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Abstract. Let PG be the abelian modular group ring of the abelian group
G over the abelian ring P with 1 and prime charP = p. In the present article,
the p-primary components Up(PG) and S(PG) of the groups of units U(PG)
and V (PG) are classified for some major classes of abelian groups.

Suppose K is a first kind field with respect to p in charK 6= p and A is an
abelian p-group. In the present work, the p-primary components Up(KA)
and S(KA) of the group of units U(KA) and V (KA) in the semisimple
abelian group ring KA are studied when they belong to some central classes
of abelian groups. The established criteria extend results obtained by us
in Compt. rend. Acad. bulg. Sci. (1993). Moreover, the question for
the isomorphic type of the basic subgroup of S(KA) is also settled. As a
final result, it is proved that if A is a direct sum of cyclics, the group of
all normed p-units S(KA) modulo A, that is, S(KA)/A, is a direct sum of
cyclics too. Thus A is a direct factor of S(KA) with a direct sum of cyclics
complementary factor provided sp(K) ⊇ N. This generalizes a result due to
T. Mollov in Pliska Stud. Math. Bulgar. (1986).

1. Introduction. Let G be an arbitrary abelian group and A be an
abelian p-group both written multiplicatively. Throughout this paper P denotes
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an arbitrary commutative ring in prime char P = p and with 1, L designates a
field in char L = p and K a field of the first kind with respect to p of char K 6= p
such that its spectrum contains all naturals. As usual, let U(P ) and Up(P )
be the unit group and its p-component in P , and let U(K) and Up(K) be the
multiplicative group and the p-multiplicative group (i.e. the p-unit group) of K.
Besides, define N(P ) as the nilradical of P .

For G a group, Gp will denote the p-component of the maximal torsion

subgroup (= torsion part) tG of G. For A a p-group, A1 def
=

∞⋂

n=1
Apn

will designate

the group of all elements of infinite height (i.e. in other words, the first Ulm
subgroup) of A, and BA the basic subgroup of A.

Suppose that PG and KA are group rings, U(PG) and U(KA) are
their unit groups with subgroups of normalized (i.e. of augmentation 1 —
the coefficients sum equal to 1) units V (PG) and V (KA), and Up(PG) and
S(PG) = Vp(PG), respective Up(KA) and S(KA) = Vp(KA), are their Sylow p-
subgroups. For C a subgroup of G and an arbitrary ring R, the symbol I(RG;C)
denotes the relative augmentation(fundamental) ideal of RG with respect to C.
All other notations and the terminology are in agreement with the excellent clas-
sical monographs of L. Fuchs [10], G. Karpilovsky [11] and D. Passman [14].

In [15], S. Berman and G. Rossa classified S(KA) when A is countable.

In 1986, T. Mollov has described in [12] up to an isomorphism the struc-
ture of S(KA) provided A is a direct sum of cyclics. Moreover, he decomposed
in [12] the group S(KA) into a divisible part and a separable reduced part. The
divisible subgroup was classified in [12], and the reduced subgroup was charac-
terized via the Ulm-Kaplansky functions in [13]. Nevertheless, his results are no
complete and some new considerations in this aspect are needed.

In [16, 17, 18] Z. Chatzidakis and P. Pappas have given the isomorphic
type of V (KA) when A is a direct sum of countables and they considered certain
variants of the Splitting Problem and the Direct Factor Problem as well. Moreover
they showed that the classification problem for S(KA) is difficult provided A is
not countable.

Comparing our results stated and argued below with those independently
obtained by Berman-Rossa, Chatzidakis-Pappas, and Mollov, we can say that the
new major moments in this paper are the study of the Direct Factor Question
and the characterization of the isomorphic type of the basic subgroup both in a
semisimple aspect. The methods used by us are not identical to these in the cited
above research articles.

The main purpose that motivates this manuscript is to investigate some
characteristic properties of the above defined groups in the modular and semisim-
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ple directory by developing of the Mollov’s assertions. More especially, we exam-
ine the Direct Factor Conjecture and the problem for isomorphism structure of
the basic subgroup. Thus our results strengthen those obtained by Mollov. The
work is organized in two sections as follows:

2. Modular case. The basic facts selected in this point concern the
decomposition into direct sums of cyclic groups and the quasicompleteness of
p-torsion components of commutative modular group rings. Foremost, for a con-
venience of the reader, we recall some facts needed for our presentation.

Theorem [4]. Let H be a pure p-subgroup of G. The group V (PG;H) is
a direct sum of cyclics if and only if H is a direct sum of cyclics. In particular,
when H = G, V (PG) is a direct sum of cyclics if and only if G is.

The purity condition on H being a pure subgroup in G is not sufficient.
This may be demonstrated by the following.

Proposition 1. Let H ≤ A such that A/H be bounded. The group
V (PA;H) is a direct sum of cyclics if and only if H is a direct sum of cyclics.
Moreover, if H is a direct sum of cyclic groups, then V (PA;H)/H is a direct
sum of cyclics and H is a direct factor of V (PA;H).

P r o o f 1. We treat the sufficiency. Because H is a direct sum of cyclic
groups, the same holds for A by virtue of [10]. From the above theorem, V (PA)
is a direct sum of cyclics. Thus, [10] ensures that V (PA;H) ⊆ V (PA) is one
also.

Besides, V (PA)/A is a direct sum of cyclics invoking to [3]. Therefore
V (PA;H)/H ∼= V (PA;H)A/A ⊆ V (PA)/A is with the same property, and it is
a routine matter to see that H is pure in V (PA;H). So, the direct factor claim
holds true. This finishes the proof. �

P r o o f 2. Write H =
∞⋃

n=1
Hn =

∞⋃

k=t

Hk; Hk ⊆ Hk+1 for this t ∈ N

such that Apt

⊆ H. Clearly V (PA;H) =
∞⋃

k=t

V (PA;Hk). By applications of

lemmas from [4], we conclude that, V (PA;Hk)∩ V psk+t

(PA;H) = V (PA;Hk) ∩

V (P ps
k
+t

Aps
k
+t

;Hps
k
+t

) ⊆ V (PA;Hk)∩V (P ps
k Hps

k ; Hps
k ) = V (P ps

k Hps
k ;Hps

k∩
Hk) = 1 because Hk ∩ Hps

k = 1 for some sk ∈ N and any k ∈ N. Finally,
V (PA;H) is a direct sum of cyclic groups owing to the well-known and docu-
mented Kulikov’s criterion in [10]. Further, the same conclusions are valid and
for V (PA;H)/H. The proof is finished. �

Proposition 2. Suppose P is weakly perfect, that is, P pi

= P pi+1

for
some natural i. Then Up(PG) is a direct sum of cyclic groups if and only if the
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maximal perfect subring of P has no nilpotents and Gp is a direct sum of cyclic
groups.

P r o o f. If Up(PG) is a direct sum of cyclics, as subgroups Gp ⊆ Up(PG)

is a direct sum of cyclic groups and Up(P
pi

) is reduced. But Up(P
pi

) is divisible

since P pi

is perfect and hence Up(P
pi

) = 1, i.e. N(P pi

) = 0.

We presume now that N(P pi

) = 0 and that Gp is a direct sum of cyclics.

By using of the first formulated theorem, S(P pi

Gpi

) = Up(P
pi

Gpi

) = Upi

p (PG) is
a direct sum of cyclics whence so is Up(PG) applying a theorem due to Sasiada-
Mostowski and Fuchs [10]. The claim is proved. �

We begin now with the quasi and torsion completeness in modular group
rings.

Proposition 3. Assume that P is weakly perfect. Then Up(PG) is
quasi complete (in particular torsion complete) if and only if the maximal perfect
subring of P is without nilpotent elements and Gp is bounded.

P r o o f. First, Up(PG) is assumed to be quasi complete. Therefore for

some i ∈ N, the group Up(P
pi

) is reduced and divisible, i.e. Up(P
pi

) = 1 which

is equivalent to N(P pi

) = 0. On the other hand, Upi

p (PG) must be also quasi

complete. Because Up(P
pi

Gpi

) = S(P pi

Gpi

), according to [8] we can deduce that

(Gpi

)p = (Gp)
pi

is bounded, i.e. the same holds and for Gp.

Conversely, Gp bounded means that (Gpi

)p is so. The last property to-

gether with [2] lead us to Up(P
pi

Gpi

) = Upi

p (PG) is bounded. So, Up(PG) is
bounded hence quasi complete [10]. The proof is over. �

Next, we start with the other main statements concerning

3. Semisimple case. First, we proceed by proving the following
criteria (see [2, 3, 5, 6, 7] as well).

Theorem 4. The following are fulfilled:
(0) S(KA) is cyclic ⇐⇒ A = 1.
(1) S(KA) is a direct sum of cocyclics ⇐⇒ A/A1 is a direct sum of

cyclics.
(2) S(KA) is finitely generated (i.e. finite) ⇐⇒ A is finite.
(3) S(KA) is finitely cogenerated (i.e. finite) ⇐⇒ A is finite.
(4) S(KA) is elementary ⇐⇒ A is elementary, p = 2 and K 6= K(ε2).
(5) S(KA) is reduced homogeneous no elementary, i.e. is a direct sum of

cyclics of the same order pt for t ≥ 2 ⇐⇒ A is a direct sum of cyclics, p 6= 2 or
p = 2 but K = K(ε2), Api

= 1 and i < t = const p(K).
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(6) S(KA) is a direct sum of σ-summables ⇐⇒ A is a direct sum of
cyclics.

(7) S(KA) is a pα-projective for some α ≥ ω ⇐⇒ A is a direct sum of
cyclics.

(8) S(KA) is divisible ⇐⇒ A is divisible.

P r o o f. Utilizing [12], we detect

S(KA) ∼= S1(KA) × S(K(A/A1)),

where S1(KA) is the divisible part of S(KA).
(0) Follows in virtue of the decomposition formula in [12] as well as (4)

and (5) below considered.
(1) Certainly, S(KA) is a direct sum of cocyclics if and only if S(K(A/A1))

is a direct sum of cyclics. Thus A/A1 is a direct sum of cyclics again complying
with [12].

(2) and (3). If S(KA) is finite, then A is also finite as a subgroup.
Conversely, let us assume that A is finite. Following the proof of [12, Lemma 5],
we obtain that S(KA) must be finite.

(4) and (5). By making use of [12], we may write S(KA) ∼=
∐

|A|(p) when

p = 2 and K 6= K(ε2); or S(KA) ∼=
∐

|A|(p
t) with exp(A) = i < t = const p(K)

when p 6= 2 or p = 2 but K = K(ε2).
(6) and (7). Evidently S(KA) must be reduced whence separable and so

S(KA) is a direct sum of cyclics, i.e. the same is A.
(8) If A is divisible, then A = A1 and hence S(KA) ∼= S1(KA). Thus

S(KA) is divisible. Conversely, if S(KA) is divisible, then S(K(A/A1)) is di-
visible and separable (whence reduced), and therefore S(K(A/A1)) = 1, i.e.
A/A1 = 1. Finally A = A1, i.e. A = Ap. Furthermore, A is divisible. So,
the assertion is verified. �

Next, we are in position to state

Theorem 5. The following are valid:
(0′) Up(KA) is cyclic ⇐⇒ A = 1.
(1′) Up(KA) is a direct sum of cocyclics ⇐⇒ A/A1 is a direct sum of

cyclics.
(2′) Up(KA) is finitely generated ⇐⇒ G and Up(K) are both finite.
(3′) Up(KA) is finite ⇐⇒ G and Up(K) are finite.
(4′) Up(KA) is elementary ⇐⇒ A and Up(K) are elementary, p = 2

and K 6= K(ε2).
(5′) Up(KA) is a direct sum of cyclics of the same order pt for t ≥ 2 ⇐⇒

A is a direct sum of cyclics, Up(K) is a direct sum of cyclics of the same order

pt for t ≥ 2, p 6= 2 or p = 2 but K = K(ε2), Api

= 1 and i < t = const p(K).
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(6′) Up(KA) is a direct sum of σ-summables ⇐⇒ A is a direct sum of
cyclics.

(7′) Up(KA) is a pα-projective for some α ≥ ω ⇐⇒ A is a direct sum of
cyclics.

(8′) Up(KA) is divisible ⇐⇒ A is divisible and Up(K) = 1.

(9) Up(KA) is simply presented ⇐⇒ A/A1 is a direct sum of cyclic
groups.

(10) Up(KA) is totally projective ⇐⇒ A is a direct sum of cyclic groups.

(11) Up(KA) is a direct sum of countable groups ⇐⇒ A/A1 is a direct
sum of cyclic groups.

(12) Up(KA) is algebraically compact ⇐⇒ A/A1 is bounded.

(13) Up(KA) is summable ⇐⇒ A is a direct sum of cyclic groups.

P r o o f. Since Up(KA) = S(KA) × Up(K) and Up(K) is cyclic, following
step by step the method for proof of the preceding Theorem 4 and [2], we conclude
obviously that the listed dependences are true. The theorem is proved. �

The following affirmation is crucial for our further investigation.

Lemma [9]. The subgroup A is pure in S(KA).

Thus if A is torsion-complete, then A is a direct factor of S(KA), hence of
V (KA) by [10]. The structure of the complementary factor S(KA)/A is unknown
yet. Probably it is a direct sum of cyclic groups.

Lemma 6. Let G = B × C be an abelian group and let R be any com-
mutative unitary ring. Then S(RG) = S(RB) × [S(RG) ∩ (1 + I(RG;C))].

P r o o f. For x ∈ S(RG) we write x =
∑

c∈C
fbcc =

∑

c∈C
fbc +

∑

c∈C
fbc(c −

1), whenever fbc ∈ RB. Moreover, there is a positive integer t with xpt

= 1.
Henceforth, 1 = (

∑

c∈C
fbc)

pt

+(
∑

c∈C
fbc(c− 1))p

t

+ · · · and from [3], 1− (
∑

c∈C
fbc)

pt

∈

RB ∩ I(RG;C) = I(RB;B ∩ C) = 0. Thus, (
∑

c∈C
fbc)

pt

= 1 and
∑

c∈C
fbc ∈

S(RB). Finally, we obtain x =
∑

c∈C
fbc(1+(

∑

c∈C
fbc)

−1(
∑

c∈C
fbc(c−1))) ∈ S(RB)(1+

I(RG;C)). The fact that the intersection of this production is equal to 1 follows
by ideas from [3]. This verifies the proof of the assertion. �

Well, we come now to one of the significant attainments.

Theorem 7 (Direct Factor). Suppose that A is a direct sum of p-primary
cyclic groups. Then S(KA)/A is a direct sum of cyclic groups and thus A is a
direct factor of S(KA) with a direct sum of cyclics complement. More generally,
A is a direct factor of V (KA).
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P r o o f. Write A =
∞∐

n=1
An, where An =

∐

αn

〈pn〉 is homogeneous of or-

der pn. Set Hn = A1 × · · · × An. It is clear that A =
∞⋃

n=1
Hn, Hn ⊆ Hn+1

and Hn ∩ Apn

= 1 = Hpn

n . That is why S(KA) =
∞⋃

n=1
S(KHn) =

∞⋃

n=f

S(KHn),

where S(KHn) ⊆ S(KHn+1), Spn

(KHn) = 1 and f = const p(K). Apparently

S(KA)/A =
∞⋃

n=f

[S(KHn)A/A]. Since we observe that A = Hn × M for some

group M , consulting with Lemma 6 we have S(KA) = S(KHn) × T , where
T = S(KA)∩ [1+ I(KA;M)]. Consequently S(KA)/A = S(KHn)A/A×TA/A.
Really, it is enough to show that [S(KHn)A] ∩ [TA] = A, or owing to the mod-
ular law in [10] the relation is equivalent to [S(KHn)A] ∩ T ⊆ A. In fact,
[S(KHn)A] ∩ [S(KA) ∩ (1 + I(KA;M))] = [S(KHn)A] ∩ (1 + I(KA;M)) ⊆ A
adapting the technique described in [3]. Therefore S(KHn)A/A must be pure in
S(KA)/A and in conclusion, [S(KHn)A/A]∩ [S(KA)/A]p

n

= [S(KHn)A/A]p
n

=
Spn

(KHn)A/A = 1. By virtue of the important criterion due to L. Kulikov [10],
we establish that S(KA)/A is a direct sum of cyclics. Finally, complying with the
purity Lemma along with an other classical theorem of L. Kulikov, argued in [10],
we derive that A is a direct factor of S(KA) and the complement is isomorphic
to S(KA)/A. The final part follows via [17, Proposition 1.6] since S(KA) is a
direct factor of V (KA). The proof is completed. �

The following is a direct consequence of the above central theorem.

Corollary 8. Given that A is a direct sum of p-torsion cyclics. Then
Up(KA)/A is a direct sum of cyclics and so A is a direct factor of Up(KA) with a
direct sum of cyclics complementary factor. Thus A is a direct factor of U(KA).

P r o o f. Since Up(KA) = S(KA) × Up(K) where Up(K) is cyclic and ac-
cording to the previous assertion, we can deduce that Up(KA) = A×S(KA)/A×
Up(K), as desired. This fulfilles the proof. �

Next, we concentrate on the problem for the basic subgroup in commu-
tative semisimple group algebras. First we start with one key

Proposition 9. Suppose H ≤ A is a subgroup of the separable group A.
Then S(KH) ⊆ BS(KA) if and only if H ⊆ BA.

P r o o f. “necessity”. Consuming a result of L. Kovacs documented in

[10], we may write S(KH) =
∞⋃

n=1
Sn so that Sn ⊆ Sn+1 and Sn ∩ Spn

(KA) = 1.
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Furthermore H =
∞⋃

n=1
(Sn ∩ H), where Sn ∩ H ⊆ Sn+1 ∩ H and Sn ∩ H ∩ Apn

⊆

Sn ∩ Spn

(KA) = 1, as required.

“sufficiency”. We write H =
∞⋃

n=1
Hn, Hn ⊆ Hn+1 and Hn ∩ Apn

=

1. Therefore S(KH) =
∞⋃

n=1
S(KHn) =

∞⋃

n=f

S(KHn), where f = const p(K).

Clearly S(KHn) ⊆ S(KHn+1). Besides, we calculate that S(KHn)∩Spn

(KA) =
1. In fact, choose x to belongs to the last intersection. Thus x ∈ S(KHn)
whence x ∈ S(KF ), where F ⊆ Hn is a finite direct factor of A (for instance, cf.
[10]). Consequently as a direct factor S(KF ) is pure in S(KA) and following the
proof of Proposition 11 in [12], we detect that Spn

(KF ) = 1. Finally, the above
mentioned Kovacs criterion completes the proof. �

As an immediate consequence, we extract a nontrivial relation, namely
(announced in [1, Theorem 12]).

Corollary 10. S(KBA) ⊆ BS(KA) provided A is separable.

P r o o f. Follows automatically from the last proposition at setting H=BA. �

Further, we formulate one attainment announced as [1, Theorem 12].

Proposition 11. The following isomorphism holds

BS(KA)
∼= S(KBA).

P r o o f. If A is finite, then A = BA. In conjunction with (2-3), S(KA) is
finite hence BS(KA) = S(KA) = S(KBA).

Let us now A be infinite. First assume that A is separable. Hence S(KA)
is the same by [12, 13], and we elementary see that [10] is applicable to obtain
that S(KA) and BS(KA) have equal Ulm-Kaplansky invariants. On the other
hand, employing [13], we derive that S(KBA) and S(KA) also have equal Ulm-
Kaplansky functions. Finally from [10] we find that BS(KA) and S(KBA) must
be isomorphic, proving the first half.

For the general part, taking into account that S(KA) ∼= S1(KA) ×
S(K(A/A1)) (see cf. [12]) where S1(KA) is divisible and consulting with [10,
p.185, Exercise 8], we obtain BS(KA)

∼= BS(K(A/A1)). But by what we have just

shown, BS(K(A/A1))
∼= S(KBA/A1) = S(K(BAA1/A1)) ∼= S(K(BA/BA ∩ A1)) ∼=

S(K(BA/B1
A)) ∼= S(KBA), as claimed. The proof is verified. �

In the abelian group theory, it is well-known that (by Khabbaz – see
the bibliography of [10]), the infinite abelian p-group A is said to be starred if
|A| = |BA|. Evidently all finite groups are starred, but the divisible groups are
not from this group class.
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As a valuable consequence to the last affirmation, we may deduce

Proposition 12. Given A is an abelian p-torsion group. Then S(KA)
is starred if and only if A is starred, and Up(KA) is starred if and only if so is A.

P r o o f. We shall consider only the infinite case since (2) completes the
situation when A is finite. Therefore BA is infinite because otherwise point (2)
does imply that S(KBA) is finite whence Proposition 11 together with the sup-
positions yield that S(KA) is finite that is a contradiction. As we have seen,
Proposition 11 guarantees that |BS(KA)| = |S(KBA)|. Because of this that
|S(KBA)| = |BA| and |S(KA)| = |A| (see [12]), we establish |BS(KA)| = |S(KA)|
only when |BA| = |A|. This verifies the first half.

For the second part, we take into account that Up(KA) = S(KA)×Up(K),
where Up(K) is cyclic. Foremost, if A is finite, (3’) will imply that so is Up(KA)
whence starred. Otherwise, |Up(KA)| = |S(KA)| > |Up(K)| and the further
proof is trivial. The proposition is shown. �

Claim 13. Suppose H ≤ A. If S(KH) is a basic subgroup of S(KA),
then H is so in A.

P r o o f. The subgroup H ⊆ S(KH) is a direct sum of cyclics utilizing
[10].

Besides, by virtue of the purity Lemma, H is pure in S(KH) hence in
S(KA) and so from [10], H is pure in A.

After this, since S(KA)/S(KH) is divisible, the same holds and for
the epimorphic image S(KA)/ ker ϕ, where S(KH) ⊆ ker ϕ and ϕ:S(KA) →
S(K(A/H)) is an epimorphism (cf. [12]). Consequently S(KA)/ ker ϕ ∼=
S(K(A/H)) is divisible and thus (8) is applicable to get that A/H is divisible,
as required. This completes the proof. �

Remark 14. Oppositely to the last assertion, if H is basic in the sepa-
rable p-group A, then S(KH) is pure in S(KA) and S(KH) is a direct sum of
cyclics (see cf. [12]). But whether or not S(KA)/S(KH) is divisible is unknown
yet. If yes, S(KH) would be a basic subgroup of S(KA).

The Generalized Direct Factor Problem in the commutative modular
group aspect asks does S(LA)/A is totally projective whenever A is reduced
and L is perfect. By a reason of symmetry, in the commutative semisimple case,
we can state

Problem 15. Whether or not S(KA)/A is totally projective or simply
presented.

However, the following sheds some light in this direction, namely:
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Proposition 16. (a) If A is separable, the quotient group S(KA)/A is
separable or equivalently A is nice in S(KA);

(b) S(KA)/A is totally projective if and only if S(KA)/A is a direct sum
of cyclics.

P r o o f. (a) Given x ∈ S(KA)/A, hence x ∈ S(KF )A/A ∼= S(KF )/F for
some finite subgroup F of A. Therefore, consuming (2), S(KF )/F is finite whence
separable. On the other hand F should be a direct factor of A. Therefore, as
we previously have seen above, S(KF )A/A must be a direct factor of S(KA)/A,
thus it is its pure subgroup. That is why, for arbitrary y ∈ (S(KF )A/A) ∩
(S(KA)/A)1 ∼= (S(KF )/F )1 = 1 we have y = 1, so we are done.

(b) By making use of the purity Lemma, S1(KA)/A1 ∼= S1(KA)A/A ⊆
S(KA)/A is indebted to be divisible and reduced, owing also and to the above
cited Mollov’s result in [12]. Therefore S1(KA) = A1. But then A1 = 1. Really,
if not, there exists 1 6= a ∈ A1. Let us now e1 and e2 be minimal ortogonal
idempotents for some finite subgroup F ≤ A such that F ∩ 〈a〉 = 1 (F may be
choosen to be a finite direct factor of A whence F ∩ A1 = 1), i.e. e1

2 = e1,
e2

2 = e2 plus e1 + e2 = 1 and e1e2 = 0 in KF for such a group F . Thus, the
element e1 + e2a clearly belongs to S1(KA). That is why e1 + e2a lies in A1,
but this is impossible because it is an element in canonical form. The obtained
contradiction extract our claim.

By what we have just argued S(KA)/A reduced yields that A is separable.
And so, since by (a) the factor group S1(KA)A/A is equal to (S(KA)/A)1, i.e.
S(KA)/A is separable, consulting with [10] we are done. �

Furthermore, in the remaining case when A is not separable and A1 is
not divisible, we have doubts about the validity of the Direct Factor Conjecture.
In more precise words, A is not however a direct factor of S(KA).

So, we reformulate Problem 15 in the following way.

Problem 17. If A is separable, does it follow that S(KA)/A is a direct
sum of cyclics?

In the case of separable p-groups the Mollov’s formula is trivially satisfied,
hence another idea to solve the stated question in negative or in affirmative is
necessary. For direct sums of p-cyclics, it was done via Theorem 7. Conforming
with the representation theorem for separable abelian p-groups (see [10], p.24,
Corollary 68.2 – L. Kulikov), we observe that it is enough to show that S(KA)/A
is a direct sum of cyclic groups provided A is torsion complete only. In this
direction, if there exists a commutative unitary ring E of prime characteristic
p such that K ⊂ E, we will be done since we have proved that S(EA)/A is a
direct sum of cyclics provided A is separable, so the same will be valid and for
its subgroup S(KA)/A.
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Well, we conjecture that Problem 17 holds true in a positive way, and
so as we have seen S(KA) ∼= A × S(KA)/A where S(KA)/A is a direct sum of
cyclics. Thus, for the full description of S(KA), the Ulm-Kaplansky functions of
S(KA)/A must be computed (although Mollov has claimed that the calculated in
[13] Ulm-Kaplansky invariants of S(KA) are sufficient that is, of course, wrong).
However, this is a work of some other research study.

4. Concluding remarks and problems. From the begining we
mention the nice fact due to N. Nachev (for example, see [2]) that Up(QA) =
Up(RA) and S(QA) = S(RA) whenever R = Z[1p ] is the ring of all rational
numbers so that their denominators are a power of the prime number p. Thus
all proved statements concerning the group ring QA may be replaced with such
similar claims for RA.

After this, we list once again (see [2]) the conjecture that Up(KA), respec-
tive S(KA), is quasi complete (in particular torsion complete) if and only if A is
bounded. In the case for torsion completeness, the reader can see (cf. [9]). An
interesting problem is also what is the criterion (i.e. the necessary and sufficient
condition) illustrated S(KA) to be quasi pure injective (q.p.i.) and quasi pure
projective (q.p.p.)? For other interesting group classes, we refer the reader also
to the papers [3, 5, 6, 7].

And as a final discussion, a global problem is the theme for finding of
the basic subgroup of S(KA) which, as we have seen, must be isomorphic to
S(KBA), but probably they are not equal.
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