[

VERSITA J/ ractional Calculus
& /r\pplied Chnalysis

An It ternational Journal for Theory and Applications

VOLUME 14, NUMBER 1 (2011) (Print) ISSN 1311-0454
(Electronic) ISSN 1314-2224

SURVEY PAPER

MAXIMUM PRINCIPLE AND ITS APPLICATION
FOR THE TIME-FRACTIONAL DIFFUSION EQUATIONS

Yury Luchko

Abstract

Dedicated to Professor Rudolf Gorenflo
on the occasion of his 80th anniversary

In the paper, maximum principle for the generalized time-fractional
diffusion equations including the multi-term diffusion equation and the dif-
fusion equation of distributed order is formulated and discussed. In these
equations, the time-fractional derivative is defined in the Caputo sense. In
contrast to the Riemann-Liouville fractional derivative, the Caputo frac-
tional derivative is shown to possess a suitable generalization of the ex-
tremum principle well-known for ordinary derivative. As an application,
the maximum principle is used to get some a priori estimates for solutions
of initial-boundary-value problems for the generalized time-fractional dif-
fusion equations and then to prove uniqueness of their solutions.
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1. Introduction

Mathematical modelling of many physical, technical, biological, chem-
ical, economical etc. processes with ordinary and partial differential equa-
tions experiences in some sense a rebirth during the last few decades: prac-
tically all important and useful models were “fractionalized”, i.e. replaced
with models containing the Fractional Calculus operators (see e.g. [1]-[15],
[20]-[35] and references there). The recent book [35] is completely devoted
to different applications of the fractional differential equations in physics,
chemistry, technique, astrophysics, etc. and contains several dozens of in-
teresting case studies. Unfortunately, in many cases a “fractionalization” of
the models appears to be just a formal procedure. In applications, two for-
mal approaches are mainly used for formulating models with the fractional
derivatives. In the framework of the first approach, integer order derivatives
are replaced by the fractional derivatives in differential equations describ-
ing a process. Within the second approach, variation principles such as
Hamilton’s principle are used as a starting point for deriving equations of
a process. In this case, fractionalization of the classical case is achieved by
replacing some (or all) integer order derivatives by the fractional derivatives
in the Lagrange function. Of course, by applying the models obtained by
means of these formal fractionalization procedures one has to check if they
can describe the underlying processes better or at least not worse compared
to the conventional models. As a rule, this can be done by analysing the
experimental data and comparing them with the results of the numerical
simulations obtained with the help of the fractional models.

Still, some fractional models can be deduced either directly from the
first principles (e.g. the Abel integral equation for the tautochrone problem
or for determination of the thermal flux through the boundary of a blast-
furnace wall) or from the micro models like the so called continuous time
random walk models. Especially this last approach was applied very suc-
cessfully within the last years to deduce the fractional models for so called
anomalous diffusion processes, where conventional diffusion equation does
not work. In some sense, fractional models of the anomalous diffusion (see
e.g. [, [4, [6], [8], [20], [26], [27] and references there) along with frac-
tional models in the linear viscoelasticity (see e.g. [5], [22], [23], [25], [32],
[33] and references there) build a showcase of the applications of Fractional
Calculus.

In this paper, the generalized time-fractional diffusion equation along
with some of its important generalizations (multi-term equation and equa-
tion of distributed order) is considered from the mathematical viewpoint.
This equation corresponds to the continuous time random walk model
where the characteristic waiting time elapsing between two successive jumps
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diverge, but the jump length variance remains finite and is proportional to
t®. For the detailed description of these models see e.g. [6], [8], [26], [27]
and references there.

In real life anomalous diffusion processes, the exponent « of the mean
square displacement proportional to t® often does not remain constant and
changes, say, in the interval from 0 to 1, from 1 to 2 or even from 0 to
2. To adequately describe these phenomena with the fractional models,
several approaches were suggested in the literature. One of them introduces
the fractional derivatives of the variable order, i.e., the derivatives with
the order that can change with the time or/and depending on the spatial
coordinates (for the definitions and applications see e.g. [3], [15], [29]).
Another, more simple, method is to model the variable exponent with a
linear combination of the power functions in the form » " | Apt®, 0 <
Ak, 0 < ap < 2. Following this line, so called multi-term time-fractional
diffusion equation appears to be a suitable model. A detailed discussion
of this equation along with many references to the related papers can be
found in [16].

On the other hand, recently the sub-diffusion processes with the mean
square displacement with a logarithmic growth have been introduced (see
e.g. [2], [28], [34] and references there). One of the approaches for mod-
elling of such processes is to employ time-fractional diffusion equations of
distributed order (see e.g. [I8] for the mathematical analysis of this equa-
tion and further references). A derivative of the distributed order is intro-
duced as a mean value of the fractional derivatives with the orders from
an interval (say, [0, 1]) weighted with a non-negative weight function w(«).
One important particular case of the time-fractional diffusion equation of
distributed order is the multi-term time-fractional diffusion equation. In
this case the weight function is taken in form of a finite linear combination
of the Dirac d-functions with the positive weight coefficients.

For the numerous references to the literature dealing with different
methods and techniques for the analysis of the partial fractional differential
equations, especially those considered in this paper, we refer the interested
reader to the papers [16]-[19].

The rest of this paper is organized as follows. In the second section, the
notions, definitions and problems formulations we deal with in the further
discussions are introduced. The third section is devoted to the discussion
of the extremum principle for the generalized Riemann-Liouville fractional
derivatives. In particular, we show that a suitable extremum principle is
valid only for the Caputo fractional derivative. In the fourth section, the
maximum principles for the generalized time-fractional diffusion equation
and its generalizations - the multi-term time-fractional diffusion equation
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and the time-fractional diffusion equation of distributed order - are pre-
sented. Finally, in the last section the uniqueness of the solution of the
initial-boundary-value problem for the corresponding equations is shown.
This solution - if it exists - continuously depends on the data given in the
problem.

2. Definitions and problem formulation

In this paper, first the generalized time-fractional diffusion equation is
considered. For an unknown function u = u(x,t) it has the form

(Dffu)(t) = Ly(u) + F(x,t), (1)
0<a<l (zt)eQr=Gx(0,T), GCR",

where the operator L, acts with respect to the spatial variables x according
to the formula

L, (u) := div(p(z) grad u) — q(x)u, (2)
peCY @), qe C(G), 0<p(x),0<qx),zcdq, (3)

the fractional derivative
(D)) == (I (), 0 < <1, (4)

with respect to the time variable ¢ is defined in the Caputo sense, whereas
1% is the Riemann-Liouville fractional integral

1 t o
I°f)) =4 T(a) /0 (t—7)* 1 f(r)dr, 0<a<l, (5)
f(t , = 0,

and the domain G with the boundary S is open and bounded in R"
The operator L, is a linear second order elliptic differential operator
that can be represented in the form

& 2U u
L) =3 () 5 + o0 0 ) = atoe

Oxy O
1 k k

or, more shortly, in the form
La(u) = p(2)Au + (gradp, gradu) — q(2)u, (6)

A being the Laplace operator.

If a = 1, the equation (Il is a standard linear second-order parabolic
PDE. The theory of this equation is well-known, so that the focus in the
further discussions will be on the case 0 < o < 1.
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In some practical situations the underlying processes cannot be de-
scribed by the equation (II), but by its generalization - the multi-term
time-fractional diffusion equation that is given by

(Pa,on,m (De)u) (8) = La(u) + F(z, 1), (7)
(x,t) € Qr:=G x (0,T), G C R",
where the operator L, is defined by (2]) and

Paaram (Dt) 1= D?""Z)‘i Dy, (8)
i=1
O<ap<-<ayp<a<l 0<XN,i=1---,m, méE Ny,

Dy being the Caputo fractional derivative (d) of order «.

The next generalization of the equation (Il) (and of the equation (7))
that will be discussed in this paper is the time-fractional diffusion equation
of the distributed order:

(D} ) (t) = Lo(u) + F(e 1), 9)
(x,t) € Qr:=G x (0,T), G C R".
The fractional derivative ID,’ (@) of distributed order is defined by

1
(DP f)(t) = / (D2 )(t) w(a) da (10)
0

with the Caputo fractional derivative Df* defined by (@) and with a con-
tinuous non-negative weight function w : [0,1] — R that is not identically
equal to zero on the interval [0, 1], such that the conditions

1
0 <w(a), w#0, a€l0,1], /0 wlo)da = W >0 (11)

hold true.

Of course, each of the equations (), (@), () has in general case an
infinite number of solutions. In the real world situations that are modelled
with these equations, certain conditions that describe an initial state of
the underlying process and the observations of its visible parts ensure the
deterministic character of the corresponding processes. In the paper, the
initial-boundary-value problem

u‘t:() =u(x), = € G, (12)

u|s =v(z,t), (x,t) € S x]0,T] (13)
for the equations (), (), (@) is considered.
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DEFINITION 1. A solution of the problem (), (I2]), (I3)) (of the prob-
lem (@), (I2)), (I3) or of the problem (@), (I2)), (I3), respectively) is called
a function u = u(x,t) defined in the domain Q7 := G x [0, 7] that belongs
to the space Cupt(Qr) NWE((0,T)) N C2(G) and satisfies both the equation
(@) (the equation () or the equation (), respectively) and the initial and
boundary conditions (I2)-([I3). By W}((0,T)) the space of the functions
f € CY((0,T)) such that f' € L((0,T)) is denoted.

If the initial-boundary-value problem ([I2)), (I3]) for the equation ()
(the equation ([7), or the equation ([)) possesses a solution in the sense of
Definition I, then the functions F', ug and v given in the problem have to
belong to the spaces C(Qr), C(G) and C(S x [0,T1]), respectively. In the
further discussions, we always suppose these inclusions to be valid.

3. Extremum principle

In this paper, we mainly deal with the uniqueness of the solution of
the initial-boundary-value problem (I2]), (I3) for the equations (), (@),
and ([@). The uniqueness will be proved by means of an appropriate maxi-
mum principle for these equations. In its turn, the proof of the maximum
principle is based on an extremum principle for the Caputo fractional de-
rivative (). Moreover, we show in this section that the Caputo derivative
is the only particular case of the generalized Riemann-Liouville fractional
derivative for which an extremum principle is valid.

The generalized Riemann-Liouville fractional derivative

(D2 )(t) = (170 & (10-90-) ))(1), 1> 0 (14)
with the Riemann-Liouville integral I defined by (&) was introduced in
[10]. Here the order o obeys 0 < a < 1 and the type [ obeys 0 < 5 < 1.
The type 8 allows to interpolate continuously from the Riemann-Liouville
case DY = D%, to the Caputo case D! = D¢ given by (@), the Riemann-
Liouville derivative of order o (0 < aw < 1) being defined by

(D) = () (0), > 0. (15)

For an overview of the properties and applications of the generalized
Riemann-Liouville fractional derivative see e.g. [11]. In particular, it was
proved in [11] that there does not exist a probabilistic interpretation for
the solutions of the fractional diffusion equation of the type (1) with the
constant coefficients p and ¢ and with the fractional derivatives of order
0 < a<1and type 0 < @ <1 instead of the Caputo derivative whenever
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0 < B < 1. This statement is in the direct relation to the results pre-
sented in this section regarding the absence of an extremum principle for
the fractional derivatives of order 0 < a < 1 and type 0 < 3 < 1 whenever
0 < 8 < 1. Because the extremum principle is an essential part of the proof
of the maximum principle for the fractional differential equations (dI), (7))
and (), our hypothesis is that the maximum principle for the generalized
diffusion equations (), (7)) and (@) with the fractional derivatives of order
0 < a < 1andtype 0 < @ <1 instead of the Caputo derivative does not
hold whenever 0 < 3 < 1. This hypothesis will be considered in details
elsewhere.

Whereas the Riemann-Liouville definition is often employed in the math-
ematical treatises, the Caputo derivative is preferably used in modelling of
the applied problems. In this section one more argument for the relevance of
the Caputo derivative for modelling of the real life processes is given. This
choice of the definition is justified by the fact that from the whole range
of the fractional derivatives in the Hilfer definition (I4]) of the generalized
Riemann-Liouville derivative the Caputo derivative is the only one that
possesses a suitable generalization of the extremum principle well-known
for the ordinary derivative. For other derivatives including the Riemann-
Liouville derivative, the extremum principle and possibly the maximum
principle do not hold true.

THEOREM 1. Let a function f € W}((0,T)) N C([0,T]) attain its
maximum over the interval [0, T] at the point T = tg, tg € (0,T]. Then the
generalized Riemann-Liouville fractional derivative (I4) of the function f
is non-negative at the point ty for any o, 0 < o < 1, i.e.

(D £)(tg) >0, 0 <a <1 (16)

if and only if § =1, i.e. only in the case of the Caputo derivative ().

For the proof of the sufficient condition, i.e. that the inequality (16 is
valid for the Caputo derivative (5 = 1) we refer the reader to [19].

Now let us prove the necessary condition by the method of contradic-
tion.

Let us consider a family of functions in the form

f(t):=—at> +bt+c, 0<a, 0<b<2a, ccR (17)

on the closed interval [0, 1]. The conditions on the parameters of the func-
tion f ensure the existence of the maximum point ¢t = b/(2a) that belongs
to the interval [0,1]. The function f is evidently a C*(]0,1])-function and
thus fulfils all conditions of Theorem [II



MAXIMUM PRINCIPLE AND ITS APPLICATION ... 117

We now evaluate the generalized Riemann-Liouville fractional deriva-
tive with 0 < a < 1 and 0 < 8 < 1 of the function f at the maximum point
t =b/(2a). In this case, the formula

P(v+1)
My—a+1)

is valid under the condition v + (1 — 8)(1 — a) > 0, that can be proved by
the direct calculations (see e.g. [11]). Then we get the formulae

af gy 208770 b= ct
(D7 f)(t) = I'3-a) "T@2-a)  TO-a)

for 0 < @ < 1and 0 < g < 1 that leads to the formula

(DR £)(#) ‘t:;; - <2l;>_a (2221“((13_—aci) * F(lc—a)> '

Because the coefficient ¢ can be chosen to be both positive and negative
and with an arbitrary absolute value, the fractional derivative D f can be
evidently made both positive and negative and cannot be hold nonnegative
in a maximum point of the function f.

A careful reader must have noticed that the right-hand sides of the
last three formulae for the fractional derivative D*? do not depend on the
parameter (. In fact this is only true for the values 0 < 3 < 1; in the case
B = 1, i.e. for the Caputo fractional derivative, the formula (If]) is not
valid anymore because of the fact that the Caputo derivative of a constant
function is equal to zero:

(D&Y (t) = 0, vt > 0. (19)

(D20 (t) = AN (18)

It is this formula that makes a difference between the Caputo derivative and
all other derivatives with the type 8 (0 < § < 1) including the Riemann-
Liouville derivative. In this sense, the Caputo derivative is a ”degenerating
case” in the whole range of the generalized Riemann-Liouville fractional
derivatives with 0 < 8 < 1 just like the conventional derivatives are nothing
else then a ”singular” but a very useful case in the family of the Caputo
fractional derivatives. In the next sections we deal with the equations (),
(@), and (@) containing the Caputo derivatives.

4. Maximum principle and its applications

The maximum principle plays a very essential role in the theory of
the partial differential equations of the parabolic and elliptic type (see e.g.
[31]). From the physical viewpoint, this principle for an integer order sys-
tem means that during a diffusion (or a heat conduction) process in a finite
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body without sources, the maximum concentration (or the maximum tem-
perature) is reached either in a certain point at the start of the process,
i.e. at t =0, or in a boundary point for £ > 0. Similarly, from the physical
viewpoint, one can expect the same behavior from the generalized frac-
tional diffusion equations (1), (), and (@) that are known to be employed
by modelling of the so called anomalous diffusion processes. In this section
this fact, i.e. the maximum principle for the equations (), (@), and (@), is
presented and applied to get some a priory estimates of the solutions and
then to consider their uniqueness.

THEOREM 2. Let a function u € Cyy(Qr) N WE((0,T)) NC2(G) be a
solution of the generalized time-fractional diffusion equation (), the multi-
term diffusion equation (1), or the diffusion equation (9) of the distributed
order in the domain Qp and F(x,t) <0, (z,t) € Qr.

Then either u(x,t) < 0, V(x,t) € Qpr or the function u attains its
positive maximum on the part S& := (G x{0})U(S x [0, T]) of the boundary
of the domain Qr, i.e.,

u(x,t) <max{0, max wu(x,t)}, V(x,t) € Q7. (20)
(z,t)eSE

For the detailed proofs of this theorem we refer the reader to [17], [19] in
the case of the generalized time-fractional diffusion equation (), to [16] in
the case of the generalized multi-term time-fractional diffusion equation ([7),

and to [I§] in the case of the generalized time-fractional diffusion equation
@) of distributed order.

An appropriate minimum principle is valid, too.

THEOREM 3. Let a function u € Cypy(Qr) N WE((0,T)) NC2(G) be a
solution of the generalized time-fractional diffusion equation (1l), the multi-
term diffusion equation (@), or the diffusion equation (9) of the distributed
order in the domain Qr and F(z,t) > 0, (z,t) € Qp. Then either u(x,t) >
0, (x,t) € Qr or the function u attains its negative minimum on the part
SE = (G x {0}) U (S x [0,T]) of the boundary of the domain Qr, i.e.,

u(x,t) > min{0, mir}gT u(z,t)}, Y(z,t) € Qr. (21)

T,t)eSg

Like in the classical case of the parabolic and elliptic PDEs, one of
the important applications of the maximum principle is the possibility to
investigate some a priori properties of the solution of the initial-boundary-
value problem ([I2))-(I3]) for the corresponding equations and to prove the
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solution uniqueness. In this section we show that the generalized time-
fractional diffusion equation (), the multi-term diffusion equation (), and
the diffusion equation (@) of the distributed order possess at most one
solution each and this solution - if it exists - continuously depends on the
data given in the problem.

First, some a priori estimates for the solution norm are established.

THEOREM 4. Let u be a solution of the initial-boundary-value prob-
lem (I2)-(13) for the generalized time-fractional diffusion equation (1l), the
multi-term diffusion equation (4), or the diffusion equation (9) of the dis-
tributed order and F belong to the space C(y) with the norm M :=
HFHC(QT)' Them the following estimate of the solution norm holds true:

[ullo@yy < max{Mo, M} + Co M, (22)
where
Mo = |Juolle(ay, M1 = [[vllosxio,mn), (23)

and the constant C,, is given by

[e

{1+ a) for the equation (),

Cq = (1+ Z;LT:;)FG +a) for the equation (1), (24)
T
WTI(1l+a)
W' being determined by the weight function w of the distributed order

derivative (8) as follows

for the equation (9),

1
W::/ w(a)da > 0.
0

P r o o f. To illustrate the proof of the theorem, we present here the
reasoning for its simplest case: the equation (I]) (for the details, see [17],
[19]); other cases can be found in [16] (the equation (7)) and [18] (the
equation ([@)). To start with the proof, we first introduce an auxiliary
function w:

M _

w(z,t) == u(x,t) — {1+ a) te, (x,t) € Qr.
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Evidently, the function w is a solution of the problem (), (I2))-([13]) with
the functions

Fi(z,t) == F(z,t) — M — q(az)r(lﬂf{_ o) e,
vi(z,t) == v(z,t) — F(lﬂ—{— o) t

instead of F' and v, respectively. To get the expression for the function F7,
the formula (8] is used. The function F} evidently satisfies the condition
Fi(z,t) <0, (z,t) € Qp. Then the maximum principle applied to the
solution w leads to the estimate

w(z,t) < max{My, M1}, (z,t) € Qr, (25)

where the constants My, M; are defined as in (23)). For the function u, we

get
M

u(z,t) = w(z,t) + (1 + a) t* < (26)
maX{Mo,Ml} + P(]ET—T— a) M, (ZL‘,t) S QT.

The minimum principle from Theorem [B] applied to the auxiliary function

t) = t t t Q
’LU(:L‘, ) U(ZL‘, ) + F(l —I—Oé) ) (:L‘v ) €ilr
leads to the estimate ((x,t) € Qr)
TCM
t) > — My, My} — M
u(z,t) > — max{My, M} ra+a) ™
that together with the estimate (26]) finishes the proof of the theorem for
the case of the equation (IJ). O

The a priori estimates established in the previous theorem can be used
to show the uniqueness of the solution of the initial-boundary-value problem
for the corresponding generalized time-fractional diffusion equations. This
result is given in the next theorem.

THEOREM 5.  The initial-boundary-value problem (I2)-({13) for the
generalized time-fractional diffusion equation (1l), the multi-term diffusion
equation (1), or the diffusion equation (9) of the distributed order possesses
at most one solution. This solution continuously depends on the data given
in the problem in the sense that if

IF — Flio@,) <«

luo — @ollexay < €os lv = Tllogsxiomy < e,
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then the estimate
[u =l o,y < max{e, €1} + Cace (27)

for the corresponding solutions v and @ and with the constant C, given by
(24) holds true.

P r o0 o f. The proof of this theorem is an easy consequence from the a
priori estimates for the solution of the corresponding equations established
in Theorem Ml Consider e.g. the uniqueness of solution of the initial-
boundary-value problem (I2))-(13)) for the generalized time-fractional multi-
term diffusion equation (7). The homogeneous problem (), (I2)-(I3]) with
zero initial and boundary conditions, i.e. the problem with the data F' =
0, up = 0, and v = 0, evidently possesses the trivial solution u(x,t) =
0, (x,t) € Qp. This solution is unique due to the a priori estimate (22])
that says that the solution norm has to be zero in the case of zero initial
and boundary conditions. Because the problem under consideration is a
linear one, the uniqueness of solution of the problem (), (I2)-(I3]) in the
general case follows from the uniqueness of the homogeneous problem with
zero initial and boundary conditions.

Finally, the inequality (27)) is obtained from the estimate (22 for the
function u —w that is a solution of the initial-boundary-value problem (I2])-
([@3)) for the equation (1) with the functions F' — F, uy — g, and v — ¥
instead of the functions F, ug, and v, respectively. O

5. Conclusions

The maximum principle enables us to obtain information about solu-
tions of differential equations and the a priori estimates for them without
any explicit knowledge of the solutions themselves, and thus is a valuable
tool in scientific research. In the paper, the maximum principle for the
generalized time-fractional diffusion equation (), the multi-term diffusion
equation (7)), and the diffusion equation (9) of the distributed order was dis-
cussed and applied for proving the uniqueness of the initial-boundary-value
problem (I2)-(I3]) for these equations. Of course, following the lines of the
application of the maximum principle for the parabolic and elliptic PDEs
(see e.g. the recent book [31]), a lot of other properties of the solutions
to the time-fractional partial differential equations can be established. In
particular, the maximum principle can be applied for some classes of the
non-linear equations of the fractional order, too.

Another important and interesting problem that is still waiting for its
solution would be to try to extend the maximum principle to the space-
and time-space-fractional partial differential equations. These equations
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are employed nowadays very actively in modelling of several relevant com-
plex phenomena like the anomalous diffusion in inhomogeneous and porous
mediums, Levy processes and Levy flights and the so called fractional kinet-
ics (see e.g. [1], [6], [36] and references there). Like in the time-fractional
equations, several different definitions of the space-fractional derivatives
are used in these models. A clear understanding what definitions enable
the maximum principles that are expected to be fulfilled from the phys-
ical viewpoint would help in the attempts towards modelling of the real
phenomena with the space- and time-space-fractional partial differential
equations very essentially.

All these questions and problems are still open and will be considered
elsewhere.
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