

# AN APPLICATION OF THE SUBORDINATION CHAINS

### Georgia Irina Oros

### Abstract

The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential subordination [3] and was developed in [5]. The notion of strong differential subordination was introduced by J.A. Antonino and S. Romaguera in [1]. In [6] the author introduced the dual concept of strong differential superordination. In this paper we study strong differential superordination using the subordination chains.

MSC 2010: 30C45, 30A20, 34A30

Key Words and Phrases: differential subordination, subordination chain, differential superordination, strong differential subordination, strong differential superordination, subordinant, best subordinant, univalent function

# 1. Introduction and preliminaries

Let U denote the unit disc of the complex plane:

$$U = \{ z \in \mathbb{C} : |z| < 1 \}$$

and

$$\overline{U} = \{ z \in \mathbb{C} : |z| \le 1 \}.$$

<sup>© 2010,</sup> FCAA – Diogenes Co. (Bulgaria). All rights reserved.

Let  $\mathcal{H}(U \times \overline{U})$  denote the class of analytic functions in  $U \times \overline{U}$ . In [7] the authors define the classes

$$\mathcal{H}^*[a, n, \xi] = \{ f \in \mathcal{H}(U \times \overline{U}) : f(z, \xi) = a + a_n(\xi) z^n + a_{n+1}(\xi) z^{n+1} + \dots, z \in U, \xi \in \overline{U} \},$$

with  $a_k(\xi)$  holomorphic functions in  $\overline{U}$ ,  $k \geq n$ ,

$$\mathcal{H}_u(U) = \{ f \in \mathcal{H}^*[a, n, \xi] : f(\cdot, \xi) \text{ univalent in } U \text{ for all } \xi \in \overline{U} \},$$

and let

$$K = \left\{ f \in \mathcal{H}^*[a, n, \xi] : Re \frac{zf''(z, \xi)}{f'(z, \xi)} + 1 > 0, z \in U \text{ for all } \xi \in \overline{U} \right\}$$

the class of convex functions,

$$S^* = \{ f \in \mathcal{H}^*[a, n, \xi] : Re, \frac{zf'(z, \xi)}{f(z, \xi)} > 0, \ z \in U \text{ for all } \xi \in \overline{U} \}$$

the class of starlike functions.

In order to prove our main results we use the following definitions and lemma:

DEFINITION 1. ([7]) Let  $h(z,\xi)$ ,  $f(z,\xi)$  be analytic functions in  $U \times \overline{U}$ . The function  $f(z,\xi)$  is said to be strongly subordinate to  $h(z,\xi)$ , or  $h(z,\xi)$  is said to be strongly superordinate to  $f(z,\xi)$ , if there exists a function w analytic in U, with w(0) = 0, |w(z)| < 1 such that

$$f(z,\xi) = h(w(z),\xi)$$
, for all  $\xi \in \overline{U}$ ,  $z \in U$ .

In such a case we write

$$f(z,\xi) \prec \prec h(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Remark 1. (i) If  $f(z,\xi)$  is analytic in  $U \times \overline{U}$  and univalent in U for all  $\xi \in \overline{U}$ , Definition 1 is equivalent to

$$h(0,\xi)=f(0,\xi)$$
 for all  $\xi\in\overline{U}$  and  $h(U\times\overline{U})\subset f(U\times\overline{U}).$ 

(ii) If  $h(z,\xi) \equiv h(z)$  and  $f(z,\xi) \equiv f(z)$  then the strong superordination becomes the usual notion of superordination.

DEFINITION 2. ([7]) We denote by Q the set functions  $q(\cdot,\xi)$  that are analytic and injective, as function of z on  $\overline{U} \setminus E(q)$  where

$$E(q) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} q(z, \xi) = \infty \right\}$$

and are such that  $q'(\zeta, \xi) \neq 0$ , for  $\zeta \in \partial U \setminus E(q), \xi \in \overline{U}$ .

The subclass of Q for which  $q(0,\xi) = a$  is denoted by Q(a).

LEMMA 1. ([8, Th. 2]) Let  $h(\cdot,\xi)$  be analytic in  $U \times \overline{U}$ ,  $q(\cdot,\xi) \in \mathcal{H}^*[a,n,\xi]$ ,  $\varphi \in \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$ , and suppose that

$$\varphi(q(z,\xi),tzq'(z,\xi);\zeta,\xi) \in h(U \times \overline{U}),$$

for  $z \in U$ ,  $\zeta \in \partial U$ ,  $\xi \in \overline{U}$  and  $0 < t \le \frac{1}{n} \le 1$ . If  $p(\cdot, \xi) \in Q(a)$  and  $\varphi(p(z, \xi), zp'(z, \xi); z, \xi)$  is univalent in U, for all  $\xi \in \overline{U}$ , then

$$h(z,\xi) \prec \prec \varphi(p(z,\xi), zp'(z,\xi); z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Furthermore, if

$$\varphi(q(z,\xi),zq'(z,\xi);z,\xi) = h(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

has a univalent solution  $q(\cdot,\xi) \in Q(a)$ , then  $q(\cdot,\xi)$  is the best subordinant, for all  $\xi \in \overline{U}$ .

DEFINITION 3. ([6]) Let  $\varphi: \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$  and h be analytic in  $U \times \overline{U}$ .

If  $p(\cdot,\xi) \in \mathcal{H}^*[a,n,\xi]$  and  $\varphi[p(z,\xi),zp'(z,\xi);z,\xi)$  are univalent in U, for all  $\xi \in \overline{U}$  and satisfy the (first-order) strong differential superordination

$$h(z,\xi) \prec \prec \varphi(p(z,\xi), zp'(z,\xi); z,\xi), \quad z \in U, \ \xi \in \overline{U},$$
 (1)

then  $p(\cdot,\xi)$  is called a solution of the strong differential superordination. An analytic function  $q(\cdot,\xi)$  is called a subordinant of the solutions of the strong differential superordination, or simply a subordinant if  $q(z,\xi) \prec \prec p(z,\xi)$  for all  $\xi \in \overline{U}$ , for all  $p(\cdot,\xi)$  satisfying (1). A univalent subordinant  $\widetilde{q}$  that satisfies  $q(z,\xi) \prec \prec \widetilde{q}(z,\xi)$  for all  $\xi \in \overline{U}$ , for all subordinants  $q(\cdot,\xi)$  of (1) is said to be the best subordinant.

Note that the best subordinant is unique up to a rotation of U.

### 2. Main results

Using the definitions given by Pommerenke [9, p.157] and Miller Mocanu [5, p. 4], we introduce the following definition:

DEFINITION 4. The function  $L: U \times \overline{U} \times [0, \infty) \to \mathbb{C}$  is a strong subordination (or a Loewner) chain if  $L(z, \xi; t)$  is analytic and univalent in U for  $\xi \in \overline{U}$ ,  $t \geq 0$ ,  $L(z, \xi; t)$  is continuously differentiable on  $\mathbb{R}^+$  for all  $z \in U$ ,  $\xi \in \overline{U}$ , and  $L(z, \xi; s) \prec \prec L(z, \xi; t)$  where  $0 \leq s \leq t$ .

The following lemma provides a sufficient condition for  $L(z, \xi; t)$  to be a strong subordination chain and it was obtained following a result given in [2, Lemma 1.2.5].

Lemma 2. The function

$$L(z,\xi;t) = a_1(\xi,t)z + a_2(\xi,t)z^2 + \dots,$$

with  $a_1(\xi,t) \neq 0$  for  $\xi \in \overline{U}$ ,  $t \geq 0$  and  $\lim_{t \to \infty} |a_1(\xi,t)| = \infty$ , is a strong subordination chain if

$$Rez \frac{\partial L(z,\xi;t)/\partial z}{\partial L(z,\xi;t)/\partial t} > 0, \quad z \in U, \ \xi \in \overline{U}, \ t \ge 0.$$

Let  $\varphi: \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$  be an analytic function in a domain  $D \subset \mathbb{C}^2$ , let  $p(\cdot, \xi) \in \mathcal{H}(U \times \overline{U})$  such that  $\varphi(p(z, \xi), zp'(z, \xi); z, \xi)$  is univalent in U for all  $\xi \in \overline{U}$  and suppose that  $p(\cdot, \xi)$  satisfies the first-order strong differential superordination

$$h(z,\xi) \prec \prec \varphi(p(z,\xi), zp'(z,\xi); z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$
 (2)

In the case when

$$\varphi(p(z,\xi),zp'(z,\xi);z,\xi) = \alpha(p(z,\xi)) + \beta(p(z,\xi))\gamma(zp'(z,\xi))$$
(3)

we determine conditions on  $h, \alpha, \beta$  and  $\gamma$  so that the strong superordination (2) implies  $q(z,\xi) \prec \prec p(z,\xi)$ ,  $z \in U$ ,  $\xi \in \overline{U}$ , where  $q(\cdot,\xi)$  is the largest function so that  $q(z,\xi) \prec \prec p(z,\xi)$ ,  $z \in U$ ,  $\xi \in \overline{U}$  for all functions  $p(\cdot,\xi)$  satisfying the first-order differential superordination (2), i.e.  $q(\cdot,\xi)$  is the best subordinant.

THEOREM 1. Let  $q(\cdot,\xi) \in \mathcal{H}^*[a,1,\xi]$ , let  $\varphi : \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$  and let  $\varphi(q(z,\xi),zq'(z,\xi)) \equiv h(z,\xi), z \in U, \xi \in \overline{U}$ .

If  $L(z,\xi;t) = \varphi(q(z,\xi),tzq'(z,\xi))$  is a strong subordination chain, and  $p \in \mathcal{H}^*[a,1,\xi] \cap Q$ , then

$$h(z,\xi) \prec \prec \varphi(p(z,\xi), zp'(z,\xi))$$
 (4)

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Furthermore, if  $\varphi(q(z,\xi),zq'(z,\xi))=h(z,\xi)$  has an univalent solution  $q(\cdot,\xi)\in Q$ , then  $q(\cdot,\xi)$  is the best subordinant.

Proof. Since  $L(z,\xi,;t)$  is a strong subordination chain, we have

$$L(z,\xi;t) \prec \prec L(z,\xi;1)$$
, for  $z \in U$ ,  $\xi \in \overline{U}$ ,  $0 < t \le \frac{1}{n} \le 1$ ,

or equivalently

$$\varphi(q(z,\xi),tzq'(z,\xi)) \prec \prec \varphi(q(z,\xi),zq'(z,\xi)) = h(z,\xi). \tag{5}$$

Since (5) implies  $\varphi(q(z,\xi),tzq'(z,\xi))\in h(U\times \overline{U})$  and using Lemma 1, we have

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $q(z,\xi)$  is the best subordinant.

THEOREM 2. Let  $q(\cdot,\xi)$  be a convex (univalent) function in the unit disc U, for all  $\xi \in \overline{U}$ . Let  $\alpha, \beta \in \mathcal{H}(D)$ , where  $D \supset q(U \times \overline{U})$  is a domain, and let  $\gamma \in \mathcal{H}(\mathbb{C})$  suppose that

$$\operatorname{Re} \frac{\alpha'(q(z,\xi)) + \beta'(q(z,\xi))\gamma(tzq'(z,\xi))}{\beta(q(z,\xi))\gamma'(tzq'(z,\xi))} > 0, \tag{6}$$

 $\forall z \in U, \ \xi \in \overline{U} \ and \ \forall \ t \geq 0.$ 

If  $p(\cdot,\xi) \in \mathcal{H}^*[q(0,\xi),1,\xi] \cap Q$ , with  $p(U \times \overline{U}) \subset D$  and  $\alpha(p(z,\xi)) + \beta(p(z,\xi))\gamma(zp'(z,\xi))$  is univalent in U, for all  $\xi \in \overline{U}$ , then

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $q(\cdot,\xi)$  is the best subordinant.

Proof. Let  $\varphi(p(z,\xi),zp'(z,\xi)=\alpha(p(z,\xi))+\beta(p(z,\xi))\gamma(zp'(z,\xi))$ . By the hypothesis, we have

$$h(z,\xi) \prec \prec \varphi(p(z,\xi), zp'(z,\xi)), \quad z \in U, \ \xi \in \overline{U}$$
 (8)

and  $\varphi(p(z,\xi),zp'(z,\xi))$  is univalent in U for all  $\xi \in \overline{U}$ . If we let

$$L(z,t) = \alpha(q(z,\xi)) + \beta(q(z,\xi))\gamma(tzq'(z,\xi)) = a_1(t,\xi)z + a_2(t,\xi)z^2 + \dots, (9)$$

differentiating (9), we obtain

$$\frac{\partial L(z,t)}{\partial z} = \alpha'(q(z,\xi)) \frac{\partial q(z,\xi)}{\partial z} 
+ \beta'(q(z,\xi)) \frac{\partial q(z,\xi)}{\partial z} \gamma(tzq'(z,\xi) 
+ \beta(q(z,\xi)) \gamma'(tzq'(z,\xi)) \left[ tq'(z,\xi) + tz \frac{\partial^2 q(z,\xi)}{\partial z^2} \right].$$
(10)

For z = 0, using (10), we have

$$\frac{\partial L(0,t)}{\partial z} = \alpha'(q(0,\xi))q'(0,\xi) + \beta'(q(0,\xi))q'(0,\xi)\gamma(0) 
+ \beta(q(0,\xi))\gamma'(0)tq'(0,\xi) 
= \beta(q(0,\xi))\gamma'(0)q'(0,\xi) \left[ t + \frac{\alpha'(q(0,\xi)) + \beta'(q(0,\xi))\gamma(0)}{\beta q(0,\xi)\gamma'(0)} \right].$$
(11)

From the univalence of q we have  $q'(0,\xi)\neq 0$  and by using (6) for z=0 we deduce that

$$\frac{\partial L(0,t)}{\partial z} = a_1(t,\xi) \neq 0, \ \forall \ t \ge 0$$
 (12)

and

$$\lim_{t \to \infty} |a_1(t, \xi)| = \infty.$$

We calculate

$$\frac{\partial L(z,t)}{\partial t} = \beta(q(z,\xi))\gamma'(tzq'(z,\xi))zq'(z,\xi) = a'_1(t,\xi)z + a'_2(t,\xi)z^2 + \dots$$

A simple calculus shows that

$$\frac{\frac{z\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}} = \frac{z\alpha'(q(z,\xi))q'(z,\xi) + z\beta'(q(z,\xi))q'(z,\xi)\gamma(tzq'(z,\xi))}{\beta(q(z,\xi))\gamma'(tzq'(z,\xi))zq'(z,\xi)}$$
(13)

$$\begin{split} &+\frac{z\beta(q(z,\xi))\gamma'(tzq'(z,\xi))[tq'(z,\xi)+tzq''(z,\xi)]}{\beta(q(z,\xi))\gamma'(tzq'(z,\xi))zq'(z,\xi)}\\ &=\frac{\alpha'(q(z,\xi))+\beta'(z,\xi)\gamma(tzq'(z,\xi))}{\beta(q(z,\xi))\gamma'(tzq'(z,\xi))}+t\left[1+\frac{zq''(z,\xi)}{q'(z,\xi)}\right]. \end{split}$$

We evaluate

$$Re \frac{z\partial L(z,\xi)/\partial z}{\partial L(z,\xi)/\partial t}$$
 (14)

$$= \operatorname{Re} \left\{ \frac{\alpha' q(z,\xi) + \beta'(z,\xi) \gamma(tzq'(z,\xi))}{\beta q(z,\xi) \gamma'(tzq'(z,\xi))} + t \left[ 1 + \frac{zq''(z,\xi)}{q'(z,\xi)} \right] \right\}.$$

According to (6) and using the fact that  $q(\cdot, \xi)$  is a convex function in U for all  $\xi \in \overline{U}$ , we obtain

$$Re\left[\frac{z\partial L(z,\xi)/\partial z}{\partial L(z,\xi)/\partial t}\right] > 0, \quad z \in U, \ \xi \in \overline{U}, \ t \ge 0,$$
 (15)

and by Lemma 2 we conclude that L is a subordination chain. Now, applying Lemma 1, we obtain

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U},$$

and  $q(\cdot,\xi)$  is the best subordinant.

Taking  $\beta(w) \equiv 1$  in the above theorem we get the next corollary.

COROLLARY 1. Let  $q(\cdot,\xi)$  be a convex (univalent) function in U for all  $\xi \in \overline{U}$ ,  $\alpha \in \mathcal{H}(D)$ , where  $D \supset q(U \times \overline{U})$  is a domain, and let  $\gamma \in \mathcal{H}(\mathbb{C})$ . Suppose that

$$Re \frac{\alpha'(q(z,\xi))}{\gamma'(tzq'(z))} > 0, \ \forall \ z \in U, \ \xi \in \overline{U} \ and \ \forall \ t \ge 0.$$

If  $p(\cdot,\xi) \in \mathcal{H}^*[q(0,\xi),1,\xi] \cap Q$ , with  $p(U \times \overline{U}) \subset D$ , and  $\alpha(p(z,\xi)) + \gamma(zp'(z,\xi))$  is univalent in U, for all  $\xi \in \overline{U}$ , then

$$\alpha(q(z,\xi)) + \gamma(zq'(z,\xi)) \prec \prec \alpha(p(z,\xi)) + \gamma(zp'(z,\xi))$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $q(\cdot,\xi)$  is the best subordinant.

For the particular case when  $\gamma(w)=w,$  Theorem 2 can be rewritten as follows:

COROLLARY 2. Let  $q(z,\xi)$  be a univalent function in U for all  $\xi \in \overline{U}$  and let  $\alpha, \beta \in \mathcal{H}(D)$ , where  $D \supset q(U \times \overline{U})$  is a domain. Suppose that:

(i) 
$$Re \frac{\alpha'(q(z,\xi))}{\beta(q(z,\xi))} > 0$$
,  $\forall z \in U$ ,  $\xi \in \overline{U}$  and

(ii)  $Q(z,\xi) = zq'(z,\xi)\beta(q(z,\xi))$  is a starlike (univalent) function in U for all  $\xi \in \overline{U}$ .

If  $p(\cdot,\xi) \in \mathcal{H}^*[q(0,\xi),1] \cap Q$ , with  $p(U \times \overline{U}) \subset D$ , and  $\alpha(p(z,\xi)) + zp'(z,\xi)\beta(p(z,\xi))$  is univalent in U for all  $\xi \in \overline{U}$ , then

$$\alpha(q(z,\xi)) + zq'(z,\xi)\beta(q(z,\xi)) \prec \prec \alpha(p(z,\xi)) + zp'(z,\xi)\beta(p(z,\xi))$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $q(\cdot, \xi)$  is the best subordinant.

For the case  $\beta(w)=1$ , using the fact that the function  $Q(z,\xi)=zq'(z,\xi)$  is starlike (univalent) in U for all  $\xi\in\overline{U}$  if and only if  $q(\cdot,\xi)$  is convex (univalent) in U for all  $\xi\in\overline{U}$ , Corollary 2 becomes:

COROLLARY 3. Let  $q(\cdot,\xi)$  be a convex (univalent) function in U for all  $\xi \in \overline{U}$  and let  $\alpha \in \mathcal{H}(D)$ , where  $D \supset q(U \times \overline{U})$  is a domain. Suppose that

$$Re\alpha'(q(z,\xi)) > 0, \quad z \in U, \ \xi \in \overline{U}.$$
 (16)

If  $p(\cdot,\xi) \in \mathcal{H}^*[q(0,\xi),1,\xi] \cap Q$ , with  $p(U \times \overline{U}) \subset D$  and  $\alpha(p(z,\xi)) + zp'(z,\xi)$  is univalent in U for all  $\xi \in \overline{U}$ , then

$$\alpha(q(z,\xi)) + zq'(z,\xi) \prec \prec \alpha(p(z,\xi)) + zp'(z,\xi)$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U},$$

and  $q(\cdot,\xi)$  is the best subordinant.

Next we will give some particular cases of the above results obtained for appropriate choices of the  $q(\cdot, \xi)$ ,  $\alpha$  and  $\beta$  functions.

EXAMPLE 1. Let  $q(\cdot,\xi)$  be a convex (univalent) function in U for all  $\xi \in \overline{U}$  and let  $\gamma \in \mathbb{C}$ , with  $Re\gamma > 0$ . If  $p(\cdot,\xi) \in \mathcal{H}^*[p(0,\xi),1,\xi] \cap Q$  and  $p(z,\xi) + \frac{zp'(z,\xi)}{\gamma}$  is univalent in U for all  $\xi \in \overline{U}$ , then

$$q(z,\xi) + \frac{zq'(z,\xi)}{\gamma} \prec \prec p(z,\xi) + \frac{zp'(z,\xi)}{\gamma}$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $q(\cdot, \xi)$  is the best subordinant.

P r o o f. Taking  $\alpha(w) = w$  and  $\beta(w) = \frac{1}{\gamma}$ ,  $Re \gamma > 0$ , in Corollary 2, condition (i) holds if  $Re\gamma > 0$  and (ii) holds if and only if  $g(\cdot, \xi)$  is a convex (univalent) function in U for all  $\xi \in \overline{U}$ . From Corollary 2, we have

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Example 2. Let  $\beta>0,\ q(\cdot,\xi)$  be a univalent function in U for all  $\xi\in\overline{U}$  and suppose that

$$Re q(z,\xi) > \beta, \quad z \in U.$$
 (17)

If  $p(\cdot,\xi) \in \mathcal{H}^*[q(0,\xi),1] \cap Q$  and  $\frac{p^2(z,\xi)}{2} - \beta p(z,\xi) + zp'(z,\xi)$  is univalent in U for all  $\xi \in \overline{U}$ , then

$$\frac{q^{2}(z,\xi)}{2} - \beta q(z,\xi) + zq'(z,\xi) \prec \frac{p^{2}(z,\xi)}{2} - \beta p(z,\xi) + zp'(z,\xi)$$

implies  $q(z,\xi) \prec \prec p(z,\xi)$ , for all  $\xi \in \overline{U}$  and  $q(\cdot,\xi)$  is the best subordinant.

Proof. If we consider in Corollary 3 the case

$$\alpha(w) = \frac{w^2}{2} - \beta w,$$

then we may easily see that (16) is equivalent to (17).

From Corollary 3, we have

$$q(z,\xi) \prec \prec p(z,\xi),$$

and  $q(\cdot,\xi)$  is the best subordinant.

Remark 2. The function

$$q(z,\xi) = \frac{\xi + (2\beta - 1)z\xi}{1+z}, \quad 0 < \beta < \frac{1}{Re\,\xi}, \ \xi \in \overline{U}, \ z \in U,$$

is convex (univalent) in U for all  $\xi \in \overline{U}$  and  $Re q(z,\xi) > \beta Re \xi$ ,  $z \in U$ ,  $\xi \in \overline{U}$ . Hence, by using Example 2 we have:

If  $p(\cdot,\xi) \in \mathcal{H}\left[\frac{\xi}{2},1,\xi\right] \cap Q$  such that  $\frac{p^2(z,\xi)}{2} - \beta p(z,\xi) + zp'(z,\xi)$  is univalent in U and  $\beta < \frac{1}{\text{Re}\,\xi}$ , then

$$\frac{\xi^{2}[1+2(2\beta-1)z+(2\beta-1)^{2}z^{2}]}{2(1+z)^{2}} - \beta \cdot \frac{\xi[1+(2\beta-1)z]}{1+z} + z \cdot \frac{\xi(2\beta-2)}{(1+z)^{2}}$$

$$\prec \prec \frac{p^2(z,\xi)}{2} - \beta p(z,\xi) + zp'(z,\xi)$$

implies

$$\frac{\xi + (2\beta - 1)z\xi}{1 + z} \prec p(z, \xi), \quad z \in U, \ \xi \in \overline{U}$$

and  $\frac{\xi + (2\beta - 1)z\xi}{1+z}$  is the best subordinant.

#### References

- J.A. Antonino and S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations. *Journal of Differential Equations*, 114 (1994), 101-105.
- [2] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results. Casa Cărții de Știință, Cluj-Napoca, 2005.
- [3] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions. *Michig. Math. J.* **28** (1981), 157-171.
- [4] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations. Complex Variables 48, No 10 (October 2003), 815-826.
- [5] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York Basel, 2000.
- [6] G.I. Oros, Strong differential superordination. Acta Universitatis Apulensis 19 (2009), 101-106.
- [7] G.I. Oros, On a new strong differential subordination, To appear.
- [8] Gh. Oros, Briot-Bouquet strong differential superordinations and sandwich theorems. To appear.
- [9] Ch. Pommerenke, *Univalent Functions*. Vanderhoech and Ruprecht, Göttingen, 1975.

Department of Mathematics, University of Oradea

Str. Universității, No.1

410087 Oradea - ROMANIA

e-mail: qeorqia\_oros\_ro@yahoo.co.uk Received: GFTA, August 27-31, 2010