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Abstract

The object of this paper is to obtain sharp results involving coefficient
bounds, growth and distortion properties for some classes of analytic and
univalent functions with negative coefficients.
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1. Introduction and definitions

Let S denote the class of functions of the form:

f(z) = z +
∞∑

n=2

anzn

that are analytic and univalent in the unit disk E. We denote by C and S∗

the classes of convex and starlike functions, respectively.
A function f(z) analytic in E, is said to be starlike of order β (0 ≤ β < 1)

in E if f(0) = f ′(0)− 1 = 0 and for z ∈ E

<zf ′(z)
f(z)

> β

The class of such functions will be denoted by S∗β. Clearly, S∗0 = S∗.
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A function f(z) analytic in E is said to be close-to-convex of order β
(0 ≤ β < 1) in E if there exists a function g(z) ∈ S∗ and a real number γ

such that, for z ∈ E and γ ∈
(
−π

2
,
π

2

)

<eiγ zf ′(z)
g(z)

> β.

The class of such functions is denoted by Kβ.
A function f(z) is said to be close-to-star of order β (0 ≤ β < 1) if there

exists a function g(z) ∈ S∗ such that, for z ∈ E

<f(z)
g(z)

> β.

The class of such functions will be denoted by Rβ.
A function f(z), analytic in E with f(0) = f ′(0) − 1 = 0 is said to be

quasi-convex if and only if there exists a function g(z) ∈ C such that for
z ∈ E

<(zf ′(z))′

g′(z)
> β.

The class of such functions will be denoted by C∗
β.

Let T denotes the subclass of S, consisting of functions f(z) of the form

f(z) = z −
∞∑

n=2

|an|zn.

We denote T ∗β = S∗β ∩ T ; K∗
β = Kβ ∩ T ; R∗

β = Rβ ∩ T ; L∗β = C∗
β ∩ T .

It is known that T = T ∗0 = T ∗ and f ∈ T ∗β if, and only if, for 0 ≤ β < 1
∞∑

n=2

n− β

1− β
|an| ≤ 1 [1].

In [2] Schild considered a subclass of T consisting of polynomials having
|z| = 1 as a radius of univalence. Schild showed ([2]) that a necessary and
sufficient condition for f ∈ T is

1−
∞∑

n=2

n|an| = 0.

With the aid of this result he derived better results for certain quantities
connected with conformal mapping of univalent functions. Other subclasses
of T have been studied by Gupta and Jain [1], [2] and Silverman [5], [6].

In this paper we consider the following subclass Ht,α(β) of T :
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Definition . A function f(z) = z−
∞∑

n=2

|an|zn is said to be in Ht,α(β)

(0 ≤ α < 1, 0 ≤ β < 1, 0 < t ≤ 1), if there exists a function g ∈ T ∗, with

g(z) = z −
∞∑

n=2

|bn|zn

such that for z ∈ E

<
{

tzf ′(z) + (1− t)z (zf ′(z))′

αg(z) + (1− α)zg′(z)

}
> β. (1)

Evidently, H1,1(β) = K∗
β, the class of close-to-convex functions of order

β introduced by [7]. Note also that H1,0(β) = R∗
β and H0,1(β) = L∗β.

In the sequel we write

Jt,α(f, g, z0) =
1

1− β

{
tz0f

′(z0) + (1− t)zo(zof
′(z0))′

αg(z0) + (1− α)z0g′(z0)
− β

}
. (2)

2. Some results about the class Ht,α(β)

Lemma . Let f ∈ Ht,α(β) be given by (1.1). Then

min
|z|≤r<1

<Jt,α(f, g, z) = Jt,α(f, g, r).

The proof of this lemma is standard.

Theorem 1. Let f(z) ∈ Ht,α(β) be given by (1.1). Then, for 0 < r < 1,

t
∞∑

n=2

[n|an| − (α + n(1− α))|bn|] rn−1

1−
∞∑

n=2

(α + n(1− α))|bn|rn−1

+

+(1− t)

∞∑

n=2

[
n2|an| − (α + n(1− α))|bn|

]
rn−1

1−
∞∑

n=2

(α + n(1− α))|bn|rn−1

< 1− β

(3)

when 0 ≤ α ≤ 1, 0 ≤ t ≤ 1. The estimate (3) is also sufficient for f to be in
Ht,α(β).
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Remark A. If
∞∑

n=2

n|an| < 1,
∞∑

n=2

n|bn| < 1 and
∞∑

n=2

n2|an| < ∞, then

Jt,α(f, g, r) is continuous at r = 1 and (2.1) may be replaced by

∞∑

n=2

(
tn + (1− t)n2

)
|an| − β

∞∑

n=2

(α + (1− α)n) |bn| ≤ 1− β. (4)

Remark B. In [5] it was shown that
∞∑

n=2

|bn| ≤ 1
2

for g ∈ T ∗, so that
∞∑

n=2

(
tn + (1− t)n2

)
|an| ≤ 1− β +

β(2− α)
2

= 1− αβ

2
. (5)

In fact, (5) is a necessary condition for f to be in Ht,α(β) and we could

always take g(z) = z − 1
2
z2 and (5) would also be sufficient.

Theorem 2. Let f ∈ Ht,α(β) be given by (1.1). Then

an ≤ An =
αβ + (1− αβ)n
n2 [t + (1− t)n]

.

The result is sharp for every n, with equality for

f(z) = z −Anzn

and g ∈ T , with g(z) = z − 1
nzn.

Theorem 3. If f ∈ Ht,α(β)

r − (2− αβ)
4(2− t)

r2 ≤ |f(z)| ≤ r +
(2− αβ)
4(2− t)

r2, |z| ≤ r

1− (2− αβ)
2(2− t)

r ≤ |f ′(z)| ≤ 1 +
(2− αβ)
2(2− t)

r, |z| ≤ r.

Equality holds in all cases for

f(z) = z − 2− αβ

4(2− t)
z2.

3. Additional results for the class Ht,α(β)

Theorem 4. The family Ht,α(β) is convex.
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P r o o f. We modify the method of Silvia and Silverman [7].

Suppose that f1 and f2 ∈ Ht,α(β), with f1(z) = z −
∞∑

n=2

|an|zn and

f2(z) = z−
∞∑

n=2

|cn|zn with respect to g1 and g2 ∈ T , with g1 = z−
∞∑

n=2

|bn|zn

and g2 = z −
∞∑

n=2

|dn|zn.

We will show, for 0 ≤ λ ≤ 1, that

λf1(z) + (1− λ)f2(z) = z −
∞∑

n=2

γn(λ)zn ∈ Ht,α(β)

with respect to

λg1(z) + (1− λ)g2(z) = z −
∞∑

n=2

δn(λ)zn ∈ T

where γn(λ) = λ|an|+ (1− λ)|cn| and δn(λ) = λ|bn|+ (1− λ)|dn|.
Since

∞∑

n=2

{[
tn + (1− t)n2

]
γn(λ)− β [(1− α)n + α] δn(λ)

}

=
∞∑

n=2

{[
tn + (1− t)n2

]
[λ|an|+ (1− λ)|cn|]

β [(1− α)n + α] [λ|bn|+ (1− λ)|cn|]}
= λ

∞∑

n=2

{[
tn + (1− t)n2

]
|an| − β [(1− α)n + α] |bn|

}

(1− λ)
∞∑

n=2

{[
tn(1− t)n2

]
|cn| − β [(1− α)n + α] |dn|

}

≤ 1− β,

then the result follows.

Theorem 5. If f(z) ∈ Ht,α(β), then f(z) is convex in the disc |z| <
r = r(t, α, β) where

r(t, α, β) = inf
n

{
t + (1− t)n

αβ + (1− αβ)n

} 1
n−1

, n = 2, 3, . . .

This result is sharp. The extremal function is

f(z) = z − αβ + (1− αβ)n
n2[t + (1− t)n]

zn.
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P r o o f. It suffices to show that
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 for |z| < 1.

First we note that

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∞∑

n=2

n(n− 1)|an|zn−1

1−
∞∑

n=2

n|an|zn−1

∣∣∣∣∣∣∣∣∣∣

≤

∞∑

n=2

n(n− 1)|an||z|n−1

1−
∞∑

n=2

n|an||z|n− 1
.

Thus
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 whenever
∞∑

n=2

n(n− 1)|an||z|n−1 ≤ 1.

But in view of Remark A [3] we have
∞∑

n=2

[
tn + (1− t)n2

]
|an| ≤ αβ + (1− αβ)n

n
(6)

where we have used the fact that |bn| ≤ 1
n

[5].

Hence, f(z) is convex if

n2|z|n−1 ≤ n2
[
t + (1− t)n2

]

αβ + (1− αβ)n

that is

|z| ≤
{

t + (1− t)n
αβ + (1− αβ)n

} 1
n−1

.

Thus the radius of convexity is given by

r(t, α, β) = inf
n

{
t + (1− t)n

αβ + (1− αβ)n

} 1
n−1

.

Theorem 6. If f1(z) = z −
∞∑

n=2

|an|zn and f2(z) = z−
∞∑

n=2

|cn|zn are in

Ht,α(β), then

h(z) = z − 1
2

∞∑

n=2

|an + cn|zn

is also in Ht,α(β).
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P r o o f. The proof follows directly by appealing to Theorem 1, [3].
In fact, if f1(z) and f2(z) belong to Ht,α(β), then from (6) we have

∞∑

n=2

[
tn + (1− t)n2

]
|an| ≤ αβ + (1− αβ)n

n
(7)

and
∞∑

n=2

[
tn + (1− tn)2

]
|cn| ≤ αβ + (1− α)n

n
. (8)

For h(z) to be in Ht,α(β), it is sufficient to show that

1
2

∞∑

n=2

[
tn + 1(1− t)n2

]
|an + cn| ≤ αβ + (1− αβ)n

n

which follows immediately on using (7) and (8).

Theorem 7. Let f1(z) = z and fn(z) =
αβ + (1− αβ)n
n2 [t + (1− t)n]

zn. Then

f(z) ∈ Ht,α(β) if and only if it can be expressed in the form

f(z) =
∞∑

n=1

λnfn(z)

where λn ≥ 0 and
∞∑

n=1

λn = 1.

P r o o f. Suppose that f(z) =
∞∑

n=1

λnfn(z) = zλ1+
[
z − z − αβ

4(2− t)
t2

]
λ2+

. . . +
[
z − αβ + (1− αβ)n

n2 [t + (1− t)n]
zn

]
λn = z −

∞∑

n=2

αβ + (1− αβ)n
n2 [t + (1− t)n]

λnzn. Then

∞∑

n=2

{
n [t + (1− t)n] λn

αβ + (1− αβ)n
n2 [t + (1− t)n]

}
≤ αβ + (1− αβ)n

n
.

Thus, by Theorem 1 and Remark A, f(z) ∈ Ht,α(β).

Conversely, suppose f(z) ∈ Ht,α(β). By Theorem 2, we have

|an| ≤ αβ + (1− αβ)n
n2 [t + (1− t)n]

.

Setting

λn =
n2 [t + (1− t)n]
αβ + (1− αβ)n

|an|
and
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λ1 = 1−
∞∑

n=2

λn,

we have that

f(z) =

(
λ1 +

∞∑

n=2

λn

)
z −

∞∑

n=2

αβ + (1− αβ)n
n2 [t + (1− t)n]

λnzn

= zλ1 +
[
z − 2− αβ

4(2− t)
z2

]
λ2 + . . .

+
[
z − αβ + (1− αβ)n

[t + (1− t)n]
zn

]
λn =

∞∑

n=1

λnfn(z).

This completes the proof of the theorem. The extreme points of Ht,α(β)
are functions f1 and f2.
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