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Abstract. A general framework of the (parallel variable transformation)
PVT-type algorithm, called the PVT-MYR algorithm, for minimizing a non-
smooth convex function is proposed, via the Moreau-Yosida regularization.
As a particular scheme of this framework an ε-scheme is also presented. The
global convergence of this algorithm is given under the assumptions of strong
convexity of the objective function and an ε-descent condition determined
by an ε-forced function. An appendix stating the proximal point algorithm
is recalled in the last section.

1. Introduction. A general framework of parallel computation for
minimizing a nonlinear continuously differentiable function, called the parallel
variable transformation (PVT) algorithm, was proposed by Fukushima [5], that
is a synchro-paralleled structure. It is globally convergent at the linear rate under
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suitable conditions. The PVT algorithm can be regarded as an extension to
the parallel variable distribution (PVD) algorithm, due to Ferris & Mangasarian
[8] and developed by Solodov [17]. The PVT algorithm is also closely related
to the parallel gradient distribution (PGD) algorithm due to Mangasarian [13].
In [19], Yamakawa and Fukushima studied performance of the PVT algorithm
for unconstrained nonlinear optimization through numerical experiments. Also
a number of other parallel algorithms were designed and developed for solving
nonlinear optimization problems, see for instance, Han [9], Han and Lou [10],
Bertsekas and Tsitsiklis [2], Liu and Tseng [12].

In this paper, a PVT-type algorithm, called the PVT-MYR algorithm,
for minimizing a nonsmooth convex function, is proposed, which is constructed
by converting an original objective function into a continuously differentiable
function using the Moreau-Yosida regularization, due to Moreau [14] and Yosida
[20].

The problem we are concerned with is of the form

min
x∈Rn

f(x),(1.1)

where the objective function f defined on Rn is strongly convex, but not required
to be smooth. A function f is said to be strongly convex if there exists a constant
c > 0, called the modulus of strong convexity, such that

f(αx+ (1 − α)x′) ≤ αf(x) + (1 − α)f(x′) − 1

2
cα(1 − α)‖x− x′‖2,

for all x, x′ ∈ Rn and 0 < α < 1, see [15].
Let F be the Moreau-Yosida regularization of f , F : Rn → R1, defined

by

F (x) = min
z∈Rn

{
f(z) +

1

2
λ−1‖z − x‖2

}
,(1.2)

where λ is a positive parameter that will not be specified explicitly, following the
way used in [16], and ‖·‖ denotes the Euclidean norm. It has been proved that F
is finite convex, and the gradient g = ∇F is Lipschitzian. The unique minimizer
p(x) of (1.2) can be formulated in the form

p(x) = arg min
z∈Rn

{
f(z) +

1

2
λ−1‖z − x‖2

}
.(1.3)

A point x is a solution of (1.1) iff it is a solution of the problem

min
x∈Rn

F (x),(1.4)
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see for instance, Hiriart-Urruty and Lemaréchal [11].

Some properties of the Moreau-Yosida regularization that will be used in
this paper are listed below. Let f be convex, and ρ, c1, c and c2 be constants. The
abbreviation ‘s. c.’ stands for ‘strongly convex’, ‘s. m.’ for ‘strongly monotone’.
The following properties can be referred to [11].

P1. F is Fréchet differentiable on Rn, g is Lipschitzian with constant λ−1, and
there exist ρ > 0 and c1 > 0, such that ‖x− x∗‖ ≤ ρ implies

F (x) − F (x∗) ≤ c1‖x− x∗‖2,(1.5)

where x∗ ∈ Arg minx∈Rn F (x).

P2. If f is s. c. with modulus c, then F is s. c. with modulus c(cλ+ 1)−1. If f
is s. c., then there exist ρ > 0 and c2 > 0 such that ‖x − x∗‖ ≤ ρ implies
that

‖g(x)‖ ≥ c2‖x− x∗‖.(1.6)

P3. If f is s. c. with modulus c, then g is s. m. with modulus c(cλ + 1)−1 on
Rn, i. e.,

(g(x) − g(y))T (x− y) ≥ c(cλ+ 1)−1‖x− y‖2,(1.7)

for all x, y ∈ Rn.

Take an ε > 0. We can find an approximation, denoted by pa(x, ε) ∈ Rn,
to the unique minimizer p(x) in (1.2) such that

‖pa(x, ε) − p(x)‖ ≤ ε(1.8)

and

f(pa(x, ε)) +
1

2
λ−1‖pa(x, ε) − x‖2 ≤ F (x) + ε.(1.9)

Let F a(x, ε), ga(x, ε) and pa(x, ε) be an ε−approximation to F (x), to g(x) and to
p(x), respectively, where the superscript, the little letter ‘a’, denotes the abbrevi-
ation for ‘approximation’, see for instance, Rauf and Fukushima [16], Fukushima
[6], Correa and Lemaréchal [3] and Auslender [1], we define F a(x, ε) and ga(x, ε)
to F (x) and g(x),

F a(x, ε) = f(pa(x, ε)) +
1

2
λ−1‖pa(x, ε) − x‖2,(1.10)
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ga(x, ε) = λ−1(x− pa(x, ε)).(1.11)

It follows from (1.8)-(1.11) that F a(x, ε) and ga(x, ε) can be made arbitrarily
close to the exact values of F (x) and g(x), respectively, in the process that ε
tends to zero. This property given below can be found in Fukushima and Qi, [7].

P4. The following two inequalities are valid

F (x) ≤ F a(x, ε) ≤ F (x) + ε,(1.12)

‖ga(x, ε) − g(x)‖ ≤
√

2λ−1ε.(1.13)

It leads to the fact that ga(x, 0) = g(x) and F a(x, 0) = F (x).

The purpose of this paper is to present a PVT-type algorithm for solving
(1.1), called the PVT-MYR algorithm presented in the next section, by combining
the PVT algorithm and minimizing the Moreau-Yosida regularization F of f .

This paper is organized as follows. In Section 2, we present a PVT-type
algorithm, the PVT-MYR algorithm, and establish its global convergence under
some basic assumptions. In Section 3, we consider an ε-descent iteration condi-
tion for solving subproblems in the parallelization phase, and it is shown that the
basic assumptions are satisfied under appropriate conditions on the transforma-
tions adopted. We present an ε-descent PVT-MYR algorithm and establish its
global convergence. In Section 4, we establish a linear rate of convergence of the
PVT-type (PVT-MYR) algorithm, presented in Section 2, under some additional
assumptions. An appendix on a proximal point algorithm is given in the last
section.

2. PVT-MYR algorithm. We assume that the algorithm is imple-
mented on p processors, where p is a positive integer. Each iteration of the
algorithm consists of the parallelization phase and the synchronization phase.
The former produces multiple candidate solutions for the next phase, using p
processors, while the latter generates the next iterate point from the candidate
solutions obtained in the parallelization phase.

For presenting the PVT-MYR algorithm some notations and assumptions
are listed below.

BASIC NOTATIONS

p The number of parallel processors

ml A positive integer such that m1 +m2 + · · · +mp ≥ n
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E(k) An n× (p+1) matrix whose columns consisting of x(k) and A
(k)
l
y

(k)
l

+x(k),
l = 1, . . . , p

z(k) = (z
(k)
0 , z

(k)
1 , . . . , z

(k)
p )T ∈ Rp+1

ϕ
(k)
l the auxiliary functions used in (2.2) and (2.4)

ψ(k) the auxiliary functions used in (2.3) and (2.5).

The following PVT steps are defined for solving the unconstrained smooth
minimization problem

(P) min
x∈Rn

f(x),(2.1)

see [5].

PVT Algorithm: For unconstrained smooth minimization (P)

Step 0 Initialization

An initial point x(0) ∈ Rn is given and set k = 0.

Step 1 Parallelization

For each l ∈ {1, . . . , p}, choose an n×ml matrix A
(k)
l

and find an approxi-

mate solution y
(k)
l ∈ Rm

l to the minimization problem

min
y

l
∈Rml

ϕ
(k)
l (yl) ≡ f(A

(k)
l yl + x(k)).(2.2)

If ∇ϕ
(k)
l (0) = 0, l = 1, · · · , p, then stop. Otherwise, goto Step 2.

Step 2 Synchronization

Find an approximate solution z(k) to the minimization problem

min
z∈Rp+1

ψ(k)(z) ≡ f(E(k)z).(2.3)

Set x(k+1) = E(k)z(k), k = k + 1. Loop at Step 1.

End of the PVT Algorithm

We now present a framework of the PVT-MYR algorithm for solving
nonsmooth minimization problems.

PVT-MYR Algorithm: A general framework for nonsmooth minimization (P)
Step 0 Initialization

An initial point x(0) ∈ Rn, constant ε∗ > 0 and set k = 0.
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Step 1 Parallelization

Step 1a Initialization of the parallel step

For each l ∈ {1, . . . , p}, choose an n×ml matrix A
(k)
l .

Step 1b Compute the subproblem

Find an approximate solution y
(k)
l ∈ Rm

l to the minimization problem

min
y

l
∈R

m
l

ϕ
(k)
l (yl) ≡ F (A

(k)
l yl + x(k)),(2.4)

where F (A
(k)
l
yl + x(k)) = minz∈Rn{f(z) + 1/(2λ)‖z −A

(k)
l
yl − x(k)‖2}.

If ‖∇ϕ(k)
l (0)‖ ≤ ε∗ for all l ∈ {1, · · · , p}, then stop, otherwise, goto Step 2.

Step 2 Synchronization

Find an approximate solution z(k) to the minimization problem

min
z∈Rp+1

ψ(k)(z) ≡ F (E(k)z).(2.5)

Set x(k+1) = E(k)z(k), k = k + 1 and loop at Step 1.

End of the PVT-MYR Algorithm

Remarks.
(i) Since the Moreau-Yosida regularization itself is defined through a minimiza-

tion problem involving f , the exact calculation of the function F and its
gradient g at point x is impossible in general. Therefore, in Step 1b we
use approximation of these values instead of their exact values, such that
pa(x, ε), F a(x, ε) and ga(x, ε) satisfy (1.8)-(1.11), respectively.

(ii) Note that approximate solutions to (2.4) computed in Step 1b are not required
to be very accurate. In fact, for each l and k, we may only require that for

some y
(k)
l

one has

ϕ
(k)a
l

(y
(k)
l
, γε(k))−ϕ(k)a

l
(0, ε(k))=F a(A

(k)
l
y

(k)
l

+ x(k), γε(k))−F a(x(k), ε(k))

≤−η‖A(k)T
l ga(x(k), ε(k))‖2+ε(k),

(2.6)

where η > 0, γ ∈ (0, 1), ϕ
(k)a
l (y

(k)
l , γε(k)) = F a(A

(k)
l y

(k)
l + x(k), γε(k)). The

condition (2.6) is a key one for controlling the descent quantity of sub-
problem (2.4) in which the ε(k)−slacked item in (2.6) is for implementation
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of this algorithm, PVT-MYR, and more details can be found in the next
section.

(iii) The condition A
(k)T
l ga(x(k), ε(k)) ≤ ε′ is employed as the stopping criterion

instead of the termination condition ‖∇ϕ(k)
l (0)‖ ≤ ε∗. Then we have

‖A(k)T ga(x(k), ε(k))‖2 =

p∑

l=1

‖A(k)T
l ga(x(k), ε(k))‖2 ≤ ε′2p.

By (A2) given below, see in (2.8), one has ‖ga(x(k), ε(k))‖ ≤ √
pε′/β. Ac-

cording to P4 and (A1) given below, we have g(x(k)) ≤
√

2λ−1γk +
√
pε′/β.

If ε′ and γ are small enough, then ‖g(x(k))‖ will be sufficiently small.

(iv) As for the synchronization phase, for each k, we may only require x(k+1) to
satisfy

F a(x(k+1), ε(k+1)) ≤ min
1≤l≤p

F a(A
(k)
l y

(k)
l + x(k), γε(k)).(2.7)

In other words, x(k+1), k = 1, · · · , may be chosen as the ones that are

determined by the ε−best candidates (in the sense of (2.7)), A
(k)

l
y

(k)

l
+x(k),

l = 1, 2, . . . , p.

Let A(k) = (A
(k)
1 , · · · , A(k)

p ) ∈ Rn×(m1+···+mp). The following assumptions,
marked by (A1)–(A4), and the definition, marked by (D4) are used for establish-
ing the convergence of the PVT-MYR algorithm.

(A1) ε(k) ≤ γε(k−1).

(A2) There exists a constant β > 0 independent of k such that

‖A(k)Tx‖ ≥ β‖x‖, for all x ∈ Rn.(2.8)

(A3) There exists a constant δl > 0 independent of k such that for all l,

‖A(k)
l

‖ ≤ δl.

(A4) There exists a constant βl > 0 independent of k such that ‖A(k)T
l

A
(k)
l
yl‖ ≥

βl‖yl‖, for all yl ∈ Rml .

(D1) We say that {d(k) | k = 1, . . . , } satisfies a gradient relatedness condition if
there exists a constant µ > 0 such that the inequalities

∇F (x(k))Td(k) ≤ −µ‖∇F (x(k))‖ · ‖d(k)‖ < 0
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are valid for all k.

Remarks. The following points should be mentioned

1. (A1) is made for implementation. (A1) =⇒
∞∑

k=1

ε(k) <∞, when γ ∈ (0, 1).

2. The following two points can be referred to [5].

2a. (A2) ⇐⇒ the sequence {A(k)A(k)T } of n×n matrices is uniformly positive
definite, i. e., there exists a constant β′ > 0 independent of k such that

xTA(k)A(k)Tx ≥ β′‖x‖2, for all x ∈ Rn.

2b. (A3) =⇒ {A(k)
l

} is uniformly bounded.

3. For implementation ε(k) is taken as the values for which the equality in (A1)
is valid.

4. (A4) ⇐⇒ the sequence {A(k)T
l A

(k)
l } of ml ×ml matrices is uniformly positive

definite.

5. The definition (D1) can be referred to [15].

Proposition 2.1 [10]. If f is real-valued and convex over Rn, then x∗ is
the minimizer of f(x) if and only if g(x∗) = 0 and p(x∗) = x∗.

Lemma 2.1. If lim
k→∞

ga(x(k), ε(k)) = 0, then lim
k→∞

g(x(k)) = 0.

P r o o f. By P4, we have

‖ga(x(k), ε(k)) − g(x(k))‖ ≤
√

2λ−1ε(k).(2.9)

According to (A1), it implies that lim
k→∞

g(x(k)) = 0. �

Lemma 2.2. The following inequalities are valid

F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) − ε(k+1) ≤ F (x(k+1)) − F (x(k))

≤ F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) + ε(k).

P r o o f. By P4, we obtain

F (x(k+1)) ≤ F a(x(k+1), ε(k+1)) ≤ F (x(k+1)) + ε(k+1),

F (x(k)) ≤ F a(x(k), ε(k)) ≤ F (x(k)) + ε(k).
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Combining the two inequalities given above, we have

F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) − ε(k+1) ≤ F (x(k+1)) − F (x(k))

≤ F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) + ε(k). �

The following theorem is one of the main results on the convergence analy-
sis of the PVT-MYR algorithm.

Theorem 2.1. If the following conditions are satisfied

a. The objective function f is strongly convex;

b. At each iteration of the PVT-MYR algorithm, (2.6) and (2.7) are satisfied
in Step 1b and Step 2, respectively;

c. (A1) and (A2) are satisfied,

then any cluster of iterate points (estimates) generated by the PVT-MYR algo-
rithm is the minimal solution of (P).

P r o o f. By (2.6) and (2.7), one has

F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) ≤ −η‖A(k)T
l

ga(x(k), ε(k))‖2 + ε(k).

Then, one has from Lemma 2.2 that

F (x(k+1)) − F (x(k)) ≤ F a(x(k+1), ε(k+1)) − F a(x(k), ε(k)) + ε(k)

≤ −η‖A(k)T
l ga(x(k), ε(k))‖2 + 2ε(k)

≤ −η‖A(k)T
l

ga(x(k), ε(k))‖2 + 2γkε(0)(2.10)

for γ ∈ (0, 1). For proceeding by contradiction, suppose that

lim inf
k→∞

‖A(k)T
l ga(x(k), ε(k))‖ = σ > 0, for some l. Then there exists an infinite

index set K, such that for k ∈ K one has

‖A(k)T
l ga(x(k), ε(k))‖ > 1

2
σ.

Thus, for γ ∈ (0, 1) small enough, one has

F (x(k)) − F (x(k+1)) > 0.

This implies that {F (x(k))} is decreasing. Since f is strongly convex, it follows
by P2 that F is strongly convex and bounded below. This leads to

lim
k→∞

F (x(k)) = F ∗, k ∈ K,
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where F ∗ is some real number. Adding (2.10) with respect to k, one has

F (x(0)) − F ∗ ≥ η
∑

k∈K

‖A(k)T
l

ga(x(k), ε(k))‖2 − 2ε(0)
∑

k∈K

γ(k)

≥ 1

2
η

∑

k∈K

σ − 2ε(0)γ(1 − γ)−1.

It leads to ∑

k∈K

σ ≤ 2η−1[F (x(0)) − F ∗ + 2ε(0)γ(1 − γ)−1].

This is impossible since K is infinite, and σ > 0 and F ∗ are finite. Therefore, we
obtain

lim inf
k→∞

‖A(k)T
l ga(x(k), ε(k))‖ = 0, for all l.(2.11)

On the other hand, noticing that A(k) = (A
(k)
1 , . . . , A

(k)
p ), we obtain from

(A2) that

p∑

l=1

‖A(k)T
l

ga(x(k), ε(k))‖2 = ‖A(k)T ga(x(k), ε(k))‖2

≥ β‖ga(x(k), ε(k))‖2.

This implies that

lim
k → ∞

k ∈ K

ga(x(k), ε(k)) = 0,(2.12)

according to (2.11). It follows from Lemma 2.1, and (2.12) that

lim
k → ∞

k ∈ K

g(x(k)) = 0,

which implies that every cluster of {x(k)} is the unique solution of (P). �

3. An ε-descent direction for solving subproblems. It can be
seen from the last section that it is not necessary to provide accurate solutions
of (2.4) at each iteration when the PVT-MYR algorithm is performed, more

specifically, at iteration k, it is sufficient to find a y
(k)
l such that (2.6) is satisfied
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when we minimize each lth auxiliary function ϕ
(k)
l

with respect to yl, starting

with the origin, yl = 0. Suppose that y
(k)
l is determined by

y
(k)
l

= α
(k)
l
d
(k)
l
.(3.1)

A direction d
(k)
l

is said to be ε-descent if the following gradient-relatedness con-

dition of the direction A
(k)
l d

(k)
l in the sense of Ortega and Rheinboldt [15] is

satisfied

[A
(k)T
l ga(x(k), ε(k))]Td

(k)
l ≤ −µ0‖A(k)T

l ga(x(k), ε(k))‖ · ‖d(k)
l ‖ < 0,(3.2)

with choices of µ0 > 0 and α
(k)
l

> 0 obeying the Armijo rule

ϕ
(k)a
l (y

(k)
l , γε(k)) − ϕ

(k)a
l (0, ε(k)) = F a(A

(k)
l y

(k)
l + x(k), γεk) − F a(x(k), ε(k))

≤ µ1α
(k)
l [A

(k)T
l ga(x(k), ε(k))]T d

(k)
l + ε(k),(3.3)

in which parameters are determined or defined by the following conditions
µ1 ∈ (0, 1),

α
(k)
l = βmk

l ,

mk is the smallest nonnegative integer number satisfying (3.3),

ε(k) ≤ β(k)‖y(k)
l ‖2, β(k) → 0, k → ∞.

Remarks.

i. The difference between the statement here and the one by Ortega & Rheinboldt
(1970), [15], consists in that condition (3.2) is replaced by

[A
(k)T
l g(x(k))]T d

(k)
l ≤ −µ0‖A(k)T

l g(x(k))‖ · ‖d(k)
l ‖ < 0,

and condition (3.3) is replaced by

F (A
(k)
l y

(k)
l + x(k)) − F (x(k)) ≤ µ1α

(k)
l [A

(k)T
l g(x(k))]T d

(k)
l ,

see [15].

ii. The procedure of Armijo type described in (3.3) has been used in [7], [4] and
[18].



22 Li-Ping Pang, Zun-Quan Xia

Lemma 3.1 [16]. Let εx, εy > 0 be arbitrary, and ε = max(εx, εy). If
f is strongly convex with modulus c, then the following inequalities hold for all
x, y ∈ Rn

〈ga(x, εx) − ga(y, εy), x− y〉 ≥ c/(cλ + 1)‖x− y‖2 −
√

8ε/λ‖x− y‖.(3.4)

Lemma 3.2 [16]. If (3.4) is satisfied, then there exist positive constants
m and M , and a positive integer k0 such that

〈yk, sk〉/‖sk‖2 ≥ m,

‖yk‖2/〈yk, sk〉 ≤ M,
(3.5)

for all k ≥ k0.

Lemma 3.3 [16]. If (3.5) is satisfied, then there exist positive constants
β̃ and β such that the inequalities

d(k)TB(k)d(k) ≥ β̃‖B(k)d(k)‖ · ‖d(k)‖,

‖B(k)d(k)‖ ≤ β‖d(k)‖
are satisfied for infinitely many k, where B(k) is updated by the BFGS formula

B(k+1) = B(k) − B(k)s(k)s(k)T

B(k)

s(k)TB(k)s(k)
+
y(k)y(k)T

s(k)Ty(k)
,

where s(k) = x(k+1) − x(k), y(k) = ga(x(k+1), ε(k+1)) − ga(x(k), ε(k)) and 0 <
ε(k+1) < ε(k).

Lemma 3.4. If d(k) is computed by d(k) = −B(k)−1ga(x(k), ε(k)), then
d(k), k ∈ K, satisfy a gradient-relatedness condition, i.e.,

ga(x(k), ε(k))T d(k) ≤ −β̃‖ga(x(k), ε(k))‖ · ‖d(k)‖ < 0,(3.6)

where K is an infinite set.

P r o o f. By calculating, we have

ga(x(k), ε(k))Td(k) = −ga(x(k), ε(k))TB(k)−1ga(x(k), ε(k))(3.7)

= −[B(k)−1ga(x(k), ε(k))]TB(k) [B(k)−1ga(x(k), ε(k))]

= −d(k)TB(k)d(k).
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It follows from Lemma 3.3 that

d(k)TB(k)d(k) ≥ β̃‖B(k)d(k)‖ · ‖d(k)‖ = β̃‖ga(x(k), ε(k))‖ · ‖d(k)‖.(3.8)

Combining (3.7) and (3.8), we obtain

ga(x(k), ε(k))Td(k) ≤ −β̃‖ga(x(k), ε(k))‖ · ‖d(k)‖. �

Lemma 3.5. If a direction d
(k)
l

satisfies the equation

A
(k)
l
d
(k)
l

= d(k),

and (A3) and (A4) are satisfied, then the inequality given by (3.2) is valid.

P r o o f. From Lemma 3.4, we have

(A
(k)T
l ga(x(k), ε(k)))T d

(k)
l

≤ −β̃‖ga(x(k), ε(k))‖ · ‖A(k)
l
d
(k)
l

‖

≤ −β̃/δ2l ‖A
(k)
l ‖ · ‖ga(x(k), ε(k))‖ · ‖A(k)

l ‖ · ‖A(k)
l d

(k)
l ‖ from (A3)

≤ −β̃/δ2l ‖A
(k)T
l

ga(x(k), ε(k))‖ · ‖A(k)T
l

A
(k)
l
d
(k)
l

‖

≤ −β̃βl/δ
2
l ‖A

(k)T
l ga(x(k), ε(k))‖ · ‖d(k)

l ‖, from (A4)

(3.9)

where the third inequality comes from Cauchy-Schwartz inequality. Setting

µ0 = min
1≤l≤p

{β̃βl/δ
2
l },

then the inequality (3.2) is valid. �

The lemma given above shows that there exists a direction satisfying (3.2).
For convenience, the following notations are given

µ̃ : = 1 − µ1

∇ϕ(k)
l

: = A
(k)T
l

g(x(k))

∇aϕ
(k)
l

: = A
(k)T
l

ga(x(k), ε(k)).

Lemma 3.6. Suppose y
(k)
l is determined by (3.1) with d

(k)
l and α

(k)
l

satisfying (3.2) and (3.3). If (A3) is satisfied, then for each l one has that (2.6)
holds.
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P r o o f. From (3.3), one has that if α̃
(k)
l

= 2α
(k)
l

, then the line search
must be failing, i. e.,

ϕ
(k)a
l (ỹ

(k)
l , γε(k))−ϕ(k)a

l (0, ε(k)) = F a(A
(k)
l ỹ

(k)
l +x(k), γεk)−F a(x(k), ε(k))

> (1−µ̃1)α̃
(k)
l ∇aϕ

(k)T
l d

(k)
l +ε(k),

(3.10)

where ỹ
(k)
l = α̃

(k)
l d

(k)
l . From P4, we obtain

F a(A
(k)
l ỹ

(k)
l + x(k), γε

(k)
l ) − F a(x(k), ε(k)) ≤

F (A
(k)
l ỹ

(k)
l + x(k)) − F (x(k)) + γε(k).

(3.11)

Using the Mean-Value Theorem, one has

F (A
(k)
l
ỹ

(k)
l

+ x(k)) − F (x(k)) = [A
(k)T
l

g(x(k) + θA
(k)
l
ỹ

(k)
l

)]T ỹ
(k)
l
,(3.12)

for some θ ∈ (0, 1). It follows from (3.10)-(3.12) that

[A
(k)T
l

g(x(k) + θA
(k)
l
ỹ

(k)
l

)]T ỹ
(k)
l

> (1 − µ̃1)∇aϕ
(k)T
l

ỹ
(k)
l

+ (1 − γ)ε
(k)
l

> (1 − µ̃1)∇aϕ
(k)T
l

ỹ
(k)
l
.

Thus, we obtain

[A
(k)T
l

g(x(k) + θA
(k)
l
ỹ

(k)
l

) −A
(k)T
l

g(x(k))]Td
(k)
l

> (1 − µ̃1)∇aϕ
(k)T
l

d
(k)
l

−∇ϕ(k)T
l

d
(k)
l

= −µ̃1∇aϕ
(k)T
l

d
(k)
l

+ (∇aϕ
(k)
l

−∇ϕ(k)
l

)T d
(k)
l

≥ −µ̃1∇aϕ
(k)T
l d

(k)
l − ‖A(k)

l ‖ · ‖ga(x(k), ε(k)) − g(x(k))‖ · ‖d(k)
l ‖

≥ −µ̃1∇aϕ
(k)T
l d

(k)
l − δl‖ga(x(k), ε(k)) − g(x(k))‖ · ‖d(k)

l ‖

≥ −µ̃1∇aϕ
(k)T
l d

(k)
l − δl

√
2λ−1ε(k)‖d(k)

l ‖,(3.13)

where the third and the last inequality can be obtained in terms of (A3) and P4.
Since g is Lipschitzian with constant λ−1, one has

[g(x(k) + θA
(k)
l ỹ

(k)
l ) − g(x(k))]TA

(k)
l d

(k)
l

≤ θλ−1α̃
(k)
l ‖A(k)

l ‖2 · ‖d(k)
l ‖2

≤ θλ−1δ2l α̃
(k)
l

‖d(k)
l

‖2.

(3.14)



A PVT-type algorithm for minimizing a nonsmooth convex function 25

Then, it follows from (3.13) and (3.14) that

λ−1δ2l α̃
(k)
l

‖d(k)
l

‖2 ≥ θλ−1δ2l α̃
(k)
l

‖d(k)
l

‖2

≥ −µ̃1∇aϕ
(k)T
l d

(k)
l − δl

√
2λ−1ε(k)‖d(k)

l ‖

≥ −µ̃1∇aϕ
(k)T
l

d
(k)
l

− δl

√
2λ−1β(k)‖y(k)

l
‖ · ‖d(k)

l
‖

≥ −µ̃1∇aϕ
(k)T
l

d
(k)
l

− δlα
(k)
l

√
2λ−1β(k)‖d(k)

l
‖2.(3.15)

Since α̃
(k)
l

= 2α
(k)
l

, we have from (3.15) that

(δl + λ

√
2λ−1β(k))α

(k)
l δlλ

−1‖d(k)
l ‖2 ≥ −µ̃1∇aϕ

(k)T
l d

(k)
l ,

and since β(k) → 0 as k → ∞, the above inequality guarantees the existence of
an integer k > 0 such that for all k > k

δ2l λ
−1α

(k)
l ≥ −µ̃1‖d(k)

l ‖−2∇aϕ
(k)T
l d

(k)
l

or

α
(k)
l ≥ −λµ̃1δ

−2
l ‖d(k)

l ‖−2∇aϕ
(k)T
l d

(k)
l .

We have from (3.2) that

α
(k)
l ∇aϕ

(k)T
l d

(k)
l ≤ −λµ̃1δ

−2
l ‖d(k)

l ‖−2(∇aϕ
(k)T
l d

(k)
l )2(3.16)

and

(∇aϕ
(k)T
l d

(k)
l )2 ≥ µ2

0‖∇aϕ
(k)
l ‖2 · ‖d(k)

l ‖2.(3.17)

Let ∆(k)a(y
(k)
l
, γε(k)) = ϕ

(k)a
l

(y
(k)
l
, γε(k)) − ϕ

(k)a
l

(0, ε(k)). Combining (3.3), (3.16)
and (3.17) and letting ω(λ, µ0, µ̃1) = λµ2

0µ̃1, we obtain

∆(k)a(y
(k)
l
, γε(k)) = F a(A

(k)
l
y

(k)
l

+ x(k), γεk) − F a(x(k), ε(k))

≤ −ω(λ, µ0, µ̃1)δ
−2
l ‖∇aϕ

(k)
l ‖2 + ε(k)

≤ −ω(λ, µ0, µ̃1)(max1≤l≤p δl)
−2‖∇aϕ

(k)
l ‖2 + ε(k).

Let η = ω(λ, µ0, µ̃1)(max1≤l≤p δ2)
−2 > 0. �



26 Li-Ping Pang, Zun-Quan Xia

Combining the results given above in Lemmas 3.1–3.6, we present the
following PVT-MYR algorithm satisfying the ε-descent condition given above,
called the ε-descent PVT-MYR algorithm.

The ε-Descent PVT-MYR Algorithm: for nonsmooth convex minimiza-
tion (P)

Step 0 Initialization

An initial point x(0) ∈ Rn, B(0) = In×n, ε′ > 0, ε(0) > 0, 0 < γ < 1 and set
k = 0.

Step 1 Making the Moreau-Yosida regularization

Step 1a Find an estimate of the minimizer of Moreau-Yosida

regularization

Given an ε(k) > 0, calculate pa(x(k), ε(k)) satisfying (1.8) and (1.9).

Step 1b Find an estimate of the Moreau-Yosida regularization and

gradient

Formulas (1.10) and (1.11) are used for finding an estimate of the Moreau-
Yosida regularization and the corresponding gradient

F a(x(k), ε(k)) = f(pa(x(k), ε(k))) +
1

2
λ−1‖pa(x(k), ε(k)) − x(k)‖2,(3.18)

ga(x(k), ε(k)) = λ−1[x(k) − pa(x(k), ε(k))].(3.19)

Step 1c Search direction

Compute a direction d(k) satisfying

d(k) = −B(k)−1ga(x(k), ε(k)).

Step 2 Parallelization

Step 2a Parallel initialization

For each l ∈ {1, . . . , p}, choose an n × ml matrix A
(k)
l , such that d(k) ∈

spanA
(k)
l

.

Step 2b Choose a direction

For each l ∈ {1, . . . , p}, choose a direction d
(k)
l

such that

A
(k)
l d

(k)
l = d(k).

Step 2c Making the Moreau-Yosida regularization and line search
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The stepsize α
(k)
l

> 0 is chosen according to the Armijo rule

ϕ
(k)a
l (y

(k)
l , γε(k)) − ϕ

(k)a
l (0, ε(k)) = F a(A

(k)
l y

(k)
l + x(k), γεk) − F a(x(k), ε(k))

≤ µ1α
(k)
l [A

(k)T
l ga(x(k), ε(k))]Td

(k)
l + ε(k),

where y
(k)
l = α

(k)
l d

(k)
l . If A

(k)T
l ga(x(k), ε(k)) ≤ ε′ for all l ∈ {1, · · · , p}, then stop,

otherwise, goto Step 3.

Step 3 Synchronization

Choose a vector x(k+1) satisfying

F a(x(k+1), γε(k)) ≤ min
1≤l≤p

F a(A
(k)
l y

(k)
l + x(k), γε(k)).

Set ε(k+1) = γε(k).

Step 4 Update a matrix

Update B(k) by the BFGS formula

B(k+1) = B(k) − B(k)s(k)s(k)T

B(k)

s(k)TB(k)s(k)
+
y(k)y(k)T

s(k)T y(k)
,

where s(k) = x(k+1) − x(k), y(k) = ga(x(k+1), ε(k+1)) − ga(x(k), ε(k)), with
0 < ε(k+1) < ε(k). Set k = k + 1, goto Step 1.

End of the ε-Descent PVT-MYR Algorithm

Note that for each l there exist a sequence of matrices, {A(k)
l }∞k=1, satis-

fying the following conditions

1. d(k) ∈ spanA
(k)
l
,

2. A
(k)T
l A

(k)
l is uniformly positive definite,

3. A
(k)
l

is uniformly bounded.

For example, for each k and l we may choose the matrix

A
(k)
l

= (d(k)/‖d(k)‖, p(k)
1 , · · · , p(k)

ml−1), such that columns pj ∈ Rn, j = 1, . . .,

ml − 1, and d(k)/‖d(k)‖ are orthogonal to each other and ‖p(k)
l ‖ = 1.

The convergence of the ε-descent PVT-MYR algorithm associated with
directions and stepsizes satisfying (3.2) and (3.3) is given by the following theo-
rem.
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Theorem 3.1. Suppose that, at each iteration of the PVT-MYR algo-

rithm, y
(k)
l is given by (3.1) with d

(k)
l and α

(k)
l satisfying (3.2) and (3.3), re-

spectively. Suppose also that the matrices A
(k)
l are chosen such that (A2)–(A4)

are satisfied. Then the sequence {x(k)} generated by the PVT-MYR algorithm
converges to the unique minimal solution of (P).

P r o o f. By virtue of Theorem 2.1 and Lemma 3.6 we have (2.6) and
hence the proof is completed. �

4. Rate of convergence. In this section, we investigate the conver-
gence rate of the PVT-MYR algorithm for minimizing a nonsmooth convex func-
tion. We assume that the sequence {x(k)} generated by the PVT-MYR algorithm
is convergent to the minimizer of f , i. e.,

lim
k→∞

‖x− x∗‖ = 0,

where x∗ = argminx∈Rn f(x). The following two conditions are used for studying
the rate of convergence

(B1) ‖g(x(k))‖2 − ‖ga(x(k), ε(k))‖2 ≤ −2ε(k)/(ηβ(λp)−1),

(B2) c3 < ηβp−1, where c3 is a positive constant.

We now give the result on the convergence rate of the PVT-MYR algo-
rithm.

Theorem 4.1. Let {x(k)} be a sequence generated by the PVT-MYR
algorithm under the following assumptions

a. The objective function f is strongly convex, satisfying (B1) and (B2);

b. y
(k)
l , l = 1, · · · , p, k = 1, · · · , are chosen such that (2.6) in Step 1 is
satisfied;

c. z(k), l = 1, · · · , p, k = 1, · · · , are chosen such that (2.7) in Step 2 is satis-
fied;

d. Matrices A
(k)
l satisfy (A2) and (A3).
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Then ‖x(k) − x∗‖ converges R-linearly to zero.

P r o o f. From (2.10), we have

F (x(k+1)) − F (x(k)) ≤ −ηp−1(
∑

‖∇aϕ
(k)
l ‖2) + 2ε(k)

= −ηp−1‖A(k)T ga(x(k), ε(k))‖2 + 2ε(k)

≤ −ηβp−1‖ga(x(k), ε(k))‖2 + 2ε(k).

We have from (B1) and (B2) that

‖g(x(k))‖2 − ‖ga(x(k), ε(k))‖2 ≤ −2ε(k)/(ηβp−1),

and

−ηβp−1‖ga(x(k), ε(k))‖2 + c3‖g(x(k))‖2 + 2ε(k) ≤ 0.

Thus, one has

F (x(k+1)) − F (x(k)) ≤ −c3‖g(x(k))‖2.(4.1)

Combining (4.1), P1 and P2, one has

F (x(k)) − F (x(k+1)) ≥ c3c
2
2c

−1
1 (F (x(k)) − F (x∗)).

This in turn implies that

F (x(k+1)) − F (x∗) ≤ c(F (x(k)) − F (x∗)),(4.2)

where c = 1 − c3c
2
2c

−1
1 ∈ (0, 1). Thus, {F (x(k))} converges Q-linearly to

F (x∗) = f∗.

Since (4.1) and (4.2) imply that

F (x(k)) − F (x∗) ≥ (1 − c)‖g(x(k))‖2

and

F (x(k)) − F (x∗) ≤ ck(F (x(0)) − F (x∗)),

respectively, we obtain

‖g(x(k))‖2 ≤ ck(1 − c)−1(F (x(0)) − F (x∗)).

By P2, we have that ‖x(k) − x∗‖ converges R-linearly to zero. �
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5. Appendix. The proximal solution problem (1.2) can be computed
by the algorithm proposed in [3], stated below.

Proximal Point Algorithm: for nonsmooth minimization problems

p(x(n)) = arg min{f(z) +
1

2tn
‖y − x(n)‖}.

Step 0 Fix, for example, k > 1 and m ∈ (0, 1). Start from x(1) ∈ Rn, set n = 1.

Step 1 Set k = 1, start from some y(k) = y(1).

Step 2 Set

ε = k[f(x(n)) − f(y(k) − m

t(n)
‖y(k) − x(n)‖2)].

If
x(n) − y(k)

tn
∈ ∂εf(x(n)),

then goto Step 3; otherwise compute y(k+1), increase k by 1 and execute
Step 2 again.

Step 3 Set x(n+1) = y(k), increase n by 1 and loop to Step 1.

End of the Proximal Point Algorithm
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[11] J. Hiriart-Urruty, C. Lemaréchal. Convex Analysis and Minimization
Algorithms. Springer Verlag, Berlin, 1993.

[12] C. S. Liu, C. H. Tseng. Parallel synchronous and asynchronous space-
decomposition algorithms for large-scale minimization. Comput. Optim.
Appl. 17 (2000), 85–107.

[13] O. L. Mangasarian. Parallel gradient distribution in unconstrained opti-
mization. SIAM J. Control Optim. 33 (1995), 1916–1925.
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