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Abstract

In this paper, we consider harmonic univalent mappings of the form
f = h + ḡ defined on the unit disk D which are starlike. Distortion and
growth theorems are obtained.
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1. Introduction

A continuous complex-valued function f = u + iv defined in a simply
connected domain D is said to be harmonic in D if both u and v are real
harmonic in D, that is, u, v satisfy, respectively the Laplace equations

∆u = uxx + uyy = 0, ∆v = vxx + vyy = 0.

There is a well-known relation between analytic functions and harmonic
functions. For example, for real harmonic functions u and v which are
defined on a simply connected domain D there exist analytic functions U
and V so that

u = Re(U) and v = Im(V ).
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Therefore, it has a canonical decomposition

f = h + g (1)

where h and g are, respectively, the analytic functions

h =
U + V

2
and g =

U − V

2
.

We call h the analytic part and g the co-analytic part of f . It is fact
that if f = u + iv has continuous partial derivatives, then f is analytic
if and only if the Cauchy-Riemann equations are satisfied. It follows that
every analytic function is a complex-valued harmonic function. However,
not every complex-valued harmonic function is analytic.

The Jacobian Jf of a function f = u + iv has a very important place in
the theory of harmonic mappings, defined by

Jf =
∣∣∣∣

ux uy

vx vy

∣∣∣∣ = uxvy − uyvx.

Or, in terms of fz and fz̄, we have

Jf = |fz|2 − |fz̄|2 = |h′(z)|2 − |g′(z)|2,
where f = h + g is the harmonic function in D.

If f = h + g is a harmonic function on D with Jf > 0, then we say that
f is a sense-preserving (or orientation preserving) harmonic function on D.
In this case we have

|g′(z)| < |h′(z)|
for all z ∈ D. If f has Jf < 0, then f is sense preserving. For convenience,
we will only examine sense preserving harmonic functions.

The mapping z → f(z) is sense preserving and locally univalent in D

if and only if Jf > 0 in D. The function f = h + ḡ is said to be harmonic
univalent in D if the mapping z → f(z) is sense preserving harmonic and
univalent in D.

The second complex dilatation of a harmonic function f = h + g is the
quantity

ω(z) =
fz̄

fz
=

g′(z)
h′(z)

(z ∈ D). (2)

Let SH denote the family of functions f = h + g that are harmonic,
sense preserving, and univalent in the open unit disc D := {z ∈ C : |z| < 1}
with the normalization
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h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn. (3)

It follows from the sense-preserving property if f ∈ SH, then we have
|ω(z)| < 1 for all z ∈ D. Thus, it is easy to see that |b1| < 1. Since the
second complex dilatation ω of a sense preserving harmonic mapping f is
always an analytic function of modulus less than one, then this function
ω will be called the analytic dilatation of f . Also f ∈ SH reduces to the
class of normalized analytic univalent functions if the co-analytic part of its
members is zero. In 1984 Clunie and Sheil-Small [1] investigated the class
SH as well as its geometric subclasses and obtained some coefficient bounds.
Many studies have been done on this class and its subclasses, and continued
taking place.

A sense-preserving harmonic mapping f ∈ SH is in the class S∗H if the
range f(D) is starlike with respect to the origin. A function f ∈ S∗H is a
called harmonic starlike mapping in D. A function f = h + g with such a
property must satisfy the condition

Re

(
zh′(z)− zg′(z)

h(z) + g(z)

)
> 0

for all z ∈ D.

In our proofs we use the following lemma:

Lemma 1.1[2]. If f = h+ g ∈ S∗H, then there exist angles α and β such
that

Re

{(
eiα h(z)

z
+ e−iα g(z)

z

) (
eiβ − e−iβz2

)}
> 0 (4)

for all z ∈ D.

Let A denote the class of all functions s1 analytic in the open unit disk D
with the usual normalization s1(0) = s′1(0)−1 = 0. If s1 and s2 are analytic
in D, we say that s1 is subordinate to s2, written s1 ≺ s2 or s1(z) ≺ s2(z),
if s2 is univalent, then we have s1(0) = s2(0) and s1(D) ⊂ s2(D).

Let P be the class of functions p of the form

p(z) = 1 +
∞∑

n=1

pnzn
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which are analytic in the open unit disk D. If p in P satisfies Rep(z) > 0 for
z ∈ D, then we say that p is the Carathéodory function. It has been shown
that for a function p(z) ∈ P, the following inequalities are satisfied ([3]):

1− r

1 + r
≤ |p(z)| ≤ 1 + r

1− r
, (5)

and ∣∣∣∣z
p′(z)
p(z)

∣∣∣∣ ≤
2r

1− r2
(6)

for all |z| = r < 1.

2. Results

Lemma 2.1. Let f = h + g be an element of S∗H, then we have

(A + |B|)r − (A− |B|)r2

(1 + r)(1 + r2)
≤ |h(z)− e−2iαg(z)|

≤ (A + |B|)r + (A− |B|)r2

(1 + r)(1 + r2)
,

(7)

for |z| = r < 1 where A = cos(β + α) − a cos(β − α) + b sin(β − α) > 0,
B = sin(β + α) − b cos(β − α) − a sin(β − α), g′(0) = b1 = a + ib for some
choice of angles α and β.

P r o o f. Since f = h + g is element of S∗H, then we have
h(z)

z

∣∣
z=0

= 1,
g(z)
z

∣∣
z=0

= b1 = a + ib,

and if we consider (4) as a function with positive real part

p(z) =
(

eiα h(z)
z

+ e−iα g(z)
z

) (
eiβ − e−iβz2

)
(8)

has the properties Rep(z) > 0 and p(0) = [cos(β + α) − a cos(β − α) +
b sin(β−α)]i[sin(β + α)− b cos(β−α)− a sin(β−α)] where b1 = a + ib and
α, β are angles.

On the other hand, the assumption p(0) = 1 is not restriction for the
Carathédory class. Indeed, let p(z) be element of the Carathédory class
with p(0) = A + iB, A > 0, then the function

p1(z) =
1
A

(p(z)− iB)

satisfies the condition p1(0) = 1 and Rep1(z) > 0. This shows that p1(z) is
the element of the Carathédory class. Therefore, the function
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p1(z) =
1
A

(p(z)− iB) =
1

cos(β + α)− a cos(β − α) + b sin(β − α)

×
[(

eiα h(z)
z

− e−iα g(z)
z

)

− i(sin(β + α)− b cos(β − α)− a sin(β − α))

]
(9)

is the Carathédory function under the condition A = cos(β +α)−a cos(β−
α) + b sin(β − α) > 0. Then we have

1− r

1 + r
≤ |p1(z)| ≤ 1 + r

1− r
(10)

for p1(z) ∈ P and |z| = r < 1. If we substitute (9) into (10) and after simple
calculations we get

(A + |B|)− (A− |B|)r
1 + r

≤ |p(z)| ≤ (A + |B|) + (A− |B|)r
1− r

. (11)

Using (8) and (11) we obtain

(A + |B|)r − (A− |B|)r2

(1 + r)|eiβ − e−iβz2| ≤|eiαh(z)− e−iαg(z)|

≤ (A + |B|)r + (A− |B|)r2

(1− r)|eiβ − e−iβz2| .

(12)

On the other hand, we have
1

1 + r2
≤ 1
|eiβ − e−iβz2| ≤

1
1− r2

. (13)

Therefore, if we use (13) in (12) we obtain the desired result.

Theorem 2.2. Let f = h + g be element of S∗H, then we have

|h′(z)− e−2iαg′(z)| ≤ (A + |B|) + (A− |B|)r
(1− r)3

for |z| = r < 1 where A = cos(β + α) − a cos(β − α) + b sin(β − α) > 0,
B = sin(β + α) − b cos(β − α) − a sin(β − α), g′(0) = b1 = a + ib for some
choice of angles α and β.
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P r o o f. Using Lemma 2.1, we obtain that

z
p′(z)
p(z)

= z
Ap′1(z)

Ap1(z) + iB

for all z in the open unit disc. Also, we know that the following inequality
satisfies for functions which in the Carathédory class:∣∣∣∣z

p′(z)
p(z)

∣∣∣∣ =

∣∣∣∣∣z
p′1(z)

p1(z) + iB
A

∣∣∣∣∣ ≤
2r

1− r2
. (14)

On the other hand, from the equation (8) we have

zh′(z)− e−2iαzg′(z)
h(z)− e−2iαg(z)

=
1 + e−2iβz2

1− e−2iβz2
+ z

p′(z)
p(z)

. (15)

Considering (14) and (15) together, we obtain
∣∣∣∣
zh′(z)− e−2iαzg′(z)

h(z)− e−2iαg(z)

∣∣∣∣ =
∣∣∣∣
1 + e−2iβz2

1− e−2iβz2
+ z

p′(z)
p(z)

∣∣∣∣

≤
∣∣∣∣
1 + e−2iβz2

1− e−2iβz2

∣∣∣∣ +
∣∣∣∣z

p′(z)
p(z)

∣∣∣∣ .

(16)

Also we know that
1− r2

1 + r2
≤

∣∣∣∣
1 + e−2iβz2

1− e−i2β

∣∣∣∣ ≤
1 + r2

1− r2
. (17)

Using (17) and (14) in (16), we get∣∣∣∣
zh′(z)− e−2iαzg′(z)

h(z)− e−2iαg(z)

∣∣∣∣ ≤
∣∣∣∣
1 + e−2iβz2

1− e−2iβz2

∣∣∣∣ +
∣∣∣∣z

p′(z)
p(z)

∣∣∣∣ =
1 + r

1− r
. (18)

Using Lemma 2.1 in (18), we obtain that

|h′(z)− e−2iαg′(z)| ≤ (A + |B|) + (A− |B|)r
(1− r)3

.

Lemma 2.3. Let ω(z) be the analytic dilatation of f = h + g ∈ SH
defined by ω(z) = g′(z)/h′(z) for all z ∈ D, then we have

(1− r)(1− |b1|)
1 + |b1|r ≤ |1− e−2iαω(z)| ≤ (1 + r)(1 + |b1|)

1 + |b1|r (19)

(|z| = r < 1) where g′(0) = b1 6= 0 and |b1| < 1.

P r o o f. Let we define the function

φ(z) =
ω(z)− b1

1− b1ω(z)
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where g′(0) = b1 for all z ∈ D. Since φ(z) is a transformation which maps
D onto itself we have |φ(z)| < 1 and φ(0) = 1. Thus we can write

ω(z) ≺ b1 + z

1 + b1z
.

On the other hand, the function ω(z) = b1+z
1+b1z

maps |z| = r into the circle
centered at

C(r) =
{

Reb1(1− r2)
1− |b1|2r2

,
Imb1(1− r2)
1− |b1|2r2

}
,

having the radius

ρ(r) =
(1− |b1|2)r
1− |b1|2r2

.

So we have ∣∣∣∣ω(z)− b1(1− r2)
1− |b1|2r2

∣∣∣∣ ≤
(1− |b1|2)r
1− |b1|2r2

.

Therefore, we get the result after some simple calculations.

Theorem 2.4. Let f = h + g be an element of S∗H, then we have

|h′(z)| ≤ (1 + |b1|r)(A + |B|+ (A− |B|r))
(1− |b1|r)(1− r)4

, (20)

|g′(z)| ≤ (A + |B|) + (A− |B|)r
(1− r)3

(
1 +

1 + |b1|r
(1− r)(1− |b1|r)

)
(21)

for |z| = r < 1 where A = cos(β + α) − a cos(β − α) + b sin(β − α) > 0,
B = sin(β + α) − b cos(β − α) − a sin(β − α), g′(0) = b1 = a + ib for some
choice of angles α and β.

P r o o f. Let consider the analytic dilatation function ω = g′/h′ of
f = h + g. Then, we have

|h′(z)− e−2iαg′(z)| = |h′(z)− e−2iαω(z)h′(z)|
= |h′(z)||1− e−2iα(z)|. (22)

Considering (19) and Theorem 2.2 in (22) we obtain,

|h′(z)| ≤ (1 + |b1|r)(A + |B|+ (A− |B|r))
(1− |b1|r)(1− r)4

,

and

|g′(z)| ≤ (A + |B|) + (A− |B|)r
(1− r)3

(
1 +

1 + |b1|r
(1− r)(1− |b1|r)

)

for all |z| = r < 1.
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Corollary 2.5. Let f = h + g ∈ S∗H, then we have

|f(z)| ≤
∫ r

0

(1 + |b1|ρ)((A + |B|) + (A− |B|)ρ)
(1− |b1|ρ)(1− ρ)4

dρ

+
∫ r

0

(A + |B|) + (A− |B|)ρ
(1− ρ)3

(
1 +

1 + |b1|ρ
(1− ρ)(1− |b1|ρ)

)
dρ

for |z| = r < 1 where A = cos(β + α) − a cos(β − α) + b sin(β − α) > 0,
B = sin(β + α) − b cos(β − α) − a sin(β − α), g′(0) = b1 = a + ib for some
choice of angles α and β.

P r o o f. For f = h + g, we have the following inequalities

f = h + g =
∫ r

0
h′(ρeiθ)eiθdρ +

∫ r

0
g′(ρeiθ)eiθdρ

=
∫ r

0
h′(ρeiθ)eiθdρ+

∫ r

0
g′(ρeiθ)e−iθdρ =

∫ r

0
fz(ρeiθ)eiθdρ+

∫ r

0
fz(ρeiθ)e−iθdρ.

Hence

|f | = |h + g| ≤ |h|+ |g| ≤
∫ r

0
|fz(ρeiθ)|dρ +

∫ r

0
|fz(ρeiθ)|dρ ⇒

|f | ≤
∫ r

0
|h′(ρeiθ)|dρ +

∫ r

0
|g′(ρeiθ)|dρ ⇒ .

Applying inequalities (20) and (21) to the above, we obtain the result.
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