(0 \leq \beta<1)$ in E if $f(0)=f^{\prime}(0)-1=0$ and for $z \in E$

$$
\Re \frac{z f^{\prime}(z)}{f(z)}>\beta
$$

The class of such functions will be denoted by S_{β}^{*}. Clearly, $S_{0}^{*}=S^{*}$.

[^0]A function $f(z)$ analytic in E is said to be close-to-convex of order β $(0 \leq \beta<1)$ in E if there exists a function $g(z) \in S^{*}$ and a real number γ such that, for $z \in E$ and $\gamma \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\Re e^{i \gamma} \frac{z f^{\prime}(z)}{g(z)}>\beta
$$

The class of such functions is denoted by K_{β}.
A function $f(z)$ is said to be close-to-star of order $\beta(0 \leq \beta<1)$ if there exists a function $g(z) \in S^{*}$ such that, for $z \in E$

$$
\Re \frac{f(z)}{g(z)}>\beta
$$

The class of such functions will be denoted by R_{β}.
A function $f(z)$, analytic in E with $f(0)=f^{\prime}(0)-1=0$ is said to be quasi-convex if and only if there exists a function $g(z) \in C$ such that for $z \in E$

$$
\Re \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}>\beta
$$

The class of such functions will be denoted by C_{β}^{*}.
Let T denotes the subclass of S, consisting of functions $f(z)$ of the form

$$
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}
$$

We denote $T_{\beta}^{*}=S_{\beta}^{*} \cap T ; K_{\beta}^{*}=K_{\beta} \cap T ; R_{\beta}^{*}=R_{\beta} \cap T ; L_{\beta}^{*}=C_{\beta}^{*} \cap T$.
It is known that $T=T_{0}^{*}=T^{*}$ and $f \in T_{\beta}^{*}$ if, and only if, for $0 \leq \beta<1$

$$
\sum_{n=2}^{\infty} \frac{n-\beta}{1-\beta}\left|a_{n}\right| \leq 1
$$

In [2] Schild considered a subclass of T consisting of polynomials having $|z|=1$ as a radius of univalence. Schild showed ([2]) that a necessary and sufficient condition for $f \in T$ is

$$
1-\sum_{n=2}^{\infty} n\left|a_{n}\right|=0
$$

With the aid of this result he derived better results for certain quantities connected with conformal mapping of univalent functions. Other subclasses of T have been studied by Gupta and Jain [1], [2] and Silverman [5], [6].

In this paper we consider the following subclass $H_{t, \alpha}(\beta)$ of T :

Definition. A function $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ is said to be in $H_{t, \alpha}(\beta)$ $(0 \leq \alpha<1,0 \leq \beta<1,0<t \leq 1)$, if there exists a function $g \in T^{*}$, with

$$
g(z)=z-\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n}
$$

such that for $z \in E$

$$
\begin{equation*}
\Re\left\{\frac{t z f^{\prime}(z)+(1-t) z\left(z f^{\prime}(z)\right)^{\prime}}{\alpha g(z)+(1-\alpha) z g^{\prime}(z)}\right\}>\beta \tag{1}
\end{equation*}
$$

Evidently, $H_{1,1}(\beta)=K_{\beta}^{*}$, the class of close-to-convex functions of order β introduced by [7]. Note also that $H_{1,0}(\beta)=R_{\beta}^{*}$ and $H_{0,1}(\beta)=L_{\beta}^{*}$.

In the sequel we write

$$
\begin{equation*}
J_{t, \alpha}\left(f, g, z_{0}\right)=\frac{1}{1-\beta}\left\{\frac{t z_{0} f^{\prime}\left(z_{0}\right)+(1-t) z_{o}\left(z_{o} f^{\prime}\left(z_{0}\right)\right)^{\prime}}{\alpha g\left(z_{0}\right)+(1-\alpha) z_{0} g^{\prime}\left(z_{0}\right)}-\beta\right\} . \tag{2}
\end{equation*}
$$

2. Some results about the class $H_{t, \alpha}(\beta)$

Lemma. Let $f \in H_{t, \alpha}(\beta)$ be given by (1.1). Then

$$
\min _{|z| \leq r<1} \Re J_{t, \alpha}(f, g, z)=J_{t, \alpha}(f, g, r) .
$$

The proof of this lemma is standard.
Theorem 1. Let $f(z) \in H_{t, \alpha}(\beta)$ be given by (1.1). Then, for $0<r<1$,

$$
\begin{align*}
& t \sum_{n=2}^{\infty} \frac{\left[n\left|a_{n}\right|-(\alpha+n(1-\alpha))\left|b_{n}\right|\right] r^{n-1}}{1-\sum_{n=2}^{\infty}(\alpha+n(1-\alpha))\left|b_{n}\right| r^{n-1}}+ \\
& +(1-t) \frac{\sum_{n=2}^{\infty}\left[n^{2}\left|a_{n}\right|-(\alpha+n(1-\alpha))\left|b_{n}\right|\right] r^{n-1}}{1-\sum_{n=2}^{\infty}(\alpha+n(1-\alpha))\left|b_{n}\right| r^{n-1}}<1-\beta \tag{3}
\end{align*}
$$

when $0 \leq \alpha \leq 1,0 \leq t \leq 1$. The estimate (3) is also sufficient for f to be in $H_{t, \alpha}(\beta)$.

Remark A. If $\sum_{n=2}^{\infty} n\left|a_{n}\right|<1, \sum_{n=2}^{\infty} n\left|b_{n}\right|<1$ and $\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right|<\infty$, then $J_{t, \alpha}(f, g, r)$ is continuous at $r=1$ and (2.1) may be replaced by

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(t n+(1-t) n^{2}\right)\left|a_{n}\right|-\beta \sum_{n=2}^{\infty}(\alpha+(1-\alpha) n)\left|b_{n}\right| \leq 1-\beta . \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(t n+(1-t) n^{2}\right)\left|a_{n}\right| \leq 1-\beta+\frac{{ }^{n=2} 2(2-\alpha)}{2}=1-\frac{\alpha \beta}{2} \tag{5}
\end{equation*}
$$

In fact, (5) is a necessary condition for f to be in $H_{t, \alpha}(\beta)$ and we could always take $g(z)=z-\frac{1}{2} z^{2}$ and (5) would also be sufficient.

Theorem 2. Let $f \in H_{t, \alpha}(\beta)$ be given by (1.1). Then

$$
a_{n} \leq A_{n}=\frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} .
$$

The result is sharp for every n, with equality for

$$
f(z)=z-A_{n} z^{n}
$$

and $g \in T$, with $g(z)=z-\frac{1}{n} z^{n}$.
Theorem 3. If $f \in H_{t, \alpha}(\beta)$

$$
\begin{array}{cl}
r-\frac{(2-\alpha \beta)}{4(2-t)} r^{2} \leq|f(z)| \leq r+\frac{(2-\alpha \beta)}{4(2-t)} r^{2}, & |z| \leq r \\
1-\frac{(2-\alpha \beta)}{2(2-t)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{(2-\alpha \beta)}{2(2-t)} r, & |z| \leq r .
\end{array}
$$

Equality holds in all cases for

$$
f(z)=z-\frac{2-\alpha \beta}{4(2-t)} z^{2} .
$$

3. Additional results for the class $H_{t, \alpha}(\beta)$

Theorem 4. The family $H_{t, \alpha}(\beta)$ is convex.

Proof. We modify the method of Silvia and Silverman [7].
Suppose that f_{1} and $f_{2} \in H_{t, \alpha}(\beta)$, with $f_{1}(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ and $f_{2}(z)=z-\sum_{n=2}^{\infty}\left|c_{n}\right| z^{n}$ with respect to g_{1} and $g_{2} \in T$, with $g_{1}=z-\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n}$ and $g_{2}=z-\sum_{n=2}^{\infty}\left|d_{n}\right| z^{n}$.

We will show, for $0 \leq \lambda \leq 1$, that

$$
\lambda f_{1}(z)+(1-\lambda) f_{2}(z)=z-\sum_{n=2}^{\infty} \gamma_{n}(\lambda) z^{n} \in H_{t, \alpha}(\beta)
$$

with respect to

$$
\lambda g_{1}(z)+(1-\lambda) g_{2}(z)=z-\sum_{n=2}^{\infty} \delta_{n}(\lambda) z^{n} \in T
$$

where $\gamma_{n}(\lambda)=\lambda\left|a_{n}\right|+(1-\lambda)\left|c_{n}\right|$ and $\delta_{n}(\lambda)=\lambda\left|b_{n}\right|+(1-\lambda)\left|d_{n}\right|$.
Since

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{\left[t n+(1-t) n^{2}\right] \gamma_{n}(\lambda)-\beta[(1-\alpha) n+\alpha] \delta_{n}(\lambda)\right\} \\
= & \sum_{n=2}^{\infty}\left\{\left[t n+(1-t) n^{2}\right]\left[\lambda\left|a_{n}\right|+(1-\lambda)\left|c_{n}\right|\right]\right. \\
& \left.\beta[(1-\alpha) n+\alpha]\left[\lambda\left|b_{n}\right|+(1-\lambda)\left|c_{n}\right|\right]\right\} \\
= & \lambda \sum_{n=2}^{\infty}\left\{\left[t n+(1-t) n^{2}\right]\left|a_{n}\right|-\beta[(1-\alpha) n+\alpha]\left|b_{n}\right|\right\} \\
& (1-\lambda) \sum_{n=2}^{\infty}\left\{\left[t n(1-t) n^{2}\right]\left|c_{n}\right|-\beta[(1-\alpha) n+\alpha]\left|d_{n}\right|\right\} \\
\leq & 1-\beta,
\end{aligned}
$$

then the result follows.
Theorem 5. If $f(z) \in H_{t, \alpha}(\beta)$, then $f(z)$ is convex in the disc $|z|<$ $r=r(t, \alpha, \beta)$ where

$$
r(t, \alpha, \beta)=\inf _{n}\left\{\frac{t+(1-t) n}{\alpha \beta+(1-\alpha \beta) n}\right\}^{\frac{1}{n-1}}, \quad n=2,3, \ldots
$$

This result is sharp. The extremal function is

$$
f(z)=z-\frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} z^{n} .
$$

P r o o f. It suffices to show that $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1$ for $|z|<1$.
First we note that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{\sum_{n=2}^{\infty} n(n-1)\left|a_{n}\right| z^{n-1}}{1-\sum_{n=2}^{\infty} n\left|a_{n}\right| z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty} n(n-1)\left|a_{n}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty} n\left|a_{n}\right| \mid z^{\mid} n-1}
$$

Thus $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1$ whenever

$$
\sum_{n=2}^{\infty} n(n-1)\left|a_{n} \| z\right|^{n-1} \leq 1
$$

But in view of Remark A [3] we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[t n+(1-t) n^{2}\right]\left|a_{n}\right| \leq \frac{\alpha \beta+(1-\alpha \beta) n}{n} \tag{6}
\end{equation*}
$$

where we have used the fact that $\left|b_{n}\right| \leq \frac{1}{n}[5]$.
Hence, $f(z)$ is convex if

$$
n^{2}|z|^{n-1} \leq \frac{n^{2}\left[t+(1-t) n^{2}\right]}{\alpha \beta+(1-\alpha \beta) n}
$$

that is

$$
|z| \leq\left\{\frac{t+(1-t) n}{\alpha \beta+(1-\alpha \beta) n}\right\}^{\frac{1}{n-1}}
$$

Thus the radius of convexity is given by

$$
r(t, \alpha, \beta)=\inf _{n}\left\{\frac{t+(1-t) n}{\alpha \beta+(1-\alpha \beta) n}\right\}^{\frac{1}{n-1}}
$$

THEOREM 6. If $f_{1}(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ and $f_{2}(z)=z-\sum_{n=2}^{\infty}\left|c_{n}\right| z^{n}$ are in $H_{t, \alpha}(\beta)$, then

$$
h(z)=z-\frac{1}{2} \sum_{n=2}^{\infty}\left|a_{n}+c_{n}\right| z^{n}
$$

is also in $H_{t, \alpha}(\beta)$.

Proof. The proof follows directly by appealing to Theorem 1, [3]. In fact, if $f_{1}(z)$ and $f_{2}(z)$ belong to $H_{t, \alpha}(\beta)$, then from (6) we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[t n+(1-t) n^{2}\right]\left|a_{n}\right| \leq \frac{\alpha \beta+(1-\alpha \beta) n}{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[t n+(1-t n)^{2}\right]\left|c_{n}\right| \leq \frac{\alpha \beta+(1-\alpha) n}{n} \tag{8}
\end{equation*}
$$

For $h(z)$ to be in $H_{t, \alpha}(\beta)$, it is sufficient to show that

$$
\frac{1}{2} \sum_{n=2}^{\infty}\left[t n+1(1-t) n^{2}\right]\left|a_{n}+c_{n}\right| \leq \frac{\alpha \beta+(1-\alpha \beta) n}{n}
$$

which follows immediately on using (7) and (8).
Theorem 7. Let $f_{1}(z)=z$ and $f_{n}(z)=\frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} z^{n}$. Then $f(z) \in H_{t, \alpha}(\beta)$ if and only if it can be expressed in the form

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)
$$

where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.
Proof. Suppose that $f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)=z \lambda_{1}+\left[z-\frac{z-\alpha \beta}{4(2-t)} t^{2}\right] \lambda_{2}+$ $\ldots+\left[z-\frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} z^{n}\right] \lambda_{n}=z-\sum_{n=2}^{\infty} \frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} \lambda_{n} z^{n}$. Then

$$
\sum_{n=2}^{\infty}\left\{n[t+(1-t) n] \lambda_{n} \frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]}\right\} \leq \frac{\alpha \beta+(1-\alpha \beta) n}{n} .
$$

Thus, by Theorem 1 and Remark A, $f(z) \in H_{t, \alpha}(\beta)$.
Conversely, suppose $f(z) \in H_{t, \alpha}(\beta)$. By Theorem 2, we have

$$
\left|a_{n}\right| \leq \frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]}
$$

Setting

$$
\lambda_{n}=\frac{n^{2}[t+(1-t) n]}{\alpha \beta+(1-\alpha \beta) n}\left|a_{n}\right|
$$

and

$$
\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}
$$

we have that

$$
\begin{gathered}
f(z)=\left(\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\right) z-\sum_{n=2}^{\infty} \frac{\alpha \beta+(1-\alpha \beta) n}{n^{2}[t+(1-t) n]} \lambda_{n} z^{n} \\
=z \lambda_{1}+\left[z-\frac{2-\alpha \beta}{4(2-t)} z^{2}\right] \lambda_{2}+\ldots \\
+\left[z-\frac{\alpha \beta+(1-\alpha \beta) n}{[t+(1-t) n]} z^{n}\right] \lambda_{n}=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) .
\end{gathered}
$$

This completes the proof of the theorem. The extreme points of $H_{t, \alpha}(\beta)$ are functions f_{1} and f_{2}.

References

[1] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients. Bull. Austral. Math. Soc. 14 (1976), 409-416.
[2] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients II. Bull. Austral. Math. Soc. 15 (1976), 467-473.
[3] D. Pashkouleva, On a class of univalent functions with negative coefficients. Math. and Education in Math. 39 (2010), 149-153.
[4] A. Schild, On a class of functions Schlicht in the unit circle. Proc. Amer. Math. Soc. 5 (1954), 115-120.
[5] H. Silverman, Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51 (1975), 109-116.
[6] H. Silverman, Extremal properties for a family of α-convex functions. Houston J. Math. 12 (1986), 267-273.
[7] H. Silverman and E. Silvia. Convex families of starlike functions. Houston J. Math. 4 (1978), 263-268.

Institute of Mathematics \mathfrak{E} Informatics
Bulgarian Academy of Sciences
"Acad. G. Bontchev" Str., Block 8
1113 Sofia - BULGARIA
e-mail:donka_zh_vasileva@abv.bg

[^0]: (c) 2010, FCAA - Diogenes Co. (Bulgaria). All rights reserved.

