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Abstract

In this paper are found explicit solutions of four nonlocal boundary value
problems for Laplace, heat and wave equations, with Bitsadze-Samarskii
constraints based on non-classical one-dimensional convolutions. In fact,
each explicit solution may be considered as a way for effective summation
of a solution in the form of nonharmonic Fourier sine-expansion. Each
explicit solution, may be used for numerical calculation of the solutions too.
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1. Introduction

Usually, the name of Bitsadze-Samarskii problem is associated with the
following nonlocal BVP:

Problem 1.

uxx + uyy = 0, u(x, 0) = f(x), u(x, 1) = 0, (1)
u(0, y) = 0, u(1, y) = u(c, y)
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on the square G = [0, 1] × [0, 1] for a given 0 < c < 1 (see [1] where
c = 1

2). Nevertheless, the Bitsadze-Samarskii condition u(1, y) = u(c, y)
may be consider in a larger context, not necessarily connected with the
Laplace equation, but with other types of equations. Here, along with the
original Bitsadze-Samarskii problem, we will consider also BVPs for the
heat equation and for the equation of a vibrating string, when one of the
BVCs is of the form u(1, t) = u(c, t) with 0 < c < 1.

2. Nonlocal boundary value problems,
containing Bitsadze-Samarskii constraints

Further, along with the original Bitsadze-Samarskii problem (1), we
consider also the problems:

Problem 2.

ut = uxx, 0 < x < 1, 0 < t < ∞, (2)
u(x, 0) = f(x), u(0, t) = 0, u(1, t) = u(c, t), 0 ≤ x ≤ 1, 0 ≤ t,

with 0 < c < 1,
Problem 3.

utt = uxx, 0 < x < 1, 0 < t < ∞, (3)
u(x, 0) = f(x), u(0, t) = 0,

ut(x, 0) = 0, u(1, t) = u(c, t), 0 ≤ x ≤ 1, 0 ≤ t,

with 0 < c < 1,

and

Problem 4.

uxx + uyy = 0, 0 < x < a, 0 < y < b, (4)
u(x, 0) = f(x), u(x, b) = u(x, d), 0 ≤ x ≤ a,

u(0, y) = 0, u(a, y) = u(c, y), 0 ≤ y ≤ b,

with 0 < c < a and 0 < d < b. Here we have two nonlocal conditions on x
and y, respectively.

Our aim is to find explicit solutions of all four problems (1)-(4).
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3. One-dimensional Bitsadze-Samarskii spectral problem

We start with the following one-dimensional elementary boundary value
problem on [0, 1]:

y′′ + λ2y = f(x), y(0) = 0, y(1)− y(c) = 0, 0 < c < 1.

Its solution y = R−λ2f(x) determines the resolvent operator of d2

dx2 with
boundary condition y(0) = 0 and y(1)− y(c) = 0. It has the form

R−λ2f(x) =
1
λ

∫ x

0
sinλ(x− ξ)f(ξ)dξ

− sinλx

λE(λ)

(∫ 1

0
sinλ(1− ξ)f(ξ)dξ −

∫ c

0
sinλ(c− ξ)f(ξ)dξ

)
,

with E(λ) = sin λ−sin cλ
λ .

R−λ2f(x) is determined for all λ ∈ C, except for the zeros of E(λ) (the
eigenvalues). This resolvent operator is defined for λ = 0 too, since λ = 0
is not a zero of E(λ). Denoting Lxf(x) = R0f(x), we have

Lxu(x, y) =
∫ x

0
(x− ξ)u(ξ, y)dξ

− x

1− c

(∫ 1

0
(1− ξ)u(ξ, y)dξ −

∫ c

0
(c− ξ)u(ξ, y)dξ

)
.

The zeros of E(λ) are λn =
(2n−1)π

1+c and µk = 2kπ
1−c , n, k ∈ N. There

arise two cases :
1) The arithmetic progressions (λn) and (µk) have no common terms.

This happens when, e.g. c is an irrational number;
2) For some rational c it may happen some λn to be equal to some µk,

i.e. to exist dispersion relations of the form λn = µk. For example, such a
the cases c = 1

5 and c = 3
7 .

4. The spectral projectors and their totality

1. Let all the eigenvalues be simple. Then the spectral Riesz’ projectors
([3], p. 165) for λn are

Pλn{f} =
1
πi

∫

Γn

R−λ2f(x)λdλ =
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4
cosλn−c cos cλn

(∫ 1

0
f(ξ) sin λn(1− ξ)dξ−

∫ c

0
f(ξ) sinλn(c− ξ)dξ

)
sinλnx.

Here Γn is a contour in C, containing only the zero λn of E(λ). The same
form have the projectors for the zeros µk:

Pµk
{f} =

4
cosµk − c cos cµk

×
(∫ 1

0
f(ξ) sin µk(1− ξ)dξ −

∫ c

0
f(ξ) sin µk(c− ξ)dξ

)
sinµkx.

2. If λn = µk, then E(λn) = 0, E′(λn) = 0 but E′′(λn) 6= 0. Indeed, as-
sume that E′′(λn)=0. From the last equality it follows sinλn =sin cλn =0.
Therefore, cosλn = (−1)p, cos cλn = (−1)q where p, q ∈ N but 0 < c < 1,
and thus we find that E′(λn) 6= 0, which is a contradiction. In this case the
eigenspace of λn is two-dimensional and the spectral projector is

Pλn{f} = Cn

(∫ 1

0
f(ξ) sin λn(1− ξ)dξ −

∫ c

0
f(ξ) sinλn(c− ξ)dξ

)
x cosλnx

+

[
Cn

(∫ 1

0
(1− ξ)f(ξ) cosλn(1− ξ)dξ −

∫ c

0
(c− ξ)f(ξ) cos λn(c− ξ)dξ

)

+
Gn − Cn

λn

(∫ 1

0
f(ξ) sinλn(1− ξ)dξ−

∫ c

0
f(ξ) sin λn(c− ξ)dξ

)]
sinλnx,

where

Cn =
4

(1− c2) sin λn
, Gn =

4(λn cosλn − c3λn cosλnc− 3(1− c2) sinλn)
3(1− c2)2 sin2 λn

.

In both cases, the projectors Pλn{f(x)} and Pµk
{f(x)}, considered to-

gether, form a total system of projectors, i.e. such that if Pλn{f} = 0 for
all n ∈ N and Pµk

{f} = 0 for all k ∈ N, then f ≡ 0 (see Bozhinov [2]).

4. Weak solutions of BVPs (1)-(4)

We introduce the notion of a weak solution of problems (1)-(4). In order
to give an exact meaning of this notion, we introduce some notations. Let
us consider BVP (4) in the domain D = [0, a]× [0, b] and denote

Lxu(x, y) =
∫ x

0
(x− ξ)u(ξ, y)dξ
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− x

a− c

(∫ a

0
(a− ξ)u(ξ, y)dξ −

∫ c

0
(c− ξ)u(ξ, y)dξ

)
,

Lyu(x, y) =
∫ y

0
(y − η)u(x, η)dη

− x

b− d

(∫ b

0
(b− η)u(x, η)dη −

∫ d

0
(d− η)u(x, η)dη

)
.

Definition 1. a) A function u(x, y) ∈ C([0, 1] × [0, 1]) is said to be
a weak solution of Bitsadze - Samarskii problem (1), iff u(x, y) satisfies the
integral equation (see [4])

(Lx + Ly)u = (1− y)Lxf(x). (5)

b) A function u(x, y) ∈ C([0, a]× [0, b]) is said to be a weak solution of
problem (4), iff u(x, y) satisfies the integral equation

(Lx + Ly)u = Lxf(x). (6)

In order to define the notation of a weak solution of problems (2) and
(3), we introduce the integration operator

lu(x, t) =
∫ t

0
u(x, τ)dτ.

Definition 2. A function u(x, t) ∈ C([0, 1] × [0,∞)) is said to be a
weak solution of problem (2) or (3), iff u(x, t) satisfies the integral equation

a) (Lx − l)u = Lxf(x), for problem (2) , (7)

or

b) (Lx − l2)u = Lxf(x), for problem (3) . (8)

Formally, (5) and (6) can be obtained from the equation uxx + uyy = 0
by applying the operator LxLy. Equation (7) is obtained from ut = uxx by
application the operator l Lx to ut = uxx and (8) by application of l2 Lx

to the equation utt = uxx. We use also the corresponding boundary value
conditions of (1)-(4).

Lemma 1. [4] If u(x, y) ∈ C([0, 1] × [0, 1]) satisfies (5), then u(x, y)
satisfies the boundary value conditions

u(x, 0) = f(x), (x, 1) = 0, u(0, y) = 0, u(1, y) = u(c, y).

Analogical assertions are also true for integral relations (6), (7) and (8)
and the corresponding initials and boundary conditions of the problems (2),
(3) and (4).
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5. A convolution

As a special case of a convolution considered in Dimovski [3], p. 119, it
may be written explicitly a convolution f∗g in C[0, 1] such that R−λ2{f(x)} ={

sin λx
E(λ)

}
∗ f . It has the form

(f ∗ g)(x) = −
∫ 1

c
h(x, η)dη, (9)

with

h(x, η) =
∫ η

x
f(x + η − ξ)g(ξ)dξ (10)

−
∫ η

−x
f(|η − x− ξ|)g(|ξ|) sgn ξ(η − x− ξ)dξ.

It is a bilinear, associative and commutative operation in C[0, 1].

Lemma 2. ([2]) If f, g ∈ C[0, 1], then f ∗ g ∈ C1[0, 1].

P r o o f. It is ease to see, that ∂h(x,η)
∂x = ∂k(x,η)

∂η , where

k(x, η) =
∫ η

x
f(x + η − ξ)g(ξ)dξ

+
∫ η

−x
f(|η − x− ξ|)g(|ξ|) sgn ξ(η − x− ξ)dξ.

Hence

d

dx
((f ∗ g)(x)) = k(x, c)− k(x, 1) (11)

=
∫ c

x
f(x + c− ξ)g(ξ)dξ

+
∫ c

−x
f(|c− x− ξ|)g(|ξ|) sgn ξ(c− x− ξ)dξ

−
∫ 1

x
f(x + 1− ξ)g(ξ)dξ

+
∫ 1

−x
f(|1− x− ξ|)g(|ξ|) sgn ξ(1− x− ξ)dξ.

¤
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Let Ω(x, y) denote the solution of (1) and Ω(x, t) be the solution of (2)
or (3) for

f(x) = Lx{x} =
x3

6
− 1 + c + c2

6
x, (12)

Then, we can represent the solutions of the problems (1)(see [4]), (2) and
(3) by one and the same formula:

u =
∂4

∂x4
(Ω ∗ f), (13)

where Ω is the solution of the corresponding problem for (12). The same is
true for BVP (4) too, but with slightly changed convolution, instead of (9).
If f, g ∈ C[0, a], then the convolution is:

(f ∗ g)(x) = −
∫ a

c
h(x, η)dη, (14)

with h(x, η), given by (12). In this case Ω(x, y) is the solution of (4) for

f(x) = Lx{x} =
x3

6
− a2 + ac + c2

6
x. (15)

6. Special solutions Ω(x, y) and Ω(x, t)

6.1. The case when all the zeros are simple

Lemma 3. If all eigenvalues λn and µm, m,n ∈ N are simple, then

Ω(x, y) = 2(1− c)
∞∑

n=1

sinhλn(1− y)
λ3

n(cosλn − c cos c λn) sinh λn
sinλnx

+ 2(1− c)
∞∑

n=1

sinhµn(1− y)
µ3

n(cosµn − c cos c µn) sinh µn
sinµnx

is a weak solution of Problem 1 for f(x) = x3

6 − 1+c+c2

6 x.

P r o o f. See [4].
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Lemma 4. If all eigenvalues λn and µm, m,n ∈ N are simple, then

Ω(x, t) = 2(1− c)
∞∑

n=1

e−λ2
nt

λ3
n(cosλn − c cos c λn)

sinλnx

+ 2(1− c)
∞∑

n=1

e−µ2
nt

µ3
n(cosµn − c cos c µn)

sinµnx

is a weak solution of Problem 2 for f(x) = x3

6 − 1+c+c2

6 x.

P r o o f. Substituting Ω(x, t) in (7) we verify the satisfying the equa-
tion (7) termwise. We should verify that the left-hand side of (7) is equal
to Lxx = f(x) = x3

6 − 1+c+c2

6 x. But Pλn{Ω(x, 0)} = Pλn{f(x)} and
Pµk

{Ω(x, 0)} = Pµk
{f(x)} for x ∈ [0, a]. Since a ∈ supΦ according to

a theorem of N. Bozhinov [2] we obtain that Ω(x, 0) = f(x). ¤

Lemma 5. If all eigenvalues λn and µm, m,n ∈ N are simple, then

Ω(x, t) = 2(1− c)
∞∑

n=1

cosλnt

λ3
n(cosλn − c cos c λn)

sinλnx

+ 2(1− c)
∞∑

n=1

cosµnt

µ3
n(cosµn − c cos c µn)

sinµnx

is a weak solution of Problem 3 for f(x) = x3

6 − 1+c+c2

6 x.

P r o o f. Analogical as in Lemma 4.

Lemma 6. If all eigenvalues λn and µm, m,n ∈ N are simple, then

Ω(x, y) = 2(a− c)
∞∑

n=1

cosh 1
2(b + d− 2y)λn

λ3
n(a cos aλn − c cos cλn) cosh 1

2(b + d)λn
sinλnx

+ 2(a− c)
∞∑

n=1

cosh 1
2(b + d− 2y)µn

µ3
n(a cos aµn − c cos cµn) cosh 1

2(b + d)µn
sinµnx

is a weak solution of Problem 4 for f(x) = x3

6 − a2+ac+c2

6 x.

P r o o f. Analogical as in Lemma 4.
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6.2. The case of roots of multiplicity two

For definiteness, let we consider all the problems (1)-(3) for c = 1
5 and

for the problems (4) a = 1, b = 1 and c = 1
5 . In this case we find the

zeros λn = 5
6(2n − 1)π and µk = 5kπ

2 , n, k ∈ N, where µ2k = 5kπ and
λ′1 = λ1, λ

′
2 = λ3, λ′3 = λ4, λ′4 = λ6, λ′5 = λ7, λ′6 = λ9, λ′6 = λ10, ... are the

sequences of the simple roots and µ2k−1 = 5(2k−1)
2 kπ is the sequence of the

double roots.

Lemma 7. If c = 1
5 and f(x) = x3

6 − 31
150 , then the weak solution of

Problem 1 is:

Ω(x, y) = 2(1− c)
∞∑

n=1

sinhλ′n(1− y)
λ′3n (cosλ′n − c cos c λ′n) sinhλ′n

sinλ′nx

+ 2(1− c)
∞∑

k=1

sinhµ2k(1− y)
µ3

2k(cosµ2k − c cos c µ2k) sinh µ2k
sinµ2kx

+
∞∑

m=1

{
−4 sinhµ2k−1(1− y)

(1 + c)µ3
2k−1 sinµ2k−1 sinhµ2k−1

x cosµ2k−1x

+
4e−µ2k−1y

3µ4
2k−1(1 + c)(e2µ2k−1−1)2 sinµ2k−1

[
3
(
e2µ2k−1(1+y)((y−2)µ2k−1−3)

− e2µ2k−1(3 + (y−2)µ2k−1) + e2µ2k−1y(3− µ2k−1y) + e4µ2k−1(3 + µ2k−1y)
)

+ 4eµ2k−1(2+y)µ2k−1 sinhµ2k−1 sinhµ2k−1(1− y) cot µ2k−1

]
sinµ2k−1x

}
.

P r o o f. Analogical as in Lemma 4.

Lemma 8. If c = 1
5 and f(x) = x3

6 − 31
150 , then the weak solution of

Problem 2 is:

Ω(x, t) = 2(1− c)
∞∑

n=1

e−λ′2n t

λ′3n (cosλ′n − c cos c λ′n)
sinλ′nx

+ 2(1− c)
∞∑

k=1

e−µ2
2kt

µ3
2k(cosµ2k − c cos c µ2k)

sinµ2kx
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+
4

1 + c

∞∑

k=1

( − e−µ2
2k−1t

µ3
2k−1 sinµ2k−1

x cosµ2k−1x

+
e−µ2

2k−1t(9 + 6µ2
2k−1t + µ2k−1 cotµ2k−1)

3µ4
2k−1 sinµ2k−1

sinµ2k−1x
)
.

Lemma 9. If c = 1
5 and f(x) = x3

6 − 31
150 , then the weak solution of

Problem 3 is:

Ω(x, t) = 2(1− c)
∞∑

n=1

cosλ′nt

λ′3n (cosλ′n − c cos c λ′n)
sinλ′nx

+ 2(1− c)
∞∑

k=1

cosµ2kt

µ3
2k(cosµ2k − c cos c µ2k)

sinµ2kx

+
4

1 + c

∞∑

k=1

( − cosµ2k−1t

µ3
2k−1 sinµ2k−1

x cosµ2k−1x

+
(cosµ2k−1t(9 + µ2k−1 cotµ2k−1) + 3tµ2k−1 sinµ2k−1t)

3µ4
2k−1 sinµ2k−1

sinµ2k−1x
)
.

Lemma 10. If a = 1, c = 1
5 and f(x) = x3

6 − 31
150 , then the weak solution

of Problem 4 is:

Ω(x, y) = 2(a− c)
∞∑

n=1

cosh 1
2(b + d− 2y)λ′n

λ′3n (a cos aλ′n − c cos cλ′n) cosh 1
2(b + d)λ′n

sinλ′nx

+ 2(a− c)
∞∑

k=1

cosh 1
2(b + d− 2y)µ2k

µ3
2k(a cos aµ2k − c cos cµ2k) cosh 1

2(b + d)µ2k

sinµ2kx

+
4

a + c

∞∑

k=1

{
− cosh 1

2(b + d− 2y)µ2k−1

µ3
2k−1 sin aµ2k−1 cosh 1

2(b + d)µ2k−1

x cosµ2k−1x

+
e−µ2k−1y

3µ4
2k−1(1 + e(b+d)µ2k−1)2 sin aµ2k−1

[
3
(
e(b+d)µ2k−1(3− (b + d− y)µ2k−1)

+ e(b+d+2y)µ2k−1(3 + (b + d− y)µ2k−1) + e2µ2k−1y(3− µ2k−1y)

+ e2(b+d)µ2k−1(3 + µ2k−1y)
)
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+ a(1 + e(b+d)µ2k−1)(e(b+d)µ2k−1 + e2µ2k−1y)µ2k−1 cotµ2k−1a

]
sinµ2k−1x

}
.

Here Ω(x, t) and Ω(x, y) are weak solutions of the corresponding prob-
lems in the sense of Definition 1.

7. Explicit weak and classical solutions of Problems 1 - 4

Representation (13) can be simplified using Lemma 2. In the case of
Problem 4, we get

Theorem 1. Let f ∈ C2[0, a] be such that f(0) = f(a) − f(c) = 0.
Then

u =
∂4

∂x4
(Ω(x, y) ∗ f(x)) (16)

= − 1
2(a− c)

( ∫ x

0

(
Ωx(ξ + a− x, y)− Ωx(x + a− ξ, y)

−Ωx(ξ + c− x, y) + Ωx(x + c− ξ, y)
)
f ′′(ξ)dξ

+
∫ a

0
(Ωx(x + a− ξ, y)− Ωx(a− x− ξ, y)) f ′′(ξ)dξ

−
∫ c

0
(Ωx(x + c− ξ, y)− Ωx(c− x− ξ, y)) f ′′(ξ)dξ

)

is a weak solution of (4).
Additionally, if f ∈ C3[0, a] and f ′′(0) = f ′′(a)− f ′′(c) = 0, then(16) is

a classical solution of (4).

The proof may be accomplished by a direct check.
If we put a = 1, we get representation of the solution for Problem 1.

Theorem 2. Let f ∈ C2[0, 1] be such that f(0) = f(1) − f(c) = 0.
Then

u =
∂4

∂x4
(Ω(x, t) ∗ f(x)) (17)

= − 1
2(1− c)

(∫ x

0

(
Ωx(ξ + 1− x, t)− Ωx(x + 1− ξ, t)

−Ωx(ξ + c− x, t) + Ωx(x + c− ξ, t)
)
f ′′(ξ)dξ
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+
∫ 1

0
(Ωx(x + 1− ξ, t)− Ωx(1− x− ξ, t)) f ′′(ξ)dξ

−
∫ c

0
(Ωx(x + c− ξ, t)− Ωx(c− x− ξ, t)) f ′′(ξ)dξ

)

is a weak solution of (2) and (3), correspondingly.

Additionally, if f ∈ C3[0, a] and f ′′(0) = f ′′(a)− f ′′(c) = 0, then (17) is
a classical solution of (2) and (3), respectively.
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