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Abstract. We establish variational principles for monotone and maximal
bifunctions of Brøndsted-Rockafellar type by using our characterization of
bifunction’s maximality in reflexive Banach spaces. As applications, we give
an existence result of saddle point for convex-concave function and solve an
approximate inclusion governed by a maximal monotone operator.

1. Introduction. Given X a real Banach space with topological dual

X∗, the Brøndsted-Rockafellar’s principle ([2] and [5]) states that if φ is an ex-

tended proper convex lower semicontinuous function defined on X, with domain

domφ and subdifferential ∂φ, if x ∈ X,x∗ ∈ X∗, α, β > 0, and

inf
u∈ domφ

{φ(u) − φ(x) + 〈x∗, x− u〉} ≥ −αβ,(1.1)
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then there exists (y, y∗) in the graph of ∂φ (i.e. y∗ ∈ ∂φ(y)) such that ‖x−y‖ ≤ α

and ‖x∗ − y∗‖ ≤ β.

Torralba [8] generalized, in reflexive Banach space, this principle to the family

of maximal monotone operators by stating that if T : X → 2X∗

is a maximal

monotone operator with graph G(T), if x ∈ X,x∗ ∈ X∗, α, β > 0, and

inf
(u,u∗)∈ G(T)

{〈u∗ − x∗, u− x〉} ≥ −αβ,(1.2)

then there exists (y, y∗) ∈ G(T) (i.e. y∗ ∈ T (y)) such that ‖x − y‖ ≤ α and

‖x∗ − y∗‖ ≤ β.

Note that in general Banach space, this result was established by Revalsky and

Théra [6] for maximal monotone operators of type (D). By modifying the ques-

tion slightly, Simons [7] obtains his statement for maximal monotone operators

of type (ED).

In this paper, we establish the following variational principle of Brøndsted-

Rockafellar type for monotone and maximal bifunctions:

Theorem 1.1. Let X be a reflexive Banach space, X∗ its topological

dual, K be a closed convex subset of X and f : K × K → R be a monotone

and maximal bifunction such that f(x, .) is convex and lower semicontinuous and

f(x, x) = 0 ∀x ∈ K. Then f satisfies the Brøndsted-Rockafellar’s property (BR

in brief) on K, i.e. for any x ∈ K,x∗ ∈ X∗ and α, β > 0 the following inequality

inf
u∈K

{f(x, u) + 〈x∗, x− u〉} ≥ −αβ,(1.3)

implies that there exists (y, y∗) ∈ X ×X∗ such that

infu∈K{f(y, u) + 〈y∗, y − u〉} ≥ 0, and ‖y − x‖ ≤ α, ‖y∗ − x∗‖ ≤ β.

As corollary, we obtain a result (Corollary 2.3) of existence for a perturbed

equilibrium problem without any hypothesis of compactness. By taken then

particular bifunctions, we find Brøndsted-Rockafellar’s principle for convex lower

semicontinuous function, we give a result of existence of saddle point for perturbed

convex-concave function (Remark 2.2) and we solve an approximate inclusion

governed by a maximal monotone operator (see Remark 2.3).
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2. Variational principles. We will need the following definition and

two lemmas.

Definition 2.1. Let f : K ×K → R be a real bifunction.

(i) f is said to be monotone if f(x, y) + f(y, x) ≤ 0, for each x, y ∈ K.

(ii) f is said to be maximal if (x, ζ) ∈ K ×X∗ and f(x, u) ≤ 〈−ζ, u− x〉
∀ u ∈ K imply that f(x, u) + 〈−ζ, u− x〉 ≥ 0 ∀u ∈ K.

We have to mention here that by taking f(x, u) = supξ∈A(x)〈ξ, u − x〉,
Oettli-Riahi in [4] have established the relation between monotonicity and max-

imality of an operator A and those of the corresponding bifunction f .

Lemma 2.1 (Extended Ky Fan’s Minimax inequality, see [3]). Let X be

a topological vector space, K a closed convex subset of X and ϕ,ψ : K ×K → R.

Suppose that

(a) for each x, u ∈ K if ψ(x, u) ≤ 0 then ϕ(x, u) ≤ 0;

(b) for each x ∈ K ϕ(x, .) is lower semicontinuous on any compact subset of K;

(c) for every finite subset A of K and every u ∈ conv A one has min
x∈A

ψ(x, u) ≤ 0;

(d) (coercivity hypothesis) there exist a convex compact C ⊂ K and x0 ∈ C such

that ∀u ∈ K\C,ψ(x0, u) > 0.

Then, there exists u ∈ C such that ϕ(x, u) ≤ 0 for all x ∈ K.
In the sequel, without restriction, we suppose that the reflexive Banach

space X with its dual are strictly convex. This implies that the duality mapping

from X into X∗ which is defined by

H(x) :=
{

x∗ ∈ X∗/ ‖x∗‖ = ‖x‖ and 〈x, x∗〉 = ‖x‖2
}

is one to one and strictly monotone, see Zeidler [9].

Lemma 2.2. Suppose that K is closed convex and f : K × K → R is

monotone and convex lower semicontinuous with respect to the second argument

and f(x, x) = 0 ∀x ∈ K. Then the following assertions are equivalent:

(i) f is maximal;
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(ii) ∀x ∈ X,∀λ > 0, there exists a unique solution z = Jf
λ (x) ∈ K to the

problem P (x, λ):

λf(z, u) + 〈H(x− z), z − u〉 ≥ 0, ∀u ∈ K.

P r o o f. (ii) ⇒ (i) Let (x, ζ) ∈ K × X∗ be such that ∀u ∈ K f(u, x) ≤
〈−ζ, u− x〉. Setting u = Jf

1 (x + x0), with x0 = H−1(ζ), in the equation above

and u = x in (ii), we have

f(Jf
1 (x+ x0), x) ≤

〈

−ζ, Jf
1 (x+ x0) − x

〉

(2.1)

and

f(Jf
1 (x+ x0), x) +

〈

H
(

x+ x0 − Jf
1 (x+ x0)

)

, Jf
1 (x+ x0) − x

〉

≥ 0.(2.2)

Adding (2.1) to (2.2), it follows that

〈

H(x− Jf
1 (x+ x0) + x0) −H(x0),

(

x− Jf
1 (x+ x0) + x0

)

− x0

〉

≤ 0.

From the strict monotonicity of H we deduce that x− Jf
1 (x+x0)+x0 = x0, and

thus x = Jf
1 (x+x0). Using (ii) we deduce that f(x, u)+〈−ζ, u− x〉 ≥ 0 ∀u ∈ K,

which means that f is maximal.

(i) ⇒ (ii) Fix λ > 0 and x ∈ K. We shall verify the assumptions of

Lemma 2.1 for ϕ(z, u) = λf(z, u)− 〈H(u− x), z − u〉 and ψ(z, u) = −λf(u, z) −
〈H(u− x), z − u〉, when X is endowed with the weak topology.

Assumptions (a) and (b) are immediate, and (c) comes from the convexity of the

set {x ∈ K : ψ(x, u) > 0}, which follows from the convexity of f(u, .).

For (d), let us consider B = {v ∈ K : ‖v − x‖ ≤ R1} where R1 is a sufficiently

large positive real number for which B is nonempty. As f (x, .) is convex lower

semicontinuous and B is weakly compact, there exists α0 ∈ R such that f (x, u) ≥
α0 for all u ∈ B.

Let u ∈ K\B, since f (x, x) = 0 and f(x, .) is convex, it follows that

α0 ≤ f

(

x,
R1

‖x− u‖u+ (1 − R1

‖x− u‖)x

)

≤ R1

‖x− u‖f(x, u).
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Using f monotone we conclude that f(u, x) ≤ −(α0/R1) ‖x− u‖, and thus

ψ(x, u) ≥ λ
α0

R1
‖x− u‖ + ‖x− u‖2 .

Then for some R2 > R1, the assumption (d) is satisfied by taking C = {u ∈ K :

‖x− u‖ ≤ R2}.
According to Lemma 2.1, there exists xλ := Jf

λ (x) such that ϕ(u, xλ) ≤ 0 ∀u ∈ K.

By maximality of f , Jf
λx becomes a solution of (EP )λ. The uniqueness of Jf

λx

comes from the strict monotonicity of H. �

Let us now prove Theorem 1.1.

P r o o f. For (x, x∗) ∈ K × X∗ satisfying relation (1.3), we set g(x, u) =

f(x, u)+〈x∗, x− u〉 for u ∈ K. According to Lemma 2.2 applied to g for λ = α/β,

there exists y ∈ K such that ∀u ∈ K

λg(y, u) + 〈H(x− y), y − u〉 ≥ 0.

Taking u = x we have

f(y, x) +

〈

x∗ − 1

λ
H(y − x), y − x

〉

≥ 0.(2.3)

On the other hand, according to (1.3), one has

f(x, y) + 〈x∗, x− y〉 ≥ −αβ.(2.4)

Summing (2.3) and (2.4) and using monotonicity of f , it follows

− 1

λ
‖y − x‖2 =

〈

− 1

λ
H(y − x), y − x

〉

≥ −αβ

which implies that ‖y − x‖ ≤ α. Setting y∗ = x∗ − 1
λ
H(y − x), we conclude

‖y∗ − x∗‖ = 1
λ
‖H(y − x)‖ = β

α
‖y − x‖ ≤ β, and thus (y, y∗) is the desired pair in

K ×X∗. �

Corollary 2.3. Under the hypotheses of Theorem 1.1, for each ε > 0 and

x ∈ K such that f(x, u) ≥ −ε ∀u ∈ K, there exists y ∈ K such that ‖y−x‖ ≤ √
ε

and f(y, u) +
√
ε‖y − u‖ ≥ 0 ∀u ∈ K.
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P r o o f. Since the pair (x, 0) ∈ K × X∗ is assumed to verify (1.3) with

α = β =
√
ε, Theorem 1.1 asserts the existence of (y, y∗) ∈ K × X∗ such that

‖y − x‖ ≤ √
ε , ‖y∗‖ ≤ √

ε and f(y, u) + 〈y∗, y − u〉 ≥ 0 ∀u ∈ K, which means

that

f(y, u) +
√
ε‖y − u‖ ≥ 0 ∀u ∈ K. �

Remark 2.1. Let ϕ : X → R∪{+∞} be a convex lower semicontinuous

function which domain contains K and let α, β > 0, x ∈ K and x∗ ∈ X∗. If we

suppose that

ϕ(u)−ϕ(x) + 〈x∗, x− u〉 ≥ −αβ ∀u ∈ K (in other words x∗ ∈ ∂αβ (ϕ+ δK) (x)),

there exist y ∈ K, y∗ ∈ X∗ such that ‖y − x‖ ≤ α, ‖y∗ − x∗‖ ≤ β and y∗ ∈
∂ (ϕ+ δK) (y).

To prove this assertion it suffices to apply Theorem 1.1 to f(x, u) = ϕ(u)−
ϕ(x). Note that this result is precisely the variational principle of Brøndsted-

Rockafellar for convex lower semicontinuous functions, see [2] and [5].

Remark 2.2. Let X1,X2 be reflexive Banach spaces, Ki a closed

convex subset of Xi for i = 1, 2 and ψ : K1 × K2 → R be such that ψ(x1, .)

is concave upper semicontinuous for each fixed x1 ∈ K1 and ψ(., x2) is convex

lower semicontinuous for each fixed x2 ∈ K2. Setting X = X1 × X2, endowed

with the norm ‖(x1, x2)‖ = ‖x1‖ + ‖x2‖, and K = K1 ×K2, and consider ε > 0

and (x1, x2) ∈ K such that ψ(u1, x2)−ψ(x1, u2) ≥ −ε for all (u1, u2) ∈ K. Then

there exists (y1, y2) ∈ K such that ‖y1 − x1‖ + ‖y2 − x2‖ ≤ √
ε and (y1, y2) is a

saddle point of the function ψε(u1, u2) = ψ(u1, u2)+
√
ε ‖y1 − u1‖−

√
ε ‖y2 − u2‖.

It suffices to apply Corollary 2.3 to f((x1, x2), (u1, u2)) := ψ(u1, x2) − ψ(x1, u2).

One then obtain that

ψε(u1, y2) ≥ ψε(y1, y2) = ψ(y1, y2) ≥ ψε(y1, u2) ∀(u1, u2) ∈ K.

Remark 2.3. Let T : X → X∗ be a maximal monotone operator and

K ⊂ domT be a closed convex subset of X. If we suppose that, for some ε > 0

and x ∈ K, we have 〈Tx, u− x〉 ≥ −ε ∀u ∈ K, then there exists y ∈ K such

that ‖y − x‖ ≤ √
ε and

0 ∈ Ty +
√
εB∗ +NK(y),
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where B∗ is the unit ball of X∗ and NK(y) := {y∗ ∈ X∗ : 〈y∗, u− y〉 ≤ 0 ∀u ∈ K}
is the normal cone to K.

Indeed, if we apply Corollary 2.3 to f(x, u) = 〈Tx, u− x〉, we obtain the

existence of y ∈ K such that

〈Ty, u− y〉 +
√
ε ‖y − u‖ ≥ 0 ∀u ∈ K

which is equivalent to

−Ty ∈ ∂
(√
ε ‖y − ·‖ + δK

)

(y).

The result follows by remarking that ∂ (
√
ε ‖y − ·‖ + δK) (y) =

√
εB∗ +NK(y).
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