SOME DISTORTION THEOREMS FOR

 STARLIKE HARMONIC FUNCTIONSEmel Yavuz Duman
Dedicated to Professor Ya̧ar Polatoğlu the occasion of his $60^{\text {th }}$ birthday

Abstract

In this paper, we consider harmonic univalent mappings of the form $f=h+\bar{g}$ defined on the unit disk \mathbb{D} which are starlike. Distortion and growth theorems are obtained.

MSC 2010: 30C55, 30C45
Key Words and Phrases: harmonic function, starlike harmonic function, growth theorem, distortion theorem

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply connected domain \mathfrak{D} is said to be harmonic in \mathfrak{D} if both u and v are real harmonic in \mathfrak{D}, that is, u, v satisfy, respectively the Laplace equations

$$
\Delta u=u_{x x}+u_{y y}=0, \quad \Delta v=v_{x x}+v_{y y}=0 .
$$

There is a well-known relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v which are defined on a simply connected domain \mathfrak{D} there exist analytic functions U and V so that

$$
u=\mathfrak{R e}(U) \text { and } v=\mathfrak{I m}(V) .
$$

[^0]Therefore, it has a canonical decomposition

$$
\begin{equation*}
f=h+\bar{g} \tag{1}
\end{equation*}
$$

where h and g are, respectively, the analytic functions

$$
h=\frac{U+V}{2} \text { and } g=\frac{U-V}{2} .
$$

We call h the analytic part and g the co-analytic part of f. It is fact that if $f=u+i v$ has continuous partial derivatives, then f is analytic if and only if the Cauchy-Riemann equations are satisfied. It follows that every analytic function is a complex-valued harmonic function. However, not every complex-valued harmonic function is analytic.

The Jacobian J_{f} of a function $f=u+i v$ has a very important place in the theory of harmonic mappings, defined by

$$
J_{f}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=u_{x} v_{y}-u_{y} v_{x} .
$$

Or, in terms of f_{z} and $f_{\bar{z}}$, we have

$$
J_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2},
$$

where $f=h+\bar{g}$ is the harmonic function in \mathfrak{D}.
If $f=h+\bar{g}$ is a harmonic function on \mathfrak{D} with $J_{f}>0$, then we say that f is a sense-preserving (or orientation preserving) harmonic function on \mathfrak{D}. In this case we have

$$
\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|
$$

for all $z \in \mathfrak{D}$. If f has $J_{f}<0$, then \bar{f} is sense preserving. For convenience, we will only examine sense preserving harmonic functions.

The mapping $z \rightarrow f(z)$ is sense preserving and locally univalent in \mathfrak{D} if and only if $J_{f}>0$ in \mathfrak{D}. The function $f=h+\bar{g}$ is said to be harmonic univalent in \mathfrak{D} if the mapping $z \rightarrow f(z)$ is sense preserving harmonic and univalent in \mathfrak{D}.

The second complex dilatation of a harmonic function $f=h+\bar{g}$ is the quantity

$$
\begin{equation*}
\omega(z)=\frac{\overline{f_{\bar{z}}}}{f_{z}}=\frac{g^{\prime}(z)}{h^{\prime}(z)} \quad(z \in \mathfrak{D}) . \tag{2}
\end{equation*}
$$

Let $\mathcal{S}_{\mathcal{H}}$ denote the family of functions $f=h+\bar{g}$ that are harmonic, sense preserving, and univalent in the open unit disc $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ with the normalization

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{3}
\end{equation*}
$$

It follows from the sense-preserving property if $f \in \mathcal{S}_{\mathcal{H}}$, then we have $|\omega(z)|<1$ for all $z \in \mathbb{D}$. Thus, it is easy to see that $\left|b_{1}\right|<1$. Since the second complex dilatation ω of a sense preserving harmonic mapping f is always an analytic function of modulus less than one, then this function ω will be called the analytic dilatation of f. Also $f \in \mathcal{S}_{\mathcal{H}}$ reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [1] investigated the class $\mathcal{S}_{\mathcal{H}}$ as well as its geometric subclasses and obtained some coefficient bounds. Many studies have been done on this class and its subclasses, and continued taking place.

A sense-preserving harmonic mapping $f \in \mathcal{S}_{\mathcal{H}}$ is in the class $\mathcal{S}_{\mathcal{H}}^{*}$ if the range $f(\mathbb{D})$ is starlike with respect to the origin. A function $f \in \mathcal{S}_{\mathcal{H}}^{*}$ is a called harmonic starlike mapping in \mathbb{D}. A function $f=h+\bar{g}$ with such a property must satisfy the condition

$$
\mathfrak{R e}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}\right)>0
$$

for all $z \in \mathbb{D}$.
In our proofs we use the following lemma:
Lemma 1.1[2]. If $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H}}^{*}$, then there exist angles α and β such that

$$
\begin{equation*}
\mathfrak{R e}\left\{\left(e^{i \alpha} \frac{h(z)}{z}+e^{-i \alpha} \frac{g(z)}{z}\right)\left(e^{i \beta}-e^{-i \beta} z^{2}\right)\right\}>0 \tag{4}
\end{equation*}
$$

for all $z \in \mathbb{D}$.
Let \mathcal{A} denote the class of all functions s_{1} analytic in the open unit disk \mathbb{D} with the usual normalization $s_{1}(0)=s_{1}^{\prime}(0)-1=0$. If s_{1} and s_{2} are analytic in \mathbb{D}, we say that s_{1} is subordinate to s_{2}, written $s_{1} \prec s_{2}$ or $s_{1}(z) \prec s_{2}(z)$, if s_{2} is univalent, then we have $s_{1}(0)=s_{2}(0)$ and $s_{1}(\mathbb{D}) \subset s_{2}(\mathbb{D})$.

Let \mathcal{P} be the class of functions p of the form

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

which are analytic in the open unit disk \mathbb{D}. If p in \mathcal{P} satisfies $\mathfrak{R e} p(z)>0$ for $z \in \mathbb{D}$, then we say that p is the Carathéodory function. It has been shown that for a function $p(z) \in \mathcal{P}$, the following inequalities are satisfied ([3]):

$$
\begin{equation*}
\frac{1-r}{1+r} \leq|p(z)| \leq \frac{1+r}{1-r} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|z \frac{p^{\prime}(z)}{p(z)}\right| \leq \frac{2 r}{1-r^{2}} \tag{6}
\end{equation*}
$$

for all $|z|=r<1$.

2. Results

Lemma 2.1. Let $f=h+\bar{g}$ be an element of $\mathcal{S}_{\mathcal{H}}^{*}$, then we have

$$
\begin{align*}
\frac{(A+|B|) r-(A-|B|) r^{2}}{(1+r)\left(1+r^{2}\right)} & \leq\left|h(z)-e^{-2 i \alpha} g(z)\right| \\
& \leq \frac{(A+|B|) r+(A-|B|) r^{2}}{(1+r)\left(1+r^{2}\right)} \tag{7}
\end{align*}
$$

for $|z|=r<1$ where $A=\cos (\beta+\alpha)-a \cos (\beta-\alpha)+b \sin (\beta-\alpha)>0$, $B=\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha), g^{\prime}(0)=b_{1}=a+i b$ for some choice of angles α and β.

Proof. Since $f=h+\bar{g}$ is element of $\mathcal{S}_{\mathcal{H}}^{*}$, then we have

$$
\left.\frac{h(z)}{z}\right|_{z=0}=1,\left.\quad \frac{g(z)}{z}\right|_{z=0}=b_{1}=a+i b
$$

and if we consider (4) as a function with positive real part

$$
\begin{equation*}
p(z)=\left(e^{i \alpha} \frac{h(z)}{z}+e^{-i \alpha} \frac{g(z)}{z}\right)\left(e^{i \beta}-e^{-i \beta} z^{2}\right) \tag{8}
\end{equation*}
$$

has the properties $\mathfrak{R e} p(z)>0$ and $p(0)=[\cos (\beta+\alpha)-a \cos (\beta-\alpha)+$ $b \sin (\beta-\alpha)] i[\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha)]$ where $b_{1}=a+i b$ and α, β are angles.

On the other hand, the assumption $p(0)=1$ is not restriction for the Carathédory class. Indeed, let $p(z)$ be element of the Carathédory class with $p(0)=A+i B, A>0$, then the function

$$
p_{1}(z)=\frac{1}{A}(p(z)-i B)
$$

satisfies the condition $p_{1}(0)=1$ and $\mathfrak{R e} p_{1}(z)>0$. This shows that $p_{1}(z)$ is the element of the Carathédory class. Therefore, the function

$$
\begin{align*}
p_{1}(z)=\frac{1}{A}(p(z)- & i B)=\frac{1}{\cos (\beta+\alpha)-a \cos (\beta-\alpha)+b \sin (\beta-\alpha)} \\
\times & {\left[\left(e^{i \alpha} \frac{h(z)}{z}-e^{-i \alpha} \frac{g(z)}{z}\right)\right.} \tag{9}\\
& -i(\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha))]
\end{align*}
$$

is the Carathédory function under the condition $A=\cos (\beta+\alpha)-a \cos (\beta-$ $\alpha)+b \sin (\beta-\alpha)>0$. Then we have

$$
\begin{equation*}
\frac{1-r}{1+r} \leq\left|p_{1}(z)\right| \leq \frac{1+r}{1-r} \tag{10}
\end{equation*}
$$

for $p_{1}(z) \in \mathcal{P}$ and $|z|=r<1$. If we substitute (9) into (10) and after simple calculations we get

$$
\begin{equation*}
\frac{(A+|B|)-(A-|B|) r}{1+r} \leq|p(z)| \leq \frac{(A+|B|)+(A-|B|) r}{1-r} . \tag{11}
\end{equation*}
$$

Using (8) and (11) we obtain

$$
\begin{align*}
\frac{(A+|B|) r-(A-|B|) r^{2}}{(1+r)\left|e^{i \beta}-e^{-i \beta} z^{2}\right|} & \leq\left|e^{i \alpha} h(z)-e^{-i \alpha} g(z)\right| \\
& \leq \frac{(A+|B|) r+(A-|B|) r^{2}}{(1-r)\left|e^{i \beta}-e^{-i \beta} z^{2}\right|} . \tag{12}
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
\frac{1}{1+r^{2}} \leq \frac{1}{\left|e^{i \beta}-e^{-i \beta} z^{2}\right|} \leq \frac{1}{1-r^{2}} \tag{13}
\end{equation*}
$$

Therefore, if we use (13) in (12) we obtain the desired result.
Theorem 2.2. Let $f=h+\bar{g}$ be element of $\mathcal{S}_{\mathcal{H}}^{*}$, then we have

$$
\left|h^{\prime}(z)-e^{-2 i \alpha} g^{\prime}(z)\right| \leq \frac{(A+|B|)+(A-|B|) r}{(1-r)^{3}}
$$

for $|z|=r<1$ where $A=\cos (\beta+\alpha)-a \cos (\beta-\alpha)+b \sin (\beta-\alpha)>0$, $B=\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha), g^{\prime}(0)=b_{1}=a+i b$ for some choice of angles α and β.

Proof. Using Lemma 2.1, we obtain that

$$
z \frac{p^{\prime}(z)}{p(z)}=z \frac{A p_{1}^{\prime}(z)}{A p_{1}(z)+i B}
$$

for all z in the open unit disc. Also, we know that the following inequality satisfies for functions which in the Carathédory class:

$$
\begin{equation*}
\left|z \frac{p^{\prime}(z)}{p(z)}\right|=\left|z \frac{p_{1}^{\prime}(z)}{p_{1}(z)+i \frac{B}{A}}\right| \leq \frac{2 r}{1-r^{2}} . \tag{14}
\end{equation*}
$$

On the other hand, from the equation (8) we have

$$
\begin{equation*}
\frac{z h^{\prime}(z)-e^{-2 i \alpha} z g^{\prime}(z)}{h(z)-e^{-2 i \alpha} g(z)}=\frac{1+e^{-2 i \beta} z^{2}}{1-e^{-2 i \beta} z^{2}}+z \frac{p^{\prime}(z)}{p(z)} \tag{15}
\end{equation*}
$$

Considering (14) and (15) together, we obtain

$$
\begin{align*}
\left|\frac{z h^{\prime}(z)-e^{-2 i \alpha} z g^{\prime}(z)}{h(z)-e^{-2 i \alpha} g(z)}\right| & =\left|\frac{1+e^{-2 i \beta} z^{2}}{1-e^{-2 i \beta} z^{2}}+z \frac{p^{\prime}(z)}{p(z)}\right| \\
& \leq\left|\frac{1+e^{-2 i \beta} z^{2}}{1-e^{-2 i \beta} z^{2}}\right|+\left|z \frac{p^{\prime}(z)}{p(z)}\right| \tag{16}
\end{align*}
$$

Also we know that

$$
\begin{equation*}
\frac{1-r^{2}}{1+r^{2}} \leq\left|\frac{1+e^{-2 i \beta} z^{2}}{1-e^{-i 2 \beta}}\right| \leq \frac{1+r^{2}}{1-r^{2}} \tag{17}
\end{equation*}
$$

Using (17) and (14) in (16), we get

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)-e^{-2 i \alpha} z g^{\prime}(z)}{h(z)-e^{-2 i \alpha} g(z)}\right| \leq\left|\frac{1+e^{-2 i \beta} z^{2}}{1-e^{-2 i \beta} z^{2}}\right|+\left|z \frac{p^{\prime}(z)}{p(z)}\right|=\frac{1+r}{1-r} \tag{18}
\end{equation*}
$$

Using Lemma 2.1 in (18), we obtain that

$$
\left|h^{\prime}(z)-e^{-2 i \alpha} g^{\prime}(z)\right| \leq \frac{(A+|B|)+(A-|B|) r}{(1-r)^{3}}
$$

Lemma 2.3. Let $\omega(z)$ be the analytic dilatation of $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H}}$ defined by $\omega(z)=g^{\prime}(z) / h^{\prime}(z)$ for all $z \in \mathbb{D}$, then we have

$$
\begin{equation*}
\frac{(1-r)\left(1-\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \leq\left|1-e^{-2 i \alpha} \omega(z)\right| \leq \frac{(1+r)\left(1+\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \tag{19}
\end{equation*}
$$

$(|z|=r<1)$ where $g^{\prime}(0)=b_{1} \neq 0$ and $\left|b_{1}\right|<1$.
Proof. Let we define the function

$$
\phi(z)=\frac{\omega(z)-b_{1}}{1-\overline{b_{1}} \omega(z)}
$$

where $g^{\prime}(0)=b_{1}$ for all $z \in \mathbb{D}$. Since $\phi(z)$ is a transformation which maps \mathbb{D} onto itself we have $|\phi(z)|<1$ and $\phi(0)=1$. Thus we can write

$$
\omega(z) \prec \frac{b_{1}+z}{1+\overline{b_{1}} z} .
$$

On the other hand, the function $\omega(z)=\frac{b_{1}+z}{1+\overline{b_{1}} z}$ maps $|z|=r$ into the circle centered at

$$
C(r)=\left\{\frac{\mathfrak{R e} b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2} r^{2}}, \frac{\mathfrak{I m} b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2} r^{2}}\right\}
$$

having the radius

$$
\rho(r)=\frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}}
$$

So we have

$$
\left|\omega(z)-\frac{b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2} r^{2}}\right| \leq \frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}}
$$

Therefore, we get the result after some simple calculations.
Theorem 2.4. Let $f=h+\bar{g}$ be an element of $\mathcal{S}_{\mathcal{H}}^{*}$, then we have

$$
\begin{gather*}
\left|h^{\prime}(z)\right| \leq \frac{\left(1+\left|b_{1}\right| r\right)(A+|B|+(A-|B| r))}{\left(1-\left|b_{1}\right| r\right)(1-r)^{4}} \tag{20}\\
\left|g^{\prime}(z)\right| \leq \frac{(A+|B|)+(A-|B|) r}{(1-r)^{3}}\left(1+\frac{1+\left|b_{1}\right| r}{(1-r)\left(1-\left|b_{1}\right| r\right)}\right) \tag{21}
\end{gather*}
$$

for $|z|=r<1$ where $A=\cos (\beta+\alpha)-a \cos (\beta-\alpha)+b \sin (\beta-\alpha)>0$, $B=\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha), g^{\prime}(0)=b_{1}=a+i b$ for some choice of angles α and β.

Proof. Let consider the analytic dilatation function $\omega=g^{\prime} / h^{\prime}$ of $f=h+\bar{g}$. Then, we have

$$
\begin{align*}
\left|h^{\prime}(z)-e^{-2 i \alpha} g^{\prime}(z)\right| & =\left|h^{\prime}(z)-e^{-2 i \alpha} \omega(z) h^{\prime}(z)\right| \tag{22}\\
& =\left|h^{\prime}(z)\right|\left|1-e^{-2 i \alpha}(z)\right|
\end{align*}
$$

Considering (19) and Theorem 2.2 in (22) we obtain,

$$
\left|h^{\prime}(z)\right| \leq \frac{\left(1+\left|b_{1}\right| r\right)(A+|B|+(A-|B| r))}{\left(1-\left|b_{1}\right| r\right)(1-r)^{4}}
$$

and

$$
\left|g^{\prime}(z)\right| \leq \frac{(A+|B|)+(A-|B|) r}{(1-r)^{3}}\left(1+\frac{1+\left|b_{1}\right| r}{(1-r)\left(1-\left|b_{1}\right| r\right)}\right)
$$

for all $|z|=r<1$.

Corollary 2.5. Let $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H}}^{*}$, then we have

$$
\begin{aligned}
|f(z)| & \leq \int_{0}^{r} \frac{\left(1+\left|b_{1}\right| \rho\right)((A+|B|)+(A-|B|) \rho)}{\left(1-\left|b_{1}\right| \rho\right)(1-\rho)^{4}} d \rho \\
& +\int_{0}^{r} \frac{(A+|B|)+(A-|B|) \rho}{(1-\rho)^{3}}\left(1+\frac{1+\left|b_{1}\right| \rho}{(1-\rho)\left(1-\left|b_{1}\right| \rho\right)}\right) d \rho
\end{aligned}
$$

for $|z|=r<1$ where $A=\cos (\beta+\alpha)-a \cos (\beta-\alpha)+b \sin (\beta-\alpha)>0$, $B=\sin (\beta+\alpha)-b \cos (\beta-\alpha)-a \sin (\beta-\alpha), g^{\prime}(0)=b_{1}=a+i b$ for some choice of angles α and β.

Proof. For $f=h+\bar{g}$, we have the following inequalities

$$
\begin{gathered}
f=h+\bar{g}=\int_{0}^{r} h^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho+\overline{\int_{0}^{r} g^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho} \\
=\int_{0}^{r} h^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho+\int_{0}^{r} \overline{g^{\prime}\left(\rho e^{i \theta}\right)} e^{-i \theta} d \rho=\int_{0}^{r} f_{z}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho+\int_{0}^{r} f_{\bar{z}}\left(\rho e^{i \theta}\right) e^{-i \theta} d \rho .
\end{gathered}
$$

Hence

$$
\begin{aligned}
|f|=|h+\bar{g}| & \leq|h|+|g| \leq \int_{0}^{r}\left|f_{z}\left(\rho e^{i \theta}\right)\right| d \rho+\int_{0}^{r}\left|f_{\bar{z}}\left(\rho e^{i \theta}\right)\right| d \rho \Rightarrow \\
|f| & \leq \int_{0}^{r}\left|h^{\prime}\left(\rho e^{i \theta}\right)\right| d \rho+\int_{0}^{r}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right| d \rho \Rightarrow
\end{aligned}
$$

Applying inequalities (20) and (21) to the above, we obtain the result.

References

[1] J. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.
[2] P. Duren, Harmonic Mappings in the Plane. Cambridge University Press, New York, 2004.
[3] A.W. Goodman, Univalent Functions, Volume 1. Mariner Publishing Company, Inc., Florida, 1983.

Department of Mathematics and Computer Science
Faculty of Scinece and Letters
İstanbul Kültür University,
İstanbul - 34156, TURKEY
e-mail: e.yavuz@iku.edu.tr

[^0]: (C) 2010, FCAA - Diogenes Co. (Bulgaria). All rights reserved.

