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Abstract

On the blind source separation problem, there is a method to use the
quotient function of complex valued time-frequency informations of two ob-
served signals. By studying the quotient function, we can estimate the
number of sources under some assumptions. In our previous papers, we
gave a mathematical formulation which is available for the sources with-
out time delay. However, in general, we can not ignore the time delay. In
this paper, we will reformulate our basic theorems related to the method of
estimating the number of sources to be available for more general cases.
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1. Introduction

To treat blind source separation problem, in many cases, either statis-
tical independence or statistical orthogonality of the sources has been as-
sumed. Around 2000, papers as [4], [9], etc., considered the blind source sep-
aration problem under some independence of the windowed Fourier trans-
forms of the sources in the time-frequency domain. To solve the blind
source separation problem, as the first step, they try to detect the number
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of sources. The fundamental idea to detect the number of sources employed
in [4], [9], [10], etc., is to consider the ratio of the windowed Fourier trans-
forms of the two observed signals. In [1], [7] and [8], we gave a mathematical
formulation for this estimation problem of the number of sources without
time delay. In [5] and [6], we gave some remarks on our method for appli-
cations. Later, [2] and [3] treated the problem with time delay and gave an
algorithm of the numerical experiment.

In this paper, we will reformulate our results in [1] so that we can apply
to more general cases.

2. A method of blind source separation

Let n ≥ 2 be an unknown integer and xk(t) be an observed signal
of unknown sources {sj}n

j=1. We assume that observed signals {xk} are
represented as

xk(t) =
n∑

j=1

ajksj(t− cjk), (1)

where ajk are unknown real numbers and cjk > 0.
A method of blind source separation is as follows:

1. Transfer x1 and x2 to complex valued continuous functions X1(t, ω)
and X2(t, ω) in a time-frequency domain under suitable transforma-
tion.

2. Consider the quotient function Q(t, ω) = X1(t, ω)/X2(t, ω). By study-
ing Q(t, ω), estimate the number of sources (say n) under some as-
sumptions.

3. Take another (n− 2) observed signals and determine ajk, cjk, and the
original sources sj , j, k = 1, · · · , n.

3. Mathematical formulation

Let d, n ∈ N, X = Rd, d ≥ 2, or X = Cd, d ≥ 1, and Sj(z), j =
1, 2, · · · , n, are linearly independent as complex valued continuous functions
on X. For aj , bj ∈ R \ {0} and cjl = (cjl,1, cjl,2, · · · , cjl,d) ∈ X, l = 1, 2, set

X1(z; c1) =
n∑

j=1

ajSj(z − cj1), X2(z; c2) =
n∑

j=1

bjSj(z − cj2),
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X1(z; 0) =
n∑

j=1

ajSj(z), X2(z; 0) =
n∑

j=1

bjSj(z).

3.1. Complex valued quotient functions

Consider the quotient function

Q(z; c)=
X1(z; c1)
X2(z; c2)

=
a1S1(z − cj1) + ... + anSn(z − cj1)
b1S1(z − cj2) + ... + bnSn(z − cj2)

, Q(z; 0)=
X1(z; 0)
X2(z; 0)

.

For η > 0, we define the following function Qη(z; c) which depends on the
values of =Q, the imaginary part of Q:

Qη(z; c) =

{
Q(z; c) (|=Q(z; c)| < η),

0 (|=Q(z; c)| ≥ η).

In the case of cj1 = cj2 = 0, j = 1, · · · , n, Q(z; c) takes real value
qj ≡ aj/bj on

Ej = {z ∈ X; Sj(z) 6= 0, Sk(z) = 0, (k 6= j)}.

Let us introduce some notations. Put

Dj = {z ∈ X; Sj(z) 6= 0},

Dcj = Dj

⋃
{z ∈ X; z − cj1 ∈ Dj}

⋃
{z ∈ X; z − cj2 ∈ Dj},

D =
n⋃

j=1

Dcj , E =
n⋃

j=1

Ej .

For M > 0, we set

B(M) = {z = (z1, · · · , zd); |zl| < M, l = 1, · · · , d}, D(M) = D ∩B(M),
Ej(M) = Ej ∩B(M), E(M) = ∪n

j=1Ej(M), Ec(M) = D(M) \ E(M).

If cj1 = cj2 = 0, j = 1, · · · , n, D = E and Ej 6= ∅, we can easily
detect the number of {Sj} by counting the number of elements of the image
Qη(D) = Q(D) = Q(E).
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3.2. Cumulative distribution function on R

We denote the Lebesgue measure of a measurable set A ∈ X by

µ(A) =
∫

A
dz,

where dz is the Lebesgue measure on A and use the following notation:

νc(A) = µ({z ∈ A; =Q(z; c) = 0, Q(z; c) 6= 0}).

We consider a function (Gη(M ; c))(x) that describes the distribution
of values of <Qη(z; c), the real part of Qη(z; c). For (Gη(M ; c))(x) to be
well-defined, we assume the following condition throughout this paper.

νc(D(M)) > 0.

For η > 0,M > 0, and x ∈ R, (Gη(M ; c))(x) is defined as follows:

(Gη(M ; c))(x) =
µ({z ∈ D(M); <Qη(z; c) < x, Qη(z; c) 6= 0})

µ({z ∈ D(M); Qη(z; c) 6= 0}) . (2)

By the definition (Gη(M ; c))(x) is a monotone increasing function. Further
we define

(G0(M ; c))(x) =
µ({z ∈ D(M); <Q(z; c) < x, =Q(z; c) = 0, Q(z; c) 6= 0})

νc(D(M))
.

Similar to Theorem 1 in [1], we can prove

|(Gη(M ; c))(x)− (G0(M ; c)(x)| ≤ µ({z ∈ D(M); 0 < |=Qη(z; c)| < η})
µ({z ∈ D(M); Qη(z; c) 6= 0})

≡ βη(M ; c) (3)

and limη→0(Gη(M ; c))(x) = (G0(M ; c))(x).

3.3. In the case of D = E

First we consider the case that cj1 = cj2 = 0, Ej(M) 6= ∅, j = 1, · · · , n
and D = E. In this case, (Gη(M ; 0))(x) is the step function (see Fig. 1):

H0(x) ≡ (Gη(M ; 0))(x) =
n∑

j=1

ν0(Ej(M))
ν0(E(M))

Y (x− qj) , Y (x) =

{
1 (x > 0),

0 (x ≤ 0).
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Thus we can detect the number of {Sj} by counting the number of the
steps which appear on the graph of (Gη(M ; c))(x). In numerical analysis,
the graph of G′

η(M ; c) = d(Gη(M ; c))(x)/dx, where the derivative is taken in
the sense of distribution, is often used. Since the derivative of the Heaviside
function Y (x) is the delta function, we may count the number of the peaks
which appear on the graph of G′

η(M ; c). In the following we assume q1 <
q2 < · · · < qn.

Fig. 1
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Next we consider the case that
∑

j(c
2
j1 + c2

j2) 6= 0; (that is, at least one
cjk does not vanish), Ej(M) 6= ∅, j = 1, · · · , n, and D = E. Since we assume
that Sj(z) are continuous, Sj(z) ≈ Sj(z− cjk) for sufficiently small cjk. Put
Sj(z − cjk)− Sj(z) = ξjke

iθjk , ξjk > 0, θjk ∈ [−π, π], ξ1 =
∑n

k=1 akξk1e
iθk1

and ξ2 =
∑n

k=1 bkξk2e
iθk2 . Then on the set Ej(M),

<Qη(z; c)− qj = <ξ1 + ajSj(z)
ξ2 + bjSj(z)

− aj

bj
= < bjξ1 − ajξ2

bj(ξ2 + bjSj)
= < ξ1 − qjξ2

(ξ2 + bjSj)
.

Define

Hc(x) =
n∑

j=1

νc(Ej(M))
νc(E(M))

Y (x− qj),

(g(M ; c))(x) =
µ({z ∈ E(M);<Q(z; c) < x,=Q(z; c) = 0, Q(z; c) 6= 0})

νc(E(M))
.

Then similar to Theorem 2 in [1], by using Lemma 2 in [1] we have

|G0(M ; c)(x)− g(M ; c)(x)| ≤ ν(Ec(M))
νc(D(M))

≡ β0(M ; c). (4)

Since we assume that D = E, β0(M ; c) = 0. Thus by (3) and (4) we have

|(Gη(M ; c))(x)− (g(M ; c))(x)|
= |(Gη(M ; c))(x)− (G0(M ; c))(x) + (G0(M ; c))(x)− (g(M ; c))(x)|
≤ βη(M ; c) + β0(M ; c) = βη(M ; c).
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At last, we consider the difference between (g(M ; c))(x) and Hc(x). Put

max
z∈Ej

|Qη(z; c)− qj | = ej , q+
j = qj + ej , q−j = qj − ej .

Assume γ ≡ maxj ej < minj 6=k |qj − qk|/2. Then similar to Proposition 2 in
[1] we can prove that

(g(M ; c))(x) = Hc(x), x ∈ R \
⋃

j

[q−j , q+
j ],

Hc(x− γ) ≤ (g(M ; c))(x) ≤ Hc(x + γ), x ∈
⋃

j

[q−j , q+
j ].

Thus putting

H±(x) =




n∑

j=1

νc(Ej(M))
νc(E(M))

± βη(M ; c)


 Y

(
x− q∓j

)
,

we have the following Theorem:

Theorem 1. Let D = E, νc(E(M)) > 0 and Ej(M) 6= ∅, j = 1, · · · , n.
Assume γ < minj 6=k |qj − qk|/2. Then the graph of the monotone increasing
function (Gη(M ; c))(x) is contained in the closed domain E = {(x, y) ∈
R2; H−(x) ≤ y ≤ H+(x), 0 ≤ y ≤ 1}. (See the following stair like domain
(Fig2̇, left)).

A graph of (Gη(M ; c))(x) will be as in the right Fig. 2 and is in the stair
like domain E on the left Fig. 2.
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Remark. If |minj 6=k |qj − qk| − 2γ| is so small, then it will be hard to
see the steps on the graph of (Gη(M ; c))(x).

3.4. In the case of D 6= E

When D 6= E, then β0(M ; c) 6= 0 and ej will be bigger. Thus the stair
like domain in left Fig. 2 becomes larger (see Fig. 3). Put

ρη(M ; c) = βη(M ; c) + β0(M ; c),

H̃±(x) =




n∑

j=1

νc(Ej(M))
νc(E(M))

± ρη(M ; c)


 Y

(
x− q∓j

)
.

Then Theorem 1 will be restated as follows:

Theorem 2. Let νc(E(M)) > 0 and Ej(M) 6= ∅, j = 1, · · · , n. Assume
γ < minj 6=k |qj−qk|/2. Then the graph of the monotone increasing function
(Gη(M ; c))(x) is contained in the closed domain E = {(x, y) ∈ R2; H̃−(x) ≤
y ≤ H̃+(x), 0 ≤ y ≤ 1}.

Fig. 3

- x
q1

p
p
p
p
p

q2

p
p
p
p
p
p
p
p

q3

pp
pp
p
p
p
p
p
p
p
p

D = E =⇒ D 6= E

- x
q1

p
p
p
p
p

q2

p
p
p
p
p
p
p
p

q3

pp
pp
p
p
p
p
p
p
p
p

4. A generalization

The assumption νc(E(M)) > 0 in Theorem 1 and Theorem 2 is restric-
tive, in our previous papers we introduced the following space:

Ej(δ; M) = {z ∈ D(M); |bkSk(z)| ≤ δ|bjSj(z)| (k 6= j), Sj(z) 6= 0} .
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Roughly speaking, Ej(δ; M) describes the set of points where Sj(z) is domi-
nant over the other Sk(z)’s (k 6= j). In this paper we introduce the following
spaces:

Ecj1(δ) = {z ∈ D(M); |bkSk(z − ck1)| ≤ δ|bjSj(z)| (k 6= j),
≤ δ1|bjSj(z − cj1)|, Sj(z) 6= 0},

Ecj2(δ) = {z ∈ D(M); |bkSk(z − ck2)| ≤ δ|bjSj(z)| (k 6= j),
≤ δ2|bjSj(z − cj2)|, Sj(z) 6= 0},

Ecj (δ; M) = Ecj1(δ)
⋂

Ecj2(δ),

E(δ, c; M) = ∪jEcj (δ; M), Ec(δ, c; M) = D(M) \ E(δ, c;M).

If δ2 < 1/(n− 1), then on the set Ecj (δ; M), we have

|Qη(z)− qj | =
∣∣∣∣
∑n

k=1 akSk(z − ck1)∑n
k=1 bkSk(z − ck2)

− qj

∣∣∣∣

≤ |∑n
k=1 bk(qkSk(z − ck1)− qjSk(z − ck2))|
|bjSj(z − cj2)| −

∑
k 6=j |bkSk(z − ck2)|

≤ |∑n
k=1 bk(qkSk(z − ck1)− qjSk(z − ck2))|
δ/δ2|bjSj(z)| − (n− 1)δ|bjSj(z)|

=
|∑n

k=1 bk ((qk − qj)Sk(z − ck1) + qj(Sk(z − ck1)− Sk(z − ck2))) |
δ/δ2|bjSj(z)| − (n− 1)δ|bjSj(z)|

≤ (n− 1)δ2∆
1− (n− 1)δ2

+ ∆′ δ2

δ

|∑n
k=0 bk(Sk(z − ck1)− Sk(z − ck2))|

(1− (n− 1)δ2)|bjSj(z)| ,

where we put ∆ = maxj,k |qj − qk| and ∆′ = maxj |qj |. Further we put

Cj = max
z∈Ecj (δ;M)

|∑n
k=0 bk(Sk(z − ck1)− Sk(z − ck2))|

|bjSj(z)| ,

γ(δ) =
(n− 1)δ2∆

1− (n− 1)δ2
, γ(c) =

δ2

δ

∆′maxj Cj

1− (n− 1)δ2
, γ(δ, c) = γ(δ) + γ(c).

If Sj(z − cj1) = Sj(z − cj2), j = 1, · · · , n, then γ(c) = 0. Further if cj1 =
cj2 = 0, j = 1, · · · , n, then we can take δ = δ1 = δ2 besides γ(c) = 0. Define

(gδ(M ; c))(x)=
µ({z∈E(δ, c;M);<Q(z; c)<x,=Q(z; c)=0, Q(z; c) 6=0})

νc(E(δ, c; M))
,
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Hc,δ(x) =
n∑

j=1

νc(Ecj (δ; M))
νc(E(δ, c; M))

Y (x− qj)) .

Then similarly to Theorems 1 and 2 in [1], we can prove

|Gη(M ; c)(x)− (gδ(M ; c))(x)|
= |Gη(M ; c)(x)− (G0(M ; c))(x) + (G0(M ; c))(x)− (gδ(M ; c))(x)|

≤ βη(M ; c) +
νc(Ec

cj
(δ;M))

νc(D(M))
≡ ρη(δ, c; M),

where βη(M ; c) is defined by (3). Further similar to Proposition 2 in [1],
under the assumption of γ(δ, c) < minj 6=k |qj − qk|/2, we can prove that

(gδ(M ; c))(x) = Hc,δ(x), x ∈ R \ U [q; γ(δ, c)],

Hc,δ(x− γ(δ, c)) ≤ (gδ(M ; c))(x) ≤ Hc,δ(x + γ(δ, c)), x ∈ U [q; γ(δ, c)],

where we put U [q; γ(δ, c)] =
⋃

j [qj−γ(δ, c), qj +γ(δ, c)]. Define the two step
functions by

(H±
c,η(δ;M))(x) =




n∑

j=1

νc(Ecj (δ; M))
νc(E(δ, c; M))

± ρη(δ, c; M)


 Y (x− (qj ∓ γ(δ, c))) .

From the above-mentioned consideration, the following theorem is a
generalization of Theorem 3 in [1]:

Theorem 3. Let η > 0, 1/(n − 1) > δ2 > 0 and let (Gη(M ; c))(x)
be the function defined by (2). We assume that δ and δ2 are chosen so
small that γ(δ, c) < minj 6=k |qj − qk|/2 is satisfied. Further, we assume
νc(E(δ, c; M)) > 0. Then the graph of the monotone increasing function
(Gη(M ; c))(x) is contained in the closed domain:

{(x, y) ∈ R2; (H−
c,η(δ, c; M))(x) ≤ y ≤ (H+

c,η(δ, c; M))(x), 0 ≤ y ≤ 1}.
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When X = R2 and cj1 = cj2 = 0, j = 1, · · · , n, then this theorem is just
Theorem 3 in [1].

3.4. Remarks on Theorem 3

1. γ(δ) is an increasing function in δ.

2. For fixed δ, put F (n) = γ(δ). Since F ′(n) = δ∆/(1− (n− 1)δ)2 > 0,
γ(δ), γ(c) and γ(δ; c) are increasing functions in n for fixed δ.

3. If Sj(z − cj1) ≈ Sj(z − cj2), j = 1, · · · , n, then γ(c) ≈ 0. Further if
cjk ≈ 0, j = 1, · · · , n, k = 1, 2, then we can take δ1 ≈ δ ≈ δ2 besides
γ(c) ≈ 0.

4. νc(Ec(δ, c; M)) is a decreasing function in δ.

5. When qj is close to the neighbor ones, it will be difficult to find a
step in the graph of (Gη(M ; c))(x) or we may take two peaks for one
peak in the graph of (G′

η(M ; c))(x). Thus it is preferable that ∆ is
not small.

6. In general, ∆′ is not small. Therefore, Sj(z − cj1) ≈ Sj(z − cj2), j =
1, · · · , n, are necessary to γ(c) ≈ 0.

4. Remark for applications

To estimate the number of sources, both γ(δ, c) and ρn(δ, c; M) are ex-
pected to be small enough. By remarks 1, 2 and 5 in §3.4, since ∆ is expected
to be suitabley large, we have to take δ so small if we have many sources
(i.e. n is large). This means, for large n, we can estimate the number of
sources only the case that there exist domains such that each Sj dominates
over the other sources. Except the trivial cases, it will be hard to estimate
the number of sources when we have many sources. Further, in general, we
can not ignore the time delay; that is, at leaset one cjk does not vanish. But
by remark 6 in §3.4, Sj(z − cj1) ≈ Sj(z − cj2), j = 1, · · · , n, are expected.

As an example, we will consider the case that two observed signals
are given by (1). To transform the sources in the time-frequency domain,
we will take an wavelet transformation. The continuous wavelet transform
Wψs(t, ω) of s ∈ L2(R) is defined by

Wψs(t, ω) = |ω|−1/2
∫

R
s(x)ψ(

x− t

ω
)dx,
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where ψ is a wavelet function (see [1], for example). Thus, when we consider
wavelet transforms of sources with time delay, we have to study the quotient
function such as

Q(t, ω) =
∑n

j=1 ajSj(t− cj1,1, ω)∑n
j=1 bjSj(t− cj2,1, ω)

.

This is the case that X = R2
(t,ω) and cjk = (cjk,1, 0).

For a numerical experiment, see [2] and [3] for example.
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