ractional Calculus & Lpplied Chalysis VOLUME 13, NUMBER 5 (2010) ISSN 1311-0454

APPLICATIONS OF SUBORDINATION PRINCIPLE TO LOG-HARMONIC MAPPINGS

H. Esra Özkan *, Yaşar Polatoğlu **, Arzu Şen***

Dedicated to Professor Gheorghe Oros on the occasion of his 60th birthday

Abstract

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D} = \{z \mid |z| < 1\}$. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation $\overline{f_z} = w(z)f_z\left(\frac{\overline{f}}{f}\right)$, where $w(z) \in H(\mathbb{D})$ is the second dilatation of f such that |w(z)| < 1 for all $z \in \mathbb{D}$. It has been shown that if f is non-vanishing log-harmonic mapping, then f can be expressed as $f(z) = h(z)\overline{g(z)}$, where h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0) = 1$. If f vanishes at z = 0 but it is not identically zero, then f admits the representation $f(z) = z|z|^{2\beta}h(z)\overline{g(z)}$, where $Re\beta > -1/2$ and h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0) = 1([1], [2], [4])$. The class of all log-harmonic mapping of complex order b ($b \neq 0$ and complex) if $Re\left[1 + \frac{1}{b}\left(\frac{zf_z - \overline{z}f_{\overline{z}}}{f} - 1\right)\right] > 0$, the class of all starlike log-harmonic mapping of complex order is denoted by $\mathcal{S}_{lh}^*(1-b)$.

The aim of this paper is to give some applications of subordination principle to log-harmonic mappings.

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

MSC 2010: 30C45, 30C55

Key Words and Phrases: starlike functions, starlike log-harmonic mappings, two point distortion theorem, starlike log-harmonic mapping of complex order

1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the unit disc \mathbb{D} . A log-harmonic mapping, (i.e. $J_f(z) = |f_z|^2 - |f_{\overline{z}}|^2 > 0$) is the solution of the non-linear elliptic partial differential equation

$$\frac{\overline{f_{\overline{z}}}}{\overline{f}} = w(z)\frac{f_z}{f},\tag{1}$$

where w(z) is the second dilation function of f and $w(z) \in H(\mathbb{D})$, |w(z)| < 1for every $z \in \mathbb{D}$. It has been shown ([2]) that if f is a non-vanishing logharmonic mapping, then f can be expressed as

$$f = h(z)\overline{g(z)} \tag{2}$$

where h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0) = 1$. On the other hand, if f vanishes at z = 0, but it is not identically zero then f admits the following representation

$$f = z |z|^{2\beta} h(z)\overline{g(z)},$$
(3)

where $Re\beta > -1/2$, h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0, g(0) = 1$. We note that the univalent log-harmonic mappings have been studied extensively ([1], [2], [3], [4]), and the class of all univalent log-harmonic functions is denoted by S_{lh} .

Let $f = z |z|^{2\beta} h(z)\overline{g(z)}$ be a univalent log-harmonic mapping. We say that f is a starlike log-harmonic mapping of complex order if

$$Re\left(1+\frac{1}{b}\left(\frac{zf_z-\overline{z}f_{\overline{z}}}{f}-1\right)\right)>0$$
(4)

for all $z \in \mathbb{D}$. The class of all starlike log-harmonic mappings of complex order is denoted by $\mathcal{S}_{lh}^*(1-b)$.

If we give specific values to b we obtain the following subclasses of starlike log-harmonic functions of complex order:

488

- If b = 1, then $S_{lh}^*(1-1) = S_{lh}^*(0)$ is the class of starlike log-harmonic functions,
- If $b = 1 \alpha$, $0 \le \alpha < 1$, then $\mathcal{S}_{lh}^*(1 (1 \alpha)) = \mathcal{S}_{lh}^*(\alpha)$ is the class of starlike log-harmonic functions of order α ,
- If $b = e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, then $S_{lh}^*(1 e^{-i\lambda})$ is the class of λ spirallike log-harmonic functions,
- If $b = (1 \alpha)e^{-i\lambda}$, $0 \le \alpha < 1$, $|\lambda| < \frac{\pi}{2}$, then $\mathcal{S}_{lh}^*(1 (1 \alpha)e^{-i\lambda})$ is the class of λ spirallike log-harmonic functions of order α .

Finally, Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{D} and satisfying the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$, and let $S_1(z) = z + a_2 z^2 + a_3 z^3 + \cdots$, $S_2(z) = z + b_2 z^2 + b_3 z^3 + \cdots$ be the analytic functions in \mathbb{D} . We say that $S_1(z)$ is subordinate to $S_2(z)$ if there exists $\phi(z) \in \Omega$ such that $S_1(z) = S_2(\phi(z))$ and denote $S_1(z) \prec S_2(z)([5])$.

Let s(z) be analytic function in \mathbb{D} with the normalization s(0) = 0, s'(0) = 1. If s(z) satisfies the condition

$$Re\left(1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)\right) > 0 \tag{5}$$

for every $z \in \mathbb{D}$, then s(z) is called starlike function of complex order. The class of all starlike functions of complex order is denoted by $\mathcal{S}^*(1-b)$ ([6]). Also we note that in our proofs we will need the following theorems.

THEOREM 1.1. ([6]) A necessary and sufficient condition for $s_1(z) \in S^*(1-b)$ is that for each member $s_2(z) \in S^*(0) = S^*$ the equation

$$s_2(z) = z \left(\frac{s_1(z)}{z}\right)^{1/b} \Leftrightarrow z \left(\frac{s_2(z)}{z}\right)^b = s_1(z)$$

must be satisfied, where $\left(\frac{s_1(z)}{z}\right)^{1/b} = 1$ at z = 0.

THEOREM 1.2. ([2]) Let $f(z) = zh(z)\overline{g(z)}$ be univalent log-harmonic mapping. Then

$$f \in \mathcal{S}_{lh}^* \Leftrightarrow \left(z \frac{h(z)}{g(z)}\right) \in \mathcal{S}^*.$$

2. Main results

LEMMA 2.1. Let $f \in \mathcal{S}_{lh}^* \Leftrightarrow s(z) = z \left(\frac{h(z)}{g(z)}\right)^b \in \mathcal{S}^*(1-b).$ P r o o f.

$$s(z) = z \left(\frac{h(z)}{g(z)}\right)^b \Rightarrow \log s(z) = \log \left[z \left(\frac{h(z)}{g(z)}\right)^b\right] \Rightarrow$$
$$Re\left[\frac{zf_z - \overline{z}f_{\overline{z}}}{f}\right] = Re\left[1 + z\frac{h'(z)}{h(z)} - z\frac{g'(z)}{g(z)}\right] = Re\left[1 + \frac{1}{b}\left(z\frac{s'(z)}{s(z)} - 1\right)\right]$$

This shows that the lemma is true.

LEMMA 2.2. Let $f = zh(z)\overline{g(z)}$ be an element of \mathcal{S}_{lh}^* , then

$$\frac{\frac{\phi'(z)}{\phi(z)}}{\frac{f_z}{f}} \prec 1 - z, \quad \frac{\frac{f_{\overline{z}}}{\overline{f}}}{\frac{\phi'(z)}{\phi(z)}} \prec \frac{z}{1 - z},$$

where $\phi(z) = z \frac{h(z)}{g(z)}$.

P r o o f. Let
$$\phi(z) = z \frac{h(z)}{g(z)}$$
, then we have

$$z \frac{\phi'(z)}{\phi(z)} = 1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)}.$$
(6)

On the other hand, since $f=zh\overline{g}$ is the solution of the non-linear elliptic partial differential equation

$$\overline{f_{\overline{z}}} = w(z)f_z\left(\frac{\overline{f}}{\overline{f}}\right),$$

then we have w(z), that is the second dilatation of f:

$$w(z) = \frac{\overline{f_{\overline{z}}}}{\overline{f}} \frac{f}{f_z}.$$

Using w(0) = 0, we can write

$$w(z) = \frac{\overline{\frac{f_z}{f}}}{\frac{f_z}{f}} = \frac{z\frac{g'(z)}{g(z)}}{1+z\frac{h'(z)}{h(z)}}.$$

490

This shows that the second dilatation satisfies the condition of the Schwarz lemma and we get these equalities:

$$1 - w(z) = \frac{\frac{\phi'(z)}{\phi(z)}}{\frac{f_z}{f}}, \qquad \frac{w(z)}{1 - w(z)} = \frac{\frac{\overline{f_z}}{\overline{f}}}{\frac{\phi'(z)}{\phi(z)}}.$$
(7)

Using the subordination principle the equalities (7) can be written in the following forms $\phi'(z)$

$$\frac{\frac{\phi(z)}{\phi(z)}}{\frac{f_z}{f}} \prec 1 - z$$
$$\frac{\frac{\overline{f_z}}{\overline{f}}}{\frac{\phi'(z)}{\phi(z)}} \prec \frac{z}{1 - z}.$$

-

THEOREM 2.3. Let $f(z) = zh(z)\overline{g(z)} \in \mathcal{S}^*_{lh}(1-b)$, then

$$\left|\frac{zf_z}{f}\right| \le \frac{(1+|1-b|) + [2|b| - 1 - |1-b|]r}{|b|(1-r)^2},\tag{8}$$

$$\left|\frac{z\overline{fz}}{\overline{f}}\right| \le \frac{r[(1+|1-b|)+(2|b|-|1-b|-1)r]}{|b|(1-r)^2}.$$
(9)

Proof. Using Lemma 2.1 and Lemma 2.2,

and

$$1 - w(z) = \frac{1 + z\frac{h'(z)}{h(z)} - z\frac{g'(z)}{g(z)}}{1 + z\frac{h'(z)}{h(z)}} = \frac{1 + \frac{1}{b}\left(z\frac{s'(z)}{s(z)} - 1\right)}{\frac{zf_z}{f}},$$
(10)

$$\frac{w(z)}{1-w(z)} = \frac{z\frac{g'(z)}{g(z)}}{1+z\frac{h'(z)}{h(z)}-z\frac{g'(z)}{g(z)}} = \frac{\frac{z\overline{fz}}{\overline{f}}}{1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)}.$$
 (11)

On the other hand, since the transformations $w_1(z) = 1 - z$ and $w_2 = \frac{z}{1-z} \max |z| = r$ onto the discs with the centers $C_1(r) = (1,0)$, $C_2(r) = \left(\frac{r^2}{1-r^2}, 0\right)$, and radii $\rho_1(r) = r$, $\rho_2 = \frac{r}{1-r^2}$ respectively. Using Lemma 2.2 and the subordination principle, we can write

$$\left|\frac{1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)}{\frac{zf_z}{f}}-1\right| < r, \qquad \left|\frac{\frac{z\overline{f_z}}{\overline{f}}}{1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)}-\frac{r^2}{1-r^2}\right| \le \frac{r}{1-r^2}.$$
(12)

After the simple calculations from (12) we get

$$\frac{\left|1 + \frac{1}{b}\left(z\frac{s'(z)}{s(z)} - 1\right)\right|}{1 + r} \le \left|\frac{zf_z}{f}\right| \le \frac{\left|1 + \frac{1}{b}\left(z\frac{s'(z)}{s(z)} - 1\right)\right|}{1 - r},\tag{13}$$

$$\frac{-r\left|1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)\right|}{1+r} \le \left|\frac{z\overline{f_{\overline{z}}}}{\overline{f}}\right| \le \frac{r\left|1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)\right|}{1-r}.$$
 (14)

On the other hand, we have

$$\left| 1 + \frac{1}{b} \left(z \frac{s'(z)}{s(z)} - 1 \right) \right| = \left| 1 + \frac{1}{b} z \frac{s'(z)}{s(z)} - \frac{1}{b} \right| = \left| \frac{1}{b} z \frac{s'(z)}{s(z)} - \left(\frac{1}{b} - 1 \right) \right|,$$

$$\left| \frac{1}{b} z \frac{s'(z)}{s(z)} \right| - \left| \frac{1}{b} - 1 \right| \le \left| 1 + \frac{1}{b} \left(z \frac{s'(z)}{s(z)} - 1 \right) \right| \le \left| \frac{1}{b} z \frac{s'(z)}{s(z)} \right| + \left| \frac{1}{b} - 1 \right|.$$

$$(15)$$

Since $Re\left[1+\frac{1}{b}\left(z\frac{s'(z)}{s(z)}-1\right)\right] > 0$, then using subordination principle we can write

$$\left| \left[1 + \frac{1}{b} \left(z \frac{s'(z)}{s(z)} - 1 \right) \right] - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2}.$$
 (16)

The inequality (16) can be written in the following form

$$\frac{-1 - (2|b| + 1)r}{|b|(1+r)} \le \left|\frac{1}{b} \left(z\frac{s'(z)}{s(z)}\right)\right| \le \frac{1 + (2|b| - 1)r}{|b|(1-r)}.$$
(17)

Applying (13), (14), (15) to the inequalities (11) and (12), we get (8) and (9). $\hfill\blacksquare$

LEMMA 2.4. Let $f = zh(z)\overline{g(z)}$ be starlike log-harmonic mapping of complex order b. Then we have the following distortion

$$\frac{1}{(1+r)^2} \le \left|\frac{h(z)}{g(z)}\right| \le \frac{1}{(1-r)^2}.$$
(18)

P r o o f. From the inequality (16) we can write

$$\left| \left[1 + \frac{1}{b} \left(z \frac{s'(z)}{s(z)} - 1 \right) \right] - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2},$$

since f is a starlike log-harmonic mapping of complex order b, we have

$$\left| \left[1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)} \right] - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2}.$$
 (19)

492

Using the following equality in (19)

$$Re\left(z\frac{h'(z)}{h(z)} - z\frac{g'(z)}{g(z)}\right) = r\frac{\partial}{\partial r}\left[\log|h(z)| - \log|g(z)|\right],$$

we obtain that

$$-\frac{2r}{1+r} \le \frac{\partial}{\partial r} \left[\log |h(z)| - \log |g(z)| \right] \le \frac{2r}{1+r}.$$
 (20)

Integrating both sides 0 to r inequality (20), we get the inequality (18).

References

- [1] Z. Abdulhadi, D. Bshouty, Univalent functions in $H.\overline{H}(D)$. Trans. Amer. Math. Soc. **305** (1988), 841-849.
- [2] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order α. Journal of Inequalities in Pure and Applied Mathematics 7, No 4 (2006), Paper #123.
- [3] Z. Abdulhadi, W. Hengartner, On Pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203, No 2 (1996), 333-351.
- [4] Z. Abdulhadi, Close-to-starlike logharmonic mappings. Internat. J. Math. & Math. Sci. 19, No 3 (1996), 563-574.
- [5] A.W. Goodman, Univalent Functions. Mariner Publ. Comp., Vol I. and II., Tampa, Florida, 1984.
- [6] M.A. Nasr, M. K. Aouf, Starlike function of complex order. J. Natur. Sci. Math. 25 (1985), 1-12.

Department of Mathematics and Computer Sciences İstanbul Kültür University 34156, Bakırköy, İstanbul - TURKEY

* e-mail: e.ozkan@iku.edu.tr Received: GFTA, August 27-31, 2010

** e-mail: y.polatoglu@iku.edu.tr

*** e-mail: a.sen@iku.edu.tr