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Abstract. We answer positively a question raised by S. Argyros: Given
any coanalytic, nonalytic subset Σ′ of the irrationals, we construct, in Mer-
courakis space c1(Σ

′), an adequate compact which is Gul’ko and not Ta-
lagrand. Further, given any Borel, non Fσ subset Σ′ of the irrationals, we
construct, in c1(Σ

′), an adequate compact which is Talagrand and not Eber-
lein.

0. Introduction. On the last Sunday of August 1998, the first named

author, Petr Čı́žek died at a car accident in the U.S.A. This paper was prepared

on the basis of his Diploma Thesis [2] by the second named author, his supervisor.
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In [11], Talagrand constructed a Talagrand compact space which is not

Eberlein. In [12], he constructed an example of a Gul’ko compact space which is

not Talagrand. His example is based on the fact that the set of all well founded

trees is not analytic. In this note, we suggest a method of constructing a nontrivial

compact set in Mercourakis space c1(Σ
′) where Σ′ is any coanalytic subset of a 0-

dimensional Polish space Σ. This is done via an adequate family of subsets in Σ′.

In such a way we get, in Theorem 3.4, a Gul’ko compact which is not Talagrand

(if Σ′ is not analytic) and, in Theorem 3.6, a Talagrand compact which is not

Eberlein (if Σ′ is Borel non Fσ). We use a fact that Σ can be continuously injected

into the space of trees in such a way that the preimage of the well-founded trees

is Σ′. Our adequate family on Σ′ is then obtained as the preimage of an adequate

family in the set of all well-founded trees, which was constructed in [12].

1. Preliminaries. A compact space is called Eberlein if it is homeo-

morphic to a weakly compact subset of a Banach space. Put

S = ∅ ∪ N ∪ N
2 ∪ · · ·

where N denotes the set of positive integers. For σ ∈ N
N and n ∈ N we put

σ|n = (σ(1), . . . , σ(n)). A topological space X is called K-analytic (K-countably

determined) if X is a subspace of a compact space C and there are closed subsets

Ks ⊂ C, s ∈ S, such that

X =
⋃

σ∈NN

∞⋂

n=1

Kσ|n

(
X =

⋃

σ∈Σ′

∞⋂

n=1

Kσ|n for some subset Σ′ ⊂ N
N

)
.

It is known (and can be shown without much effort) that these concepts do not

depend on which compact superspace C is considered.

Proposition 1.1 ([11, Proposition 1.1], [4, Proposition 7.1.1]). A com-

pletely regular space X is K-analytic (K-countably determined) if and only if there

is an upper semicontinuous and compact valued mapping from N
N (from a subset

of N
N) onto X.
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A compact space K is called Talagrand (Gul’ko) if the space C(K) of continuous

functions on K endowed with the topology p of the pointwise convergence on K

is K-analytic (K-countably determined).

In what follows, we shall focus on a special class of compacta consisting of

characteristic functions of a family of subsets of a given set. Let Γ be a nonempty

set. A family A of subsets of Γ is called adequate if

(i) for every γ ∈ Γ the singleton {γ} belongs to A,

(ii) whenever A ∈ A and B ⊂ A, then B ∈ A, and

(iii) if A ⊂ Γ and B ∈ A for every finite set B ⊂ A, then A ∈ A.

If A is such a family, we put

KA = {χA : A ∈ A};

then it is easy to check that KA is a compact subset in the space {0, 1}Γ. The

compacta constructed in this way will be a main objective of this paper. For

γ ∈ Γ put

δ(γ)(χA) = χA(γ), χA ∈ KA;

then, obviously, δ(γ) ∈ C(KA). Put

Γ∗ = δ(Γ) ∪ {0}.

Proposition 1.2 ([11]). Let A be an adequate family of subsets of some

set Γ. Then:

(i) The set Γ∗ separates the points of the compact KA.

(ii) The set Γ∗ is closed in (C(KA), p).

(iii) The set δ(Γ) is discrete in (Γ∗, p).

(iv) The mapping δ : Γ → C(KA) is injective.

(v) The sets Γ∗\δ(A), A ∈ A, form a subbase of neighbourhoods of 0 in the

subspace (Γ∗, p).
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P r o o f. It can be found in the proof of [11, Théorème 4.2]. �

Theorem 1.3 (see [11, Théorème 4.2], [4, Theorem 4.3.2]). Let A be

an adequate family consisting of at most countable subsets of a set Γ. Then the

corresponding compact KA is Eberlein if and only if there exist subsets Γn ⊂

Γ, n ∈ N, such that Γ =
⋃∞

n=1 Γn and for every A ∈ A and every n ∈ N the set

A ∩ Γn is finite.

Theorem 1.4 (see [11, Théorème 4.2]). Let A be an adequate family

consisting of subsets of a set Γ. Then KA is Talagrand compact if and only if

there exist subsets Γs ⊂ Γ, s ∈ S, such that Γ =
⋃

σ∈NN

⋂∞
n=1 Γσ|n and for every

A ∈ A and every σ ∈ N
N there is n ∈ N such that the set A ∩ Γσ|n is finite.

Moreover, the system {Γs : s ∈ S} can be considered monotone in the sense that

Γs ⊂ Γt whenever s, t ∈ S and s ≺ t.

Theorem 1.5 (see [7, Theorem 1.2]). Let X be a K-analytic (K-countably

determined) topological space and let A be an adequate family of subsets of X such

that each A ∈ A is closed and discrete. Then the corresponding compact KA is

Talagrand (Gul’ko).

2. Talagrand’s adequate family on well founded trees. We

shall introduce some more notations and concepts. For s = (s(1), . . . , s(m)) ∈ S

we put |s| = m, [s] = s(1) + · · · + s(m), s|k = (s(1), . . . , s(k)) if k ∈ {1, . . . ,m},

and ŝ k = (s(1), . . . , s(m), k) if k ∈ N. For σ ∈ N
N and k ∈ N we put σ|k =

(σ(1), . . . , σ(k)). For s = (s(1), . . . , s(m)) ∈ S and t = (t(1), . . . , t(n)) ∈ S

we write, by definition, s ≺ t if m < n and s(1) = t(1), . . . , s(m) = t(m). A

nonempty subset T of the set S is called a tree if s ∈ T whenever t ∈ T and s ≺ t.

We shall not consider the tree {∅}. The set of all trees is denoted by T . For a tree

T we denote by [T ] the set of all σ ∈ N
N such that σ|n ∈ T for every n ∈ N. A tree

T is called ill-founded if [T ] is nonempty. The set of ill-founded trees is denoted

by P. We put L = T \P and the elements of L are called well-founded trees.

On T , we consider the topology of the pointwise convergence on S; thus T is a

subspace of the metric compact {0, 1}S . For n ∈ N we put In = {s ∈ S : [s] ≤ n}

and

Vn(Y ) = {X ∈ T : X ∩ In = Y ∩ In}
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for Y ∈ T . Note that the sets Vn(Y ) are clopen and form a basis of the topological

space T .

Let A0 be a family consisting from all finite subsets B of L such that we

can write B = {Y1, . . . , Yn} and there exist X ∈ T and s ∈ X, with |s| ≥ n,

so that Yi ∈ V[s|i](X), i = 1, . . . , n. Let A be the smallest adequate family of

subsets of L which contains A0.

Lemma 2.1. Consider A ∈ A and let X be a cluster point of A. Then

X ∈ P.

P r o o f. Let J denote the set consisting of the empty set ∅ and of all

strictly increasing sequences of positive integeres. We observe that the mapping

ψ : S → J defined by

ψ(∅) = ∅, ψ(n1, . . . , nk) = (n1, n1+n2, . . . , n1+n2+ · · ·+nk), (n1, . . . , nk) ∈ S,

is a bijection. Using this observation, we can translate our Lemma to [12, lemma

1]. �

3. Construction of counterexamples in c1(Σ
′). Given a topo-

logical space X, we define Mercourakis’ space c1(X) by

c1(X) = {f ∈ R
X : {x ∈ X : |f(x)| ≥ ǫ} is closed and discrete for every ǫ > 0}

and consider the topology of the pointwise convergence on it [7], [4, page 127].

We note that if A is an adequate family consisting of closed discrete subsets of

X, then the corresponding KA is a subspace of c1(X).

Adequate families for our compacta will be constructed in coanalytic sub-

sets of 0-dimensional Polish spaces. Such subsets can be continuously sent into

the set L of well founded trees, see for instance [6]. Using a simple trick, we

arrange this mapping injective:

Proposition 3.1. Let Σ be a 0-dimensional Polish space (for instance

N
N) and Σ′ its coanalytic subset. Then there exists a continuous injective mapping

H : Σ → T such that Σ′ = H−1(L).

P r o o f. The set Σ\Σ′ is analytic. Hence it can be written in the form⋃
σ∈NN

⋂∞
n=1 Fσ|n where {Fs : s ∈ S} is a monotone system of closed subsets of
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Σ. Since the space Σ is 0-dimensional, we can assume that all the sets Fs are

clopen. Further we can assume that the system {Fs : s ∈ S} forms a base for

the topology in Σ (If not, then we can add some countable base of clopen sets to

the beginning of it.) We define a mapping H : Σ → T by

H(x) = {s ∈ S : x ∈ Fs}, x ∈ Σ.

H is well defined, continuous, and injective. This is so since the system {Fs : s ∈

S} is monotone, consists of clopen sets, and separates the points of the space Σ

(as it is a base for the topology of Σ).

Now, x ∈ Σ\Σ′ if and only if there exists σ ∈ N
N such that σ|n ∈ H(x)

for every n ∈ N, which means that H(x) is an ill-founded tree. Therefore Σ\Σ′ =

H−1(P) and so Σ′ = H−1(L). �

Proposition 3.2. Let Σ,Σ′, and H be as in Proposition 3.1, let A be

the family defined in Section 2, and put

A1 = {A ⊂ Σ′ : H(A) ∈ A}.

Then the family A1 is adequate and its elements are closed and discrete in Σ′.

P r o o f. If x ∈ Σ′, then H(x) ∈ L, hence {H(x)} ∈ A, and so {x} ∈ A1.

If A ∈ A and B ⊂ A, we have H(A) ∈ A0 and H(B) ⊂ H(A); hence H(B) ∈ A

and so B ∈ A1. Consider a set A ⊂ Σ′ such that B ∈ A1 for every finite B ⊂ A.

Let C ⊂ H(A) be any finite set. Find a finite set B ⊂ A such that H(B) = C.

But then B ∈ A1, i.e., H(B) = C ∈ A. Thus H(A) ∈ A, i.e., A ∈ A1.

Take any A ∈ A1 and assume that it is not closed or is not discrete in Σ′.

Then there exists a one to one sequence (xn) in A converging to an x ∈ Σ′. But

then {x1, x2, . . .} ∈ A1 and so {H(x1),H(x2), . . .} ∈ A. Hence (H(xn)) is a one

to one sequence converging to H(x) in the space L because H is injective and

continuous. However, this is impossible since the elements of A are closed and

discrete in L. �

Proposition 3.3. Let Σ,Σ′, H, and A1 be as in Proposition 3.2, and

assume there exists a monotone system {Γs : s ∈ S} of subsets of Σ′ such that

Σ′ =
⋃

ρ∈NN

∞⋂

n=1

Γρ|n
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and that for every A ∈ A1 and for every ρ ∈ N
N there is n ∈ N such that the set

A ∩ Γρ|n is finite. Then

Σ′ =
⋃

ρ∈NN

∞⋂

n=1

Γρ|n
Σ
.

P r o o f. Assume that there exists y ∈
⋃

ρ∈NN

⋂∞
n=1 Γρ|n

Σ
\Σ′. ThenH(y) ∈

P and hence there is σ ∈ N
N so that σ|n ∈ H(y) for every n ∈ N. Trivially,

H(y) ∈
⋂∞

n=1 V[σ|n](H(y)). Hence y ∈
⋂∞

n=1H
−1(V[σ|n](H(y))). Find ρ ∈ N

N so

that y ∈
⋂∞

n=1 Γρ|n
Σ
. Hence y ∈ H−1(V[σ|n](H(y))) ∩ Γρ|n

Σ
for every n ∈ N.

Here each set H−1(V[σ|n](H(y))) is open. Choose y1 ∈ H−1(V[σ|1](H(y))) ∩ Γρ|1.

Choose y2 ∈ (H−1(V[σ|2](H(y)))\{y1})∩Γρ|2 . . . Choose yn ∈ (H−1(V[σ|n](H(y)))\

{y1, . . . , yn−1}) ∩Γρ|n . . . Then putA = {y1, y2, . . .}. Note that {H(y1), . . . ,H(yn)}

∈ A0 for every n ∈ N. Hence, by the definition of A, we get H(A) ∈ A, and

therefore A ∈ A1. Thus, for every n ∈ N the set Γρ|n ∩A contains the infinite set

{yn, yn+1, . . .}, which is a contradiction. �

Theorem 3.4. Let Σ be a 0-dimensional Polish space (for instance N
N)

and let Σ′ be a coanalytic nonanalytic subset of Σ. Then there exists a compact

subset in c1(Σ
′), which is Gul’ko and not Talagrand. Actually, the compact can

be found in the form KA1
where A1 is an adequate family on Σ′.

P r o o f. Let A1 be the adequate family constructed in Proposition 3.2 for

our Σ and Σ′. This proposition together with Theorem 1.5 guarantee that KA1

is Gul’ko compact. It is a subspace of c1(Σ
′) as every element of A1 is closed and

discrete. Assume that KA1
is Talagrand compact. Then, by Theorem 1.4, there

is a monotone system {Γs : s ∈ S} of subsets of Σ′ such that

Σ′ =
⋃

ρ∈NN

∞⋂

n=1

Γρ|n

and satisfying the remaining assumption of Proposition 3.3. Thus

Σ′ =
⋃

ρ∈NN

∞⋂

n=1

Γρ|n
Σ
.

However, this means that Σ′ is an analytic set, which is in contradiction with the

assumption. �
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Proposition 3.5. Let Σ,Σ′, H, and A1 be as in Proposition 3.2, and

assume there exists a system {Γn : n ∈ N} of subsets of Σ′ such that

Σ′ =
∞⋃

n=1

Γn

and that for every A ∈ A1 and for every n ∈ N the set A ∩ Γn is finite. Then

Σ′ =

∞⋃

n=1

Γn
Σ
.

P r o o f. We can proceed as in the proof of Proposition 3.3. However,

it is simpler to use directly this proposition. Indeed, it is enough to put Γ̃s =

Γs(1), s ∈ S. Then

Σ′ =

∞⋃

n=1

Γn =
⋃

ρ∈NN

∞⋂

n=1

Γ̃ρ|n

and for every A ∈ A1 and for every ρ ∈ N
N the set A ∩ Γ̃ρ|1 = A ∩ Γρ(1) is finite.

Hence by Proposition 3.3,

Σ′ =
⋃

ρ∈NN

∞⋂

n=1

Γ̃ρ|n

Σ
=

∞⋃

n=1

Γn
Σ
. �

Theorem 3.6. Let Σ be a 0-dimensional Polish space (for instance N
N)

and let Σ′ be a Borel non Fσ subset of Σ. Then there exists a compact subset of

c1(Σ
′), which is Talagrand and not Eberlein. Actually, the compact can be found

in the form KA1
where A is an adequate family on Σ′.

P r o o f. We start as in the proof of Theorem 3.4. Since Σ′ is Borel,

and hence K-analytic, Theorem 1.5 guarantees that KA1
is Talagrand compact.

Assume that KA1
is Eberlein compact. Then, by Theorem 1.3, there exist subsets

Γn ⊂ Σ′, n ∈ N, such that Σ′ =
⋃∞

n=1 Γn and for every A ∈ A1 and every n ∈ N

the set A ∩ Γn is finite. By Proposition 3.5, we then have that

Σ′ =
∞⋃

n=1

Γn
Σ
.
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Hence the set Σ′ is Fσ, which is in contradiction with the assumptions. �

The above theorem, in a slightly more general form, was proved, in a

different way, by Mercourakis [8].

Taking into account well known facts, see e.g. [11] or [4], we get: The

Banach space C(KA1
) where KA1

is from Theorem 3.4 is Vašák (i.e. weakly

countably determined) and not weakly K-analytic. The Banach space C(KA1
)

where KA1
is from Theorem 3.6 is weakly K-analytic and not a subspace of a

weakly compactly generated space.
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