APPLICATIONS OF SUBORDINATION PRINCIPLE TO LOG-HARMONIC MAPPINGS

H. Esra Özkan *, Yaşar Polatog̃lu **, Arzu Şen***
Dedicated to Professor Gheorghe Oros on the occasion of his $60^{\text {th }}$ birthday

Abstract

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D}=\{z|\quad| z \mid<1\}$. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation $\overline{f_{\bar{z}}}=$ $w(z) f_{z}\left(\frac{\bar{f}}{f}\right)$, where $w(z) \in H(\mathbb{D})$ is the second dilatation of f such that $|w(z)|<1$ for all $z \in \mathbb{D}$. It has been shown that if f is non-vanishing log-harmonic mapping, then f can be expressed as $f(z)=h(z) \overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0)=1$. If f vanishes at $z=0$ but it is not identically zero, then f admits the representation $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$, where $\operatorname{Re} \beta>-1 / 2$ and $h(z)$ and $g(z)$ are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0)=1([1],[2],[4])$. The class of all \log-harmonic mappings is denoted by $\mathcal{S}_{l h}$. We say that f is a starlike log-harmonic mapping of complex order $b(b \neq 0$ and complex) if $\operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)\right]>0$, the class of all starlike log-harmonic mapping of complex order is denoted by $\mathcal{S}_{l h}^{*}(1-b)$.

The aim of this paper is to give some applications of subordination principle to log-harmonic mappings.

[^0]H. Esra Özkan, Y. Polatog̃lu, A. Şen

MSC 2010: 30C45, 30C55
Key Words and Phrases: starlike functions, starlike log-harmonic mappings, two point distortion theorem, starlike log-harmonic mapping of complex order

1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the unit disc \mathbb{D}. A log-harmonic mapping, (i.e. $J_{f}(z)=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}>0$) is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=w(z) \frac{f_{z}}{f} \tag{1}
\end{equation*}
$$

where $w(z)$ is the second dilation function of f and $w(z) \in H(\mathbb{D}),|w(z)|<1$ for every $z \in \mathbb{D}$. It has been shown ([2]) that if f is a non-vanishing logharmonic mapping, then f can be expressed as

$$
\begin{equation*}
f=h(z) \overline{g(z)} \tag{2}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic in \mathbb{D} with the normalization $h(0) \neq$ $0, g(0)=1$. On the other hand, if f vanishes at $z=0$, but it is not identically zero then f admits the following representation

$$
\begin{equation*}
f=z|z|^{2 \beta} h(z) \overline{g(z)} \tag{3}
\end{equation*}
$$

where $\operatorname{Re} \beta>-1 / 2, h(z)$ and $g(z)$ are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0)=1$. We note that the univalent log-harmonic mappings have been studied extensively ([1], [2], [3], [4]), and the class of all univalent log-harmonic functions is denoted by $\mathcal{S}_{l h}$.

Let $f=z|z|^{2 \beta} h(z) \overline{g(z)}$ be a univalent log-harmonic mapping. We say that f is a starlike log-harmonic mapping of complex order if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)\right)>0 \tag{4}
\end{equation*}
$$

for all $z \in \mathbb{D}$. The class of all starlike log-harmonic mappings of complex order is denoted by $\mathcal{S}_{l h}^{*}(1-b)$.

If we give specific values to b we obtain the following subclasses of starlike log-harmonic functions of complex order:

- If $b=1$, then $\mathcal{S}_{l h}^{*}(1-1)=\mathcal{S}_{l h}^{*}(0)$ is the class of starlike log-harmonic functions,
- If $b=1-\alpha, 0 \leq \alpha<1$, then $\mathcal{S}_{l h}^{*}(1-(1-\alpha))=\mathcal{S}_{l h}^{*}(\alpha)$ is the class of starlike log-harmonic functions of order α,
- If $b=e^{-i \lambda},|\lambda|<\frac{\pi}{2}$, then $\mathcal{S}_{l h}^{*}\left(1-e^{-i \lambda}\right)$ is the class of λ - spirallike log-harmonic functions,
- If $b=(1-\alpha) e^{-i \lambda}, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, then $\mathcal{S}_{l h}^{*}\left(1-(1-\alpha) e^{-i \lambda}\right)$ is the class of λ - spirallike log-harmonic functions of order α.

Finally, Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{D} and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$, and let $S_{1}(z)=$ $z+a_{2} z^{2}+a_{3} z^{3}+\cdots, S_{2}(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ be the analytic functions in \mathbb{D}. We say that $S_{1}(z)$ is subordinate to $S_{2}(z)$ if there exists $\phi(z) \in \Omega$ such that $S_{1}(z)=S_{2}(\phi(z))$ and denote $S_{1}(z) \prec S_{2}(z)([5])$.

Let $s(z)$ be analytic function in \mathbb{D} with the normalization $s(0)=0$, $s^{\prime}(0)=1$. If $s(z)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right)>0 \tag{5}
\end{equation*}
$$

for every $z \in \mathbb{D}$, then $s(z)$ is called starlike function of complex order. The class of all starlike functions of complex order is denoted by $\mathcal{S}^{*}(1-b)$ ([6]). Also we note that in our proofs we will need the following theorems.

Theorem 1.1. ([6]) A necessary and sufficient condition for $s_{1}(z) \in$ $\mathcal{S}^{*}(1-b)$ is that for each member $s_{2}(z) \in \mathcal{S}^{*}(0)=\mathcal{S}^{*}$ the equation

$$
s_{2}(z)=z\left(\frac{s_{1}(z)}{z}\right)^{1 / b} \Leftrightarrow z\left(\frac{s_{2}(z)}{z}\right)^{b}=s_{1}(z)
$$

must be satisfied, where $\left(\frac{s_{1}(z)}{z}\right)^{1 / b}=1$ at $z=0$.
Theorem 1.2. ([2]) Let $f(z)=z h(z) \overline{g(z)}$ be univalent log-harmonic mapping. Then

$$
f \in \mathcal{S}_{l h}^{*} \Leftrightarrow\left(z \frac{h(z)}{g(z)}\right) \in \mathcal{S}^{*} .
$$

2. Main results

Lemma 2.1. Let $f \in \mathcal{S}_{l h}^{*} \Leftrightarrow s(z)=z\left(\frac{h(z)}{g(z)}\right)^{b} \in \mathcal{S}^{*}(1-b)$.
Proof.

$$
\begin{aligned}
s(z) & =z\left(\frac{h(z)}{g(z)}\right)^{b} \Rightarrow \log s(z)=\log \left[z\left(\frac{h(z)}{g(z)}\right)^{b}\right] \Rightarrow \\
\operatorname{Re}\left[\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right] & =\operatorname{Re}\left[1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right]=\operatorname{Re}\left[1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right]
\end{aligned}
$$

This shows that the lemma is true.
Lemma 2.2. Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{l h}^{*}$, then

$$
\frac{\frac{\phi^{\prime}(z)}{\phi(z)}}{\frac{f_{z}}{f}} \prec 1-z, \quad \frac{\frac{\overline{f_{\bar{z}}}}{\bar{f}}}{\frac{\phi^{\prime}(z)}{\phi(z)}} \prec \frac{z}{1-z}
$$

where $\phi(z)=z \frac{h(z)}{g(z)}$.
Proof. Let $\phi(z)=z \frac{h(z)}{g(z)}$, then we have

$$
\begin{equation*}
z \frac{\phi^{\prime}(z)}{\phi(z)}=1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)} . \tag{6}
\end{equation*}
$$

On the other hand, since $f=z h \bar{g}$ is the solution of the non-linear elliptic partial differential equation

$$
\overline{f_{\bar{z}}}=w(z) f_{z}\left(\frac{\bar{f}}{f}\right),
$$

then we have $w(z)$, that is the second dilatation of f :

$$
w(z)=\frac{\overline{f_{\bar{z}}} f}{\bar{f}} \frac{f}{f_{z}} .
$$

Using $w(0)=0$, we can write

$$
w(z)=\frac{\frac{\overline{f_{z}}}{f}}{\frac{f_{z}}{f}}=\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}} .
$$

This shows that the second dilatation satisfies the condition of the Schwarz lemma and we get these equalities:

$$
\begin{equation*}
1-w(z)=\frac{\frac{\phi^{\prime}(z)}{\phi(z)}}{\frac{f_{z}}{f}}, \quad \frac{w(z)}{1-w(z)}=\frac{\frac{\overline{f_{z}}}{f}}{\frac{\phi^{\prime}(z)}{\phi(z)}} . \tag{7}
\end{equation*}
$$

Using the subordination principle the equalities (7) can be written in the following forms

$$
\frac{\frac{\phi^{\prime}(z)}{\phi(z)}}{\frac{f_{z}}{f}} \prec 1-z
$$

and

$$
\frac{\frac{\overline{f_{\bar{z}}}}{f}}{\frac{\phi^{\prime}(z)}{\phi(z)}} \prec \frac{z}{1-z} .
$$

Theorem 2.3. Let $f(z)=z h(z) \overline{g(z)} \in \mathcal{S}_{l h}^{*}(1-b)$, then

$$
\begin{gather*}
\left|\frac{z f_{z}}{f}\right| \leq \frac{(1+|1-b|)+[2|b|-1-|1-b|] r}{|b|(1-r)^{2}} \tag{8}\\
\left|\frac{z \overline{f_{\bar{z}}}}{\bar{f}}\right| \leq \frac{r[(1+|1-b|)+(2|b|-|1-b|-1) r]}{|b|(1-r)^{2}} \tag{9}
\end{gather*}
$$

Proof. Using Lemma 2.1 and Lemma 2.2,

$$
\begin{align*}
& 1-w(z)=\frac{1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}}=\frac{1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)}{\frac{z f_{z}}{f}}, \tag{10}\\
& \frac{w(z)}{1-w(z)}=\frac{z \frac{g^{\prime}(z)}{\frac{h^{\prime}}{(z)}}}{1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}}=\frac{\frac{z f_{\bar{z}}}{\bar{f}}}{1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)} \tag{11}
\end{align*}
$$

On the other hand, since the transformations $w_{1}(z)=1-z$ and $w_{2}=$ $\frac{z}{1-z}$ map $|z|=r$ onto the discs with the centers $C_{1}(r)=(1,0), C_{2}(r)=$ $\left(\frac{r^{2}}{1-r^{2}}, 0\right)$, and radii $\rho_{1}(r)=r, \rho_{2}=\frac{r}{1-r^{2}}$ respectively. Using Lemma 2.2 and the subordination principle, we can write

$$
\begin{equation*}
\left|\frac{1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)}{\frac{z f_{z}}{f}}-1\right|<r, \quad\left|\frac{\frac{z \overline{f_{z}}}{f}}{1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)}-\frac{r^{2}}{1-r^{2}}\right| \leq \frac{r}{1-r^{2}} . \tag{12}
\end{equation*}
$$

After the simple calculations from (12) we get

$$
\begin{gather*}
\frac{\left|1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right|}{1+r} \leq\left|\frac{z f_{z}}{f}\right| \leq \frac{\left|1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right|}{1-r}, \tag{13}\\
\frac{-r\left|1+\frac{1}{b}\left(z \frac{s^{s^{\prime}(z)}}{s(z)}-1\right)\right|}{1+r} \leq\left|\frac{z \overline{f_{\bar{z}}}}{\bar{f}}\right| \leq \frac{r\left|1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right|}{1-r} . \tag{14}
\end{gather*}
$$

On the other hand, we have

$$
\begin{align*}
& \left|1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right|=\left|1+\frac{1}{b} z \frac{s^{\prime}(z)}{s(z)}-\frac{1}{b}\right|=\left|\frac{1}{b} z \frac{s^{\prime}(z)}{s(z)}-\left(\frac{1}{b}-1\right)\right|, \\
& \left|\frac{1}{b} z \frac{s^{\prime}(z)}{s(z)}\right|-\left|\frac{1}{b}-1\right| \leq\left|1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right| \leq\left|\frac{1}{b} z \frac{s^{\prime}(z)}{s(z)}\right|+\left|\frac{1}{b}-1\right| . \tag{15}
\end{align*}
$$

Since $\operatorname{Re}\left[1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right]>0$, then using subordination principle we can write

$$
\begin{equation*}
\left|\left[1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right]-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \tag{16}
\end{equation*}
$$

The inequality (16) can be written in the following form

$$
\begin{equation*}
\frac{-1-(2|b|+1) r}{|b|(1+r)} \leq\left|\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}\right)\right| \leq \frac{1+(2|b|-1) r}{|b|(1-r)} . \tag{17}
\end{equation*}
$$

Applying (13), (14), (15) to the inequalities (11) and (12), we get (8) and (9).

Lemma 2.4. Let $f=z h(z) \overline{g(z)}$ be starlike log-harmonic mapping of complex order b. Then we have the following distortion

$$
\begin{equation*}
\frac{1}{(1+r)^{2}} \leq\left|\frac{h(z)}{g(z)}\right| \leq \frac{1}{(1-r)^{2}} \tag{18}
\end{equation*}
$$

Proof. From the inequality (16) we can write

$$
\left|\left[1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right]-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}}
$$

since f is a starlike log-harmonic mapping of complex order b, we have

$$
\begin{equation*}
\left|\left[1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right]-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} . \tag{19}
\end{equation*}
$$

Using the following equality in (19)

$$
\operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right)=r \frac{\partial}{\partial r}[\log |h(z)|-\log |g(z)|],
$$

we obtain that

$$
\begin{equation*}
-\frac{2 r}{1+r} \leq \frac{\partial}{\partial r}[\log |h(z)|-\log |g(z)|] \leq \frac{2 r}{1+r} \tag{20}
\end{equation*}
$$

Integrating both sides 0 to r inequality (20), we get the inequality (18).

References

[1] Z. Abdulhadi, D. Bshouty, Univalent functions in $H \cdot \bar{H}(D)$. Trans. Amer. Math. Soc. 305 (1988), 841-849.
[2] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order α. Journal of Inequalities in Pure and Applied Mathematics 7, No 4 (2006), Paper \#123.
[3] Z. Abdulhadi, W. Hengartner, On Pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203, No 2 (1996), 333-351.
[4] Z. Abdulhadi, Close-to-starlike logharmonic mappings. Internat. J. Math. E Math. Sci. 19, No 3 (1996), 563-574.
[5] A.W. Goodman, Univalent Functions. Mariner Publ. Comp., Vol I. and II., Tampa, Florida, 1984.
[6] M.A. Nasr, M. K. Aouf, Starlike function of complex order. J. Natur. Sci. Math. 25 (1985), 1-12.

Department of Mathematics and Computer Sciences
İstanbul Kültür University
34156, Bakırköy, İstanbul - TURKEY

* e-mail: e.ozkan@iku.edu.tr Received: GFTA, August 27-31, 2010
** e-mail: y.polatoglu@iku.edu.tr
*** e-mail: a.sen@iku.edu.tr

[^0]: (c) 2010, FCAA - Diogenes Co. (Bulgaria). All rights reserved.

