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Abstract

In this paper are found explicit solutions of four nonlocal boundary value
problems for Laplace, heat and wave equations, with Bitsadze-Samarskii
constraints based on non-classical one-dimensional convolutions. In fact,
each explicit solution may be considered as a way for effective summation
of a solution in the form of nonharmonic Fourier sine-expansion. FEach
explicit solution, may be used for numerical calculation of the solutions too.
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1. Introduction

Usually, the name of Bitsadze-Samarskii problem is associated with the
following nonlocal BVP:

PROBLEM 1.

Uge + Uyy =0, u(z,0) = f(z), u(z,1)=0, (1)
u(0,y) =0, u(l,y) = u(c,y)
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on the square G = [0,1] x [0,1] for a given 0 < ¢ < 1 (see [1] where

¢ = 3). Nevertheless, the Bitsadze-Samarskii condition u(1,y) = u(c,y)

may be consider in a larger context, not necessarily connected with the
Laplace equation, but with other types of equations. Here, along with the
original Bitsadze-Samarskii problem, we will consider also BVPs for the
heat equation and for the equation of a vibrating string, when one of the
BVCs is of the form u(1,t) = u(e,t) with 0 < ¢ < 1.

2. Nonlocal boundary value problems,
containing Bitsadze-Samarskii constraints

Further, along with the original Bitsadze-Samarskii problem (1), we
consider also the problems:

PROBLEM 2.
Ut = Ugz, 0< <1, 0<t<o00, (2)
u(z,0) = f(z), uw(0,t) =0, u(l,t)=u(c,t), 0<x<1, 0<t,

with 0 < ¢ < 1,
PROBLEM 3.

Uy = Ugz, 0< <1, 0<t< 00, (3)
u(x,0) = f(z), u(0,t) =0,
u(2,0) =0, u(l,t) =ulc,t), 0<x<1, 0<t,

with 0 < ¢ < 1,
and

PROBLEM 4.

Uy FUyy =0, 0<z<a, 0<y<b, (4)
u(z,0) = f(x), u(x,b) =u(x,d), 0<z<a,
u(0,y) =0, wu(a,y) =u(c,y), 0<y<b,

with 0 < ¢ < @ and 0 < d < b. Here we have two nonlocal conditions on
and y, respectively.

Our aim is to find explicit solutions of all four problems (1)-(4).
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3. One-dimensional Bitsadze-Samarskii spectral problem

We start with the following one-dimensional elementary boundary value
problem on [0, 1]:
y' + XNy = f(z), y(0)=0, y(1)—y(c)=0, 0<c<L

2
Its solution y = R_,2 f(x) determines the resolvent operator of % with

boundary condition y(0) = 0 and y(1) — y(c) = 0. It has the form
1 [* .
Rowef(@) =5 [ sina@ =9

sin A\x

- o (/01 sin \(1 — &) f(€)d€ — /Oc sin A(c — £)f(£)d§> :

with E(\) = sin)\—)\sinc)\‘
R_)2f(z) is determined for all A € C, except for the zeros of E(\) (the
eigenvalues). This resolvent operator is defined for A = 0 too, since A = 0

is not a zero of E(\). Denoting L, f(x) = Rof(x), we have

Lou(z,y) = /0 " — E)ule, y)de

- </01(1 —&u(&,y)dE — /Oc(c _ E)U(é,y)d§> '

T 1-c¢

(2n—1)m

The zeros of E(\) are A, = e

arise two cases :

and pp = %L_Z, n,k € N. There

1) The arithmetic progressions (\,) and () have no common terms.
This happens when, e.g. ¢ is an irrational number;

2) For some rational ¢ it may happen some A, to be equal to some puy,
i.e. to exist dispersion relations of the form )\, = ui. For example, such a
3

the cases ¢ = % and ¢ = z.

4. The spectral projectors and their totality

1. Let all the eigenvalues be simple. Then the spectral Riesz’ projectors
([3], p- 165) for A, are
1
Pdf} = o [ Roef@iin =

™

n
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4
COS \j, —CCOS CA\p,

1 c
</ f(&)sin A\, (1 — f)d{—/ f(&)sin A\, (c— £)d§> sin \p.
0 0
Here T',, is a contour in C, containing only the zero A, of E(\). The same
form have the projectors for the zeros py:
4

COS [t — CCOS Clif,

x < / ' F€) sin (1 - €)de | rtersnute- §>d£) st .

P/Lk{f} =

2. If \,, = pg, then E(N\,) =0, E'(A\,) =0 but E”(\,) # 0. Indeed, as-
sume that E”(\,)=0. From the last equality it follows sin \,, =sin ¢\, =0.
Therefore, cos \,, = (—1)P, cosc\, = (—1)? where p,g € N but 0 < ¢ < 1,
and thus we find that E’(),) # 0, which is a contradiction. In this case the
eigenspace of A, is two-dimensional and the spectral projector is

Aoty = ([ st — s = [ (€ simntc - 1) weosrur

afes ( / (1 €)7(€) cos (1 — €)d — / (e~ €)(€) cos Anle — £)d§)

+Gn;nCn </01f(§) sin A, (1 —£)d§_/06f(5) sin)\n(c—f)d§>] sin A, ,

where

4 G _ 4(An cos Ay — 3N, cos Ape — 3(1 — ¢2)sin \y,)

Ch=—5—7—, =
(1 —c2)sin A\, 3(1 — ¢2)2sin? \,

In both cases, the projectors Py, {f(x)} and P, {f(x)}, considered to-
gether, form a total system of projectors, i.e. such that if Py {f} = 0 for
alln € Nand P, {f} =0 for all £ € N, then f =0 (see Bozhinov [2]).

4. Weak solutions of BVPs (1)-(4)

We introduce the notion of a weak solution of problems (1)-(4). In order
to give an exact meaning of this notion, we introduce some notations. Let
us consider BVP (4) in the domain D = [0,a] x [0, b] and denote

Lou(z,y) = /0 N — Eu(€, y)de
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x

a—cC

( [ ta=eutemic - [ - oute y)d€> ,
Lyu(e.s) = [ (= wutz.min

5 ([ o=t~ [ @t man).

Definition 1. a) A function u(z,y) € C([0,1] x [0, 1]) is said to be
a weak solution of Bitsadze - Samarskii problem (1), iff u(z,y) satisfies the
integral equation (see [4])
(Lz + Ly)u = (1 = y) Lo f (). ()
b) A function u(z,y) € C([0,a] x [0,b]) is said to be a weak solution of
problem (4), iff u(x,y) satisfies the integral equation
(Lz + Ly)u = La:f(x) (6)

In order to define the notation of a weak solution of problems (2) and
(3), we introduce the integration operator

lu(z, ) = /O )

Definition 2. A function u(x,t) € C(]0,1] x [0,00)) is said to be a
weak solution of problem (2) or (3), iff u(z,t) satisfies the integral equation

a) (Ly—1lu=Lyf(zx), for problem (2), (7)

b)  (Ly —1®)u= L,f(z), for problem (3). (8)

Formally, (5) and (6) can be obtained from the equation gy + uy, = 0
by applying the operator L,L,. Equation (7) is obtained from u; = u,, by
application the operator [ L, to uy = u,, and (8) by application of 2L,
to the equation uy = ug,. We use also the corresponding boundary value
conditions of (1)-(4).

LemMA 1. [4] If u(z,y) € C(]0,1] x [0,1]) satisfies (5), then u(x,y)
satisfies the boundary value conditions
u(z,0) = f(z),(z,1) =0, u(0,y) =0,u(l,y) = u(c,y).

Analogical assertions are also true for integral relations (6), (7) and (8)
and the corresponding initials and boundary conditions of the problems (2),

(3) and (4).



440 Y.Ts. Tsankov

5. A convolution

As a special case of a convolution considered in Dimovski [3], p. 119, it
may be written explicitly a convolution fxg in C[0, 1] such that R_ 2{f(x)} =

{Sgl(;‘g”} x f. It has the form

1
(f*g)(x) = — / W, n)di, (9)
with
n
W, n) = / Fla 4 — €)g(€)de (10)
- / " (I -z — €)a(€]) sen &0y — x — €)d.

It is a bilinear, associative and commutative operation in C|0, 1].

LEMMA 2. ([2]) If f,g € C[0,1], then f* g € C*[0,1].

Proof. Itis ease to see, that 8h§2’n) = 8kéf7’n), where

) = [ o0 g
# [ #n = = Dalll) sen n - - )
Hence
(f *9)(a)) = k(. ) — bz, 1) (11)
= [ Hare=gteie

S

T / f(le =z — €g(€]) sgn E(c — z — €)de
1
- / flr 41— €)g(e)de

1
4 / F(1 =z — €)g(€]) sgn £(1 — z — €)d.
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Let Q(x,y) denote the solution of (1) and Q(x,t) be the solution of (2)
or (3) for

f@) = Lofay = & - LEeRE, (12)

Then, we can represent the solutions of the problems (1)(see [4]), (2) and
(3) by one and the same formula:

84

(5 ), (13)

u=
where (2 is the solution of the corresponding problem for (12). The same is

true for BVP (4) too, but with slightly changed convolution, instead of (9).
If f,g € C[0,a], then the convolution is:

(f*g)(z / h(z, n)dn, (14)
with h(x,n), given by (12). In this case Q(z,y) is the solution of (4) for

1’3 CLQ ac C2
f@) = Lafa} = & - 20 (15)

6. Special solutions Q(z,y) and Q(z,t)

6.1. The case when all the zeros are simple

LEMMA 3. If all eigenvalues A\, and pi,,, m,n € N are simple, then

- sinh A, (1 — y) ,
Q )=2(1—- An
(=, ¢ Z::)\ cos \p, — ¢ cosc \p)sinh A, S An
2(1—c¢) E sinh fin (1 =~ y) sin pnx

(cos p, — ¢ cosc py,) sinh uy,

is a weak solution of Problem 1 for f(x) = % - #3«“

Proof. See[4].
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LEMMA 4. If all eigenvalues A\, and pi,, m,n € N are simple, then

o e~ Ant
Qz,t) =2(1 — in A
(z,8) =2(1 —¢) nZ:l A3 (cos A\, — ¢ cosc \y) S An®
o 2
efﬂnt
+2(1—-c sin pnx
( )nz_:l 13(cos fin — ¢ cosc pi) T

is a weak solution of Problem 2 for f(x) = % — %x.

P r o o f. Substituting Q(x,t) in (7) we verify the satisfying the equa-
tion (7) termwise. We should verify that the left-hand side of (7) is equal
to Lyx = f(zr) = & — ey Bug Py {Q(2,0)} = Py, {f(2)} and
P, A{Q(z,0)} = P, {f(x)} for x € [0,a]. Since a € sup® according to
a theorem of N. Bozhinov [2] we obtain that Q(z,0) = f(x). O

LeEMMA 5. If all eigenvalues A\, and t,,, m,n € N are simple, then

o0
cos Apt .
Qz,t) =2(1 — A
(z,t) ( ) ngl A3 (cos A\, — ¢ cosc \y) S An
> COS fpt
+2(1—-c - sin pnx
is a weak solution of Problem 3 for f(x) = % - #x.

P r o of. Analogical as in Lemma 4.
LEMMA 6. If all eigenvalues A\, and p,,, m,n € N are simple, then

s cosh (b +d — 2y)\
Oz, y) = 2(a - : :
(z,y) (a—c) Z )\%(a COS A\, — €COS CAy, ) cosh %(b +d)\,

sin A\,

n=1
00 1
cosh5(b+d—2
+ 2(a—c¢) Z 3 2 y),u,nl sin pp
= pp(acosapin, — ccoscpy) cosh 3 (b + d)n

is a weak solution of Problem 4 for f(x) = % - %x.

P r o o f. Analogical as in Lemma 4.
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6.2. The case of roots of multiplicity two

For definiteness, let we consider all the problems (1)-(3) for ¢ = 1 and
for the problems (4) a = 1, b = 1 and ¢ = % In this case we find the

Zeros A\, = %(2?1 — 1)m and pg = 5’“7“, n,k € N, where por = 5km and

)\/1 = )\1,/\’2 = )\3, )\g = )\4, )‘ZL = )\67 )\/5 = )\77 )‘6 = )\97 )\% = )\10, ... are the
. _ 5(2k 1)
sequences of the simple roots and ugp_1 = 25—

double roots.

km is the sequence of the

LEMMA 7. If ¢ = % and f(z) = ’”—63 - then the weak solution of

150 )
Problem 1 is:

sinh X (1 — y)
Oz, y) = 2(1 — .
(z.9) =2(1-¢) ; AB(cos N, — ¢ cosc N,)sinh N,

. /
sin A\,

S sinh 1o, (1 — y) :
2(1 —¢) E - sin porx
— 113, (cos po, — ¢ cosc pog) sinh puoy,
—4sinh 1—-
+ E a1 y) T COS U2k —1T
(14 )3y, sin piog—1 sinh piop_y

4e H2k-1Y

+ :
3,“421]671(1 + c)(e?t2r—1 —1)2sin gy

[3 <62N2k71(1+y) ((y—2)pok—1—3)

221 (3 4 (y—2) piog—1) + €726 -1Y(3 — pop_1y) + €21 (3 4 /~L2k—1y)>

+ 4et2k=1CHY) o sinh gy sinh pog (1 — y) cot M2kz—1] sin M2k—1$}-

P r o o f. Analogical as in Lemma 4.

3

LEMMA 8. If ¢ = § and f(z) = & — %5, then the weak solution of

Problem 2 is:

=2t
!/
Uz t) =2(1-¢) Z)\’?’(COSX ¢ cosc )\’)Sm)\

o0

—p3t
+2(1-¢) Z 3 ¢ sin piorx
1 Mgk(COS [hok — € COSC fig))
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4 S, — e Mkt
+ E <—ZL‘ COS 2k —1T
3 .
1+¢ 7 Mg SN fi2k—1

2
e Har-1t(9 + 643, 1t + Hop—1 cOb pog—1)
3pugy,_ SIn piop—1

+ sin u%,lx).

LEMMA 9. If ¢ = $ and f(z) = %3 — 2., then the weak solution of
Problem 3 is:

d cos A\t
Qz,t) =2(1 - . in \;
(z,8) =2(1-¢) ; N3 (cos N, — ¢ cosc \,) S An®

o0

t
+2(1—-¢) Z 3 CO8 2k sin pogx
1 Mgk(COS [ok — € COSC fig))

4 OO( — COS og—1t

- T COS 21T
3
1+ec £ MHop_q SN fok—1

n (cos pigr—1t(9 + por—1 cot por—1) + tpugr—1 sin pog_11) R 133)
Bk sin pion 1 -
LEMMA 10. Ifa=1,c= é and f(x) = % — %, then the weak solution
of Problem 4 is:

cosh 3 (b+d —2y)\,

o0
Qz,y) =2(a —c sin \ x

(z,y) ( )nzz:l A3(acosal, — ccosc)) cosh %(b +d)X, n
> coshi(b+d—2

+2a-¢)Y — 3 ( y)ﬂ?kl T
=1 Mgk(a COS Qfigf, — € COS Cligy) cosh §(b + d) pog

4 & —coshi(b+d—2 B
+ Z - : 2( ly)M% 1 2 COS Jigp 1
a+ ¢ o= | pyy_y Sinapog—1 cosh 5(b+ d)pgk—1

67/‘2/971?/

3( (b+d)par—1 3—(b+d— B
3pd, (1 + etdrz—1)2gin apuop, 4 [ € (3—( Y)Hok—1)

1 (brdt2y) g (B34 (b+d—y)pop_1) + €*F2:=1Y(3 — pigp_1%)

+ 62(b+d)l‘2k71(3 + H2k—1?/)>
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+ a(l+ e(b"'d)l@kfl)(e(b“‘d)ﬂﬂk—l + 62#2k71y)u2k_1 cot ,U«2k:—1a] sin ,u2k:—155}~

Here Q(x,t) and Q(z,y) are weak solutions of the corresponding prob-
lems in the sense of Definition 1.

7. Explicit weak and classical solutions of Problems 1 - 4

Representation (13) can be simplified using Lemma 2. In the case of
Problem 4, we get

THEOREM 1. Let f € C2[0,a] be such that f(0) = f(a) — f(c) = 0.
Then

84
u= 5 (Qx,y)* f(2)) (16)

1

_ 2(@_6)</0$(Qx(§+a—:v,y)—Qx(x-l-a—&y)

Q€+ e = 3y) + Qula+ e~ £,9) ) 11(€)d

n / (et a—Ey) - Qula—a—Ey) [ (€)de
0
- /0 (e +e—Ey) - Qule—z—E1)) f”(g)dg)

is a weak solution of (4).
Additionally, if f € C3]0,a] and f"(0) = f"(a) — f"(c) = 0, then(16) is
a classical solution of (4).

The proof may be accomplished by a direct check.
If we put a = 1, we get representation of the solution for Problem 1.

THEOREM 2. Let f € C2[0,1] be such that f(0) = f(1) — f(c) = 0.
Then

84
= 54 2z, 0) * f(2)) (17)
1

_ —2(1_0)(/:<Qx(§+1—x,t) Qa1 6,1)
— (€t e -2 0) + Qula e — €1)) 1(€)de

u
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1
+/ (1 61) — (1 —x — £,8)) f'(€)de
0

-/ Qe te—€0) - Qe —e,t>>f"<s>ds)

is a weak solution of (2) and (3), correspondingly.
Additionally, if f € C3[0,a] and f"(0) = f"(a) — f"(c) = 0, then (17) is
a classical solution of (2) and (3), respectively.
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