

SOME DISTORTION THEOREMS FOR STARLIKE HARMONIC FUNCTIONS

Emel Yavuz Duman

Dedicated to Professor Yaşar Polatoğlu the occasion of his 60th birthday

Abstract

In this paper, we consider harmonic univalent mappings of the form $f=h+\bar{g}$ defined on the unit disk $\mathbb D$ which are starlike. Distortion and growth theorems are obtained.

MSC 2010: 30C55, 30C45

Key Words and Phrases: harmonic function, starlike harmonic function, growth theorem, distortion theorem

1. Introduction

A continuous complex-valued function f = u + iv defined in a simply connected domain \mathfrak{D} is said to be harmonic in \mathfrak{D} if both u and v are real harmonic in \mathfrak{D} , that is, u, v satisfy, respectively the Laplace equations

$$\Delta u = u_{xx} + u_{yy} = 0, \quad \Delta v = v_{xx} + v_{yy} = 0.$$

There is a well-known relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v which are defined on a simply connected domain $\mathfrak D$ there exist analytic functions U and V so that

$$u = \mathfrak{Re}(U)$$
 and $v = \mathfrak{Im}(V)$.

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

Therefore, it has a canonical decomposition

$$f = h + \overline{g} \tag{1}$$

where h and g are, respectively, the analytic functions

$$h = \frac{U+V}{2}$$
 and $g = \frac{U-V}{2}$.

We call h the analytic part and g the co-analytic part of f. It is fact that if f = u + iv has continuous partial derivatives, then f is analytic if and only if the Cauchy-Riemann equations are satisfied. It follows that every analytic function is a complex-valued harmonic function. However, not every complex-valued harmonic function is analytic.

The Jacobian J_f of a function f = u + iv has a very important place in the theory of harmonic mappings, defined by

$$J_f = \left| \begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right| = u_x v_y - u_y v_x.$$

Or, in terms of f_z and $f_{\bar{z}}$, we have

$$J_f = |f_z|^2 - |f_{\bar{z}}|^2 = |h'(z)|^2 - |g'(z)|^2,$$

where $f = h + \overline{g}$ is the harmonic function in \mathfrak{D} .

If $f = h + \overline{g}$ is a harmonic function on \mathfrak{D} with $J_f > 0$, then we say that f is a sense-preserving (or orientation preserving) harmonic function on \mathfrak{D} . In this case we have

$$|g'(z)| < |h'(z)|$$

for all $z \in \mathfrak{D}$. If f has $J_f < 0$, then \overline{f} is sense preserving. For convenience, we will only examine sense preserving harmonic functions.

The mapping $z \to f(z)$ is sense preserving and locally univalent in \mathfrak{D} if and only if $J_f > 0$ in \mathfrak{D} . The function $f = h + \bar{g}$ is said to be harmonic univalent in \mathfrak{D} if the mapping $z \to f(z)$ is sense preserving harmonic and univalent in \mathfrak{D} .

The second complex dilatation of a harmonic function $f=h+\overline{g}$ is the quantity

$$\omega(z) = \frac{\overline{f_{\bar{z}}}}{f_z} = \frac{g'(z)}{h'(z)} \quad (z \in \mathfrak{D}).$$
 (2)

Let $\mathcal{S}_{\mathcal{H}}$ denote the family of functions $f=h+\overline{g}$ that are harmonic, sense preserving, and univalent in the open unit disc $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ with the normalization

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (3)

It follows from the sense-preserving property if $f \in \mathcal{S}_{\mathcal{H}}$, then we have $|\omega(z)| < 1$ for all $z \in \mathbb{D}$. Thus, it is easy to see that $|b_1| < 1$. Since the second complex dilatation ω of a sense preserving harmonic mapping f is always an analytic function of modulus less than one, then this function ω will be called the analytic dilatation of f. Also $f \in \mathcal{S}_{\mathcal{H}}$ reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [1] investigated the class $\mathcal{S}_{\mathcal{H}}$ as well as its geometric subclasses and obtained some coefficient bounds. Many studies have been done on this class and its subclasses, and continued taking place.

A sense-preserving harmonic mapping $f \in \mathcal{S}_{\mathcal{H}}$ is in the class $\mathcal{S}_{\mathcal{H}}^*$ if the range $f(\mathbb{D})$ is starlike with respect to the origin. A function $f \in \mathcal{S}_{\mathcal{H}}^*$ is a called harmonic starlike mapping in \mathbb{D} . A function $f = h + \overline{g}$ with such a property must satisfy the condition

$$\Re \left(\frac{zh'(z) - \overline{zg'(z)}}{h(z) + \overline{g(z)}} \right) > 0$$

for all $z \in \mathbb{D}$.

In our proofs we use the following lemma:

LEMMA 1.1[2]. If $f = h + \overline{g} \in \mathcal{S}_{\mathcal{H}}^*$, then there exist angles α and β such that

$$\Re\left\{\left(e^{i\alpha}\frac{h(z)}{z} + e^{-i\alpha}\frac{g(z)}{z}\right)\left(e^{i\beta} - e^{-i\beta}z^2\right)\right\} > 0 \tag{4}$$

for all $z \in \mathbb{D}$.

Let \mathcal{A} denote the class of all functions s_1 analytic in the open unit disk \mathbb{D} with the usual normalization $s_1(0) = s'_1(0) - 1 = 0$. If s_1 and s_2 are analytic in \mathbb{D} , we say that s_1 is subordinate to s_2 , written $s_1 \prec s_2$ or $s_1(z) \prec s_2(z)$, if s_2 is univalent, then we have $s_1(0) = s_2(0)$ and $s_1(\mathbb{D}) \subset s_2(\mathbb{D})$.

Let \mathcal{P} be the class of functions p of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$$

which are analytic in the open unit disk \mathbb{D} . If p in \mathcal{P} satisfies $\Re ep(z) > 0$ for $z \in \mathbb{D}$, then we say that p is the Carathéodory function. It has been shown that for a function $p(z) \in \mathcal{P}$, the following inequalities are satisfied ([3]):

$$\frac{1-r}{1+r} \le |p(z)| \le \frac{1+r}{1-r},\tag{5}$$

and

$$\left| z \frac{p'(z)}{p(z)} \right| \le \frac{2r}{1 - r^2} \tag{6}$$

for all |z| = r < 1.

2. Results

LEMMA 2.1. Let $f = h + \overline{g}$ be an element of $\mathcal{S}_{\mathcal{H}}^*$, then we have

$$\frac{(A+|B|)r - (A-|B|)r^2}{(1+r)(1+r^2)} \le |h(z) - e^{-2i\alpha}g(z)|
\le \frac{(A+|B|)r + (A-|B|)r^2}{(1+r)(1+r^2)},$$
(7)

for |z| = r < 1 where $A = \cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha) > 0$, $B = \sin(\beta + \alpha) - b\cos(\beta - \alpha) - a\sin(\beta - \alpha), g'(0) = b_1 = a + ib \text{ for some}$ choice of angles α and β .

Proof. Since
$$f = h + \overline{g}$$
 is element of $\mathcal{S}_{\mathcal{H}}^*$, then we have
$$\frac{h(z)}{z}\big|_{z=0} = 1, \quad \frac{g(z)}{z}\big|_{z=0} = b_1 = a + ib,$$

and if we consider (4) as a function with positive real part

$$p(z) = \left(e^{i\alpha} \frac{h(z)}{z} + e^{-i\alpha} \frac{g(z)}{z}\right) \left(e^{i\beta} - e^{-i\beta} z^2\right)$$
(8)

has the properties $\Re e p(z) > 0$ and $p(0) = [\cos(\beta + \alpha) - a\cos(\beta - \alpha) +$ $b\sin(\beta-\alpha)$] $i[\sin(\beta+\alpha)-b\cos(\beta-\alpha)-a\sin(\beta-\alpha)]$ where $b_1=a+ib$ and α , β are angles.

On the other hand, the assumption p(0) = 1 is not restriction for the Carathédory class. Indeed, let p(z) be element of the Carathédory class with p(0) = A + iB, A > 0, then the function

$$p_1(z) = \frac{1}{A}(p(z) - iB)$$

satisfies the condition $p_1(0) = 1$ and $\Re e p_1(z) > 0$. This shows that $p_1(z)$ is the element of the Carathédory class. Therefore, the function

$$p_{1}(z) = \frac{1}{A}(p(z) - iB) = \frac{1}{\cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha)}$$

$$\times \left[\left(e^{i\alpha} \frac{h(z)}{z} - e^{-i\alpha} \frac{g(z)}{z} \right) - i(\sin(\beta + \alpha) - b\cos(\beta - \alpha) - a\sin(\beta - \alpha)) \right]$$

$$(9)$$

is the Carathédory function under the condition $A = \cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha) > 0$. Then we have

$$\frac{1-r}{1+r} \le |p_1(z)| \le \frac{1+r}{1-r} \tag{10}$$

for $p_1(z) \in \mathcal{P}$ and |z| = r < 1. If we substitute (9) into (10) and after simple calculations we get

$$\frac{(A+|B|)-(A-|B|)r}{1+r} \le |p(z)| \le \frac{(A+|B|)+(A-|B|)r}{1-r}.$$
 (11)

Using (8) and (11) we obtain

$$\frac{(A+|B|)r - (A-|B|)r^{2}}{(1+r)|e^{i\beta} - e^{-i\beta}z^{2}|} \le |e^{i\alpha}h(z) - e^{-i\alpha}g(z)|
\le \frac{(A+|B|)r + (A-|B|)r^{2}}{(1-r)|e^{i\beta} - e^{-i\beta}z^{2}|}.$$
(12)

On the other hand, we have

$$\frac{1}{1+r^2} \le \frac{1}{|e^{i\beta} - e^{-i\beta}z^2|} \le \frac{1}{1-r^2}.$$
 (13)

Therefore, if we use (13) in (12) we obtain the desired result.

Theorem 2.2. Let $f = h + \overline{g}$ be element of $\mathcal{S}_{\mathcal{H}}^*$, then we have

$$|h'(z) - e^{-2i\alpha}g'(z)| \le \frac{(A+|B|) + (A-|B|)r}{(1-r)^3}$$

for |z| = r < 1 where $A = \cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha) > 0$, $B = \sin(\beta + \alpha) - b\cos(\beta - \alpha) - a\sin(\beta - \alpha)$, $g'(0) = b_1 = a + ib$ for some choice of angles α and β .

Proof. Using Lemma 2.1, we obtain that

$$z\frac{p'(z)}{p(z)} = z\frac{Ap'_1(z)}{Ap_1(z) + iB}$$

for all z in the open unit disc. Also, we know that the following inequality satisfies for functions which in the Carathédory class:

$$\left| z \frac{p'(z)}{p(z)} \right| = \left| z \frac{p'_1(z)}{p_1(z) + i\frac{B}{A}} \right| \le \frac{2r}{1 - r^2}.$$
 (14)

On the other hand, from the equation (8) we have

$$\frac{zh'(z) - e^{-2i\alpha}zg'(z)}{h(z) - e^{-2i\alpha}g(z)} = \frac{1 + e^{-2i\beta}z^2}{1 - e^{-2i\beta}z^2} + z\frac{p'(z)}{p(z)}.$$
 (15)

Considering (14) and (15) together, we obtain

$$\left| \frac{zh'(z) - e^{-2i\alpha}zg'(z)}{h(z) - e^{-2i\alpha}g(z)} \right| = \left| \frac{1 + e^{-2i\beta}z^2}{1 - e^{-2i\beta}z^2} + z\frac{p'(z)}{p(z)} \right|
\leq \left| \frac{1 + e^{-2i\beta}z^2}{1 - e^{-2i\beta}z^2} \right| + \left| z\frac{p'(z)}{p(z)} \right|.$$
(16)

Also we know that

$$\left| \frac{1 - r^2}{1 + r^2} \le \left| \frac{1 + e^{-2i\beta} z^2}{1 - e^{-i2\beta}} \right| \le \frac{1 + r^2}{1 - r^2}.$$
 (17)

Using (17) and (14) in (16), we get

$$\left| \frac{zh'(z) - e^{-2i\alpha}zg'(z)}{h(z) - e^{-2i\alpha}g(z)} \right| \le \left| \frac{1 + e^{-2i\beta}z^2}{1 - e^{-2i\beta}z^2} \right| + \left| z\frac{p'(z)}{p(z)} \right| = \frac{1 + r}{1 - r}.$$
 (18)

Using Lemma 2.1 in (18), we obtain that

$$|h'(z) - e^{-2i\alpha}g'(z)| \le \frac{(A+|B|) + (A-|B|)r}{(1-r)^3}.$$

LEMMA 2.3. Let $\omega(z)$ be the analytic dilatation of $f = h + \overline{g} \in \mathcal{S}_{\mathcal{H}}$ defined by $\omega(z) = g'(z)/h'(z)$ for all $z \in \mathbb{D}$, then we have

$$\frac{(1-r)(1-|b_1|)}{1+|b_1|r} \le |1-e^{-2i\alpha}\omega(z)| \le \frac{(1+r)(1+|b_1|)}{1+|b_1|r}$$
(19)

(|z| = r < 1) where $g'(0) = b_1 \neq 0$ and $|b_1| < 1$.

Proof. Let we define the function

$$\phi(z) = \frac{\omega(z) - b_1}{1 - \overline{b_1}\omega(z)}$$

where $g'(0) = b_1$ for all $z \in \mathbb{D}$. Since $\phi(z)$ is a transformation which maps \mathbb{D} onto itself we have $|\phi(z)| < 1$ and $\phi(0) = 1$. Thus we can write

$$\omega(z) \prec \frac{\overline{b_1 + z}}{1 + \overline{b_1}z}.$$

On the other hand, the function $\omega(z) = \frac{b_1 + z}{1 + \overline{b_1} z}$ maps |z| = r into the circle centered at

$$C(r) = \left\{ \frac{\Re \mathfrak{e} b_1(1-r^2)}{1-|b_1|^2 r^2}, \frac{\Im \mathfrak{m} b_1(1-r^2)}{1-|b_1|^2 r^2} \right\},$$

having the radius

$$\rho(r) = \frac{(1 - |b_1|^2)r}{1 - |b_1|^2 r^2}.$$

So we have

$$\left|\omega(z) - \frac{b_1(1-r^2)}{1-|b_1|^2r^2}\right| \le \frac{(1-|b_1|^2)r}{1-|b_1|^2r^2}.$$

Therefore, we get the result after some simple calculations.

Theorem 2.4. Let $f = h + \overline{g}$ be an element of $\mathcal{S}_{\mathcal{H}}^*$, then we have

$$|h'(z)| \le \frac{(1+|b_1|r)(A+|B|+(A-|B|r))}{(1-|b_1|r)(1-r)^4},\tag{20}$$

$$|h'(z)| \le \frac{(1+|b_1|r)(A+|B|+(A-|B|r))}{(1-|b_1|r)(1-r)^4},$$

$$|g'(z)| \le \frac{(A+|B|)+(A-|B|)r}{(1-r)^3} \left(1+\frac{1+|b_1|r}{(1-r)(1-|b_1|r)}\right)$$
(20)

for |z| = r < 1 where $A = \cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha) > 0$, $B = \sin(\beta + \alpha) - b\cos(\beta - \alpha) - a\sin(\beta - \alpha), g'(0) = b_1 = a + ib \text{ for some}$ choice of angles α and β .

P r o o f. Let consider the analytic dilatation function $\omega = g'/h'$ of $f = h + \overline{g}$. Then, we have

$$|h'(z) - e^{-2i\alpha}g'(z)| = |h'(z) - e^{-2i\alpha}\omega(z)h'(z)|$$

= |h'(z)||1 - e^{-2i\alpha}(z)|. (22)

Considering (19) and Theorem 2.2 in (22) we obtain,

$$|h'(z)| \le \frac{(1+|b_1|r)(A+|B|+(A-|B|r))}{(1-|b_1|r)(1-r)^4},$$

and

$$|g'(z)| \le \frac{(A+|B|) + (A-|B|)r}{(1-r)^3} \left(1 + \frac{1+|b_1|r}{(1-r)(1-|b_1|r)}\right)$$

for all |z| = r < 1.

COROLLARY 2.5. Let $f = h + \overline{g} \in \mathcal{S}_{\mathcal{H}}^*$, then we have

$$|f(z)| \le \int_0^r \frac{(1+|b_1|\rho)((A+|B|)+(A-|B|)\rho)}{(1-|b_1|\rho)(1-\rho)^4} d\rho + \int_0^r \frac{(A+|B|)+(A-|B|)\rho}{(1-\rho)^3} \left(1+\frac{1+|b_1|\rho}{(1-\rho)(1-|b_1|\rho)}\right) d\rho$$

for |z| = r < 1 where $A = \cos(\beta + \alpha) - a\cos(\beta - \alpha) + b\sin(\beta - \alpha) > 0$, $B = \sin(\beta + \alpha) - b\cos(\beta - \alpha) - a\sin(\beta - \alpha)$, $g'(0) = b_1 = a + ib$ for some choice of angles α and β .

P r o o f. For $f = h + \overline{g}$, we have the following inequalities

$$f = h + \overline{g} = \int_0^r h'(\rho e^{i\theta}) e^{i\theta} d\rho + \overline{\int_0^r g'(\rho e^{i\theta}) e^{i\theta} d\rho}$$
$$= \int_0^r h'(\rho e^{i\theta}) e^{i\theta} d\rho + \int_0^r \overline{g'(\rho e^{i\theta})} e^{-i\theta} d\rho = \int_0^r f_z(\rho e^{i\theta}) e^{i\theta} d\rho + \int_0^r f_{\overline{z}}(\rho e^{i\theta}) e^{-i\theta} d\rho.$$
Hence

$$|f| = |h + \overline{g}| \le |h| + |g| \le \int_0^r |f_z(\rho e^{i\theta})| d\rho + \int_0^r |f_{\overline{z}}(\rho e^{i\theta})| d\rho \Rightarrow$$

$$|f| \le \int_0^r |h'(\rho e^{i\theta})| d\rho + \int_0^r |g'(\rho e^{i\theta})| d\rho \Rightarrow .$$

Applying inequalities (20) and (21) to the above, we obtain the result.

References

- J. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.
- [2] P. Duren, Harmonic Mappings in the Plane. Cambridge University Press, New York, 2004.
- [3] A.W. Goodman, *Univalent Functions*, Volume 1. Mariner Publishing Company, Inc., Florida, 1983.

Department of Mathematics and Computer Science Faculty of Scinece and Letters İstanbul Kültür University, İstanbul – 34156, TURKEY

e-mail: e.yavuz@iku.edu.tr Received: GFTA, August 27-31, 2010