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UPPER AND LOWER BOUNDS IN RELATOR SPACES∗
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Abstract. An ordered pair X (R) = (X, R ) consisting of a nonvoid
set X and a nonvoid family R of binary relations on X is called a relator
space. Relator spaces are straightforward generalizations not only of uniform
spaces, but also of ordered sets.

Therefore, in a relator space we can naturally define not only some topo-
logical notions, but also some order theoretic ones. It turns out that these
two, apparently quite different, types of notions are closely related to each
other through complementations.

1. Introduction. A nonvoid family R of binary relations on a nonvoid
set X is called a relator on X, and the ordered pair X(R) = (X,R) is called
a relator space. Relator spaces are straightforward generalizations not only of
uniform spaces, but also of ordered sets. Therefore, in a relator space we can
naturally define not only some topological notions, but also some order theoretic
ones.
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For instance, the families of all adherence and interior points of a subset
A of X(R) can be briefly defined by

clR(A) =
⋂

R∈R

R−1(A) and intR(A) = clR(Ac)c,

where Ac = X \ A.
While, the families of all lower and upper bounds of a subset A of X(R)

can be briefly defined by

lbR(A) =
⋃

R∈R

⋂

a∈A

R−1(a) and ubR(A) = lbR−1(A),

where R−1 = {R−1 : R ∈ R}.
The relations clR and lbR are closely related to each other. Namely, by

using the relator Rc = {Rc : R ∈ R}, where Rc = X2 \ R, we can prove that

lbR(A) = clRc(A)c and clR(A) = lbRc(A)c.

These formulas resemble, in spirit, to those of Euler on elementary functions.
Now, by making use of the relation lbR, the members of the families

minR(A) = A ∩ lbR(A) and maxR(A) = minR−1(A)

may be naturally called the minima and the maxima of the set A in the relator
space X(R), respectively.

Moreover, analogously to the family TR = {A ⊂ X : A ⊂ intR(A)} of
all open subsets of X(R), we may also naturally define the families

LR = {A ⊂ X : A ⊂ lbR(A)} and UR = LR−1 .

Thus, we also have

LR = {A ⊂ X : A = minR(A)} and LR = {minR(A) : A ⊂ X}.

Moreover, concerning the unicity of mimima in a relator space X(R), we
can prove that the following assertions are equivalent:

(1)
⋃

R is antisymmetric; (2) lbR(x) ∩ ubR(x) ⊂ {x} for all x ∈ X;

(3) card(A) ≤ 1 for all A ∈ LR; (4) card(minR(A)) ≤ 1 for all A ⊂ X.
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1. A few basic facts on relations. A subset F of a product set X×Y
is called a relation on X to Y . In particular, the relations ∆X = {(x, x) : x ∈ X}
and X2 = X × X are called the identity and the universal relations on X.

Namely, if in particular X = Y , then we may simply say that F is a
relation on X. Note that if F is a relation on X to Y , then F is also a relation on
X ∪Y . Therefore, it is sometimes not a severe restriction to assume that X = Y .

If F is a relation on X to Y and x ∈ X and A ⊂ X, then the sets
F (x) = {y ∈ Y : (x, y) ∈ F} and F [A] =

⋃

a∈A F (a) are called the images of
x and A under F , respectively. Whenever A ∈ X seems unlikely, we may write
F (A) in place of F [A].

If F is a relation on X to Y , then the values F (x), where x ∈ X, uniquely
determine F since we have F =

⋃

x∈X{x} × F (x). Therefore, the inverse F−1 of
F can be defined such that F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .

If F is a relation on X to Y , then the sets D
F

= F−1(Y ) and R
F

= F (X)
are called the domain and range of F , respectively. If in particular, D

F
= X

(and R
F

= Y ), then we say that F is a relation of X into (onto) Y .
A relation F is said to be a function if for each x ∈ D

F
there exists y ∈ R

F

such that F (x) = {y}. In this case, by identifying singletons with their elements,
we usually write F (x) = y in place of F (x) = {y}.

If F is a relation on X to Y and G is a relation on Y to Z, then the
composition G ◦ F of G and F can be defined such that (G ◦ F )(x) = G(F (x))
for all x ∈ X. Note that thus we have (G ◦ F )−1 = F−1◦ G−1.

Moreover, if F and G are relations on X to Y , then we may also naturally
consider the relations F ∩G, F ∪G and F \G. Moreover, when confusion seems
unlikely, we may briefly write F c in place of X × Y \ F .

Concerning the complement relation F c we can easily establish the fol-
lowing theorems.

Theorem 1.1. If F is a relation on X to Y , and x ∈ X and A ⊂ X,
then

F c(x) = F (x)c and F c(A)c =
⋂

a∈A

F (a).

H i n t. To prove the second assertion, note that

F c(A)c =

(

⋃

a∈A

F c(a)

)c

=
⋂

a∈A

F c(a)c =
⋂

a∈A

F (a). �

Theorem 1.2. If F is a relation on X to Y and A ⊂ X, then

F (A)c ⊂ F c(A) if A 6= ∅ and F (A)c ⊂ F (Ac) if Y = R
F
.
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H i n t. To prove the first assertion, note that if A 6= ∅, then

F (A)c = (F c)c(A)c =
⋂

a∈A

F c(a) ⊂
⋃

a∈A

F c(a) = F c(A). �

Theorem 1.3. If F is a relation on X to Y , then

(F c)−1 =
(

F−1
)c

.

Theorem 1.4. If F is a relation on X to Y and G is a relation on Y to
Z, then

(G ◦ F )c ⊂ Gc ◦ F if X = D
F

and (G ◦ F )c ⊂ G ◦ F c if Z = R
G
.

P r o o f. Note that if X = D
F
, then

(G ◦ F )c(x) = (G ◦ F )(x)c = G(F (x))c ⊂ Gc(F (x)) = (Gc ◦ F )(x)

for all x ∈ X. While, if Z = R
G
, then

(G ◦ F )c(x) = G(F (x))c ⊂ G(F (x)c) = G(F c(x)) = (G ◦ F c)(x)

for all x ∈ X. �

Remark 1.5. By Theorem 1.1, we also have

(Gc ◦ F )c(x) = (Gc ◦ F )(x)c = Gc(F (x))c =
⋂

y∈F (x)

G(y)

for all x ∈ X.

2. A few basic facts on relators. A nonvoid family R of relations
on one nonvoid set X to another Y is called a relator on X to Y . Moreover, the
ordered pair (X,Y )(R) is called a relator space. Particular cases of relators have
been intensively studied by several authors.

If in particular X = Y , then we may simply say that R is a relator on X.
Moreover, by identifying singletons with their elements, we may naturally write
X(R) in place of (X,X)(R). Namely, (X,X) = {{X}, {X,X}} = {{X}}.
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Note that if R is a relator on X to Y , then R is also a relator on X ∪ Y .
However, if F is a relation on one relator space X(R) to another Y (S), then it
seems quite unnatural to consider the families F ◦ R and S ◦ F as relators on
X ∪ Y .

Relator spaces of the simpler type X(R) are already substantial general-
izations of the various ordered sets and uniform spaces [17]. They deserve to be
widely investigated because of the following facts.

If D is a nonvoid family of certain distance functions on X, then the
relator RD consisting of all surroundings Bd

r = {(x, y) : d(x, y) < r}, where
d ∈ D and r > 0, is a more convenient mean of defining the basic notions of
analysis in the space X(D) than the family of all open subsets of X(D), or even
the family D itself.

Moreover, all reasonable generalizations of the usual topological struc-
tures (such as proximities, closures, topologies, filters, and convergences, for in-
stance) can be easily derived from relators (according to the results of [21] and
[16]), and thus they need not be studied separately.

For instance, if A is a certain generalized topology or a nonvoid stack
(ascending system) in X, then A can be easily derived (according to the forth-
coming definitions of the families TR and ER) from the Davis–Pervin relator RA

consisting of all preorders RA = A2 ∪ Ac × X, where A ∈ A.
Note that in contrast to these preorders RA, the surroundings Bd

r are
usually tolerances (reflexive and symmetric relations) on X. Therefore, beside
preorder relators, tolerance relators are also important particular cases of reflexive
relators.

Unfortunately, the class of all reflexive relators proved to be insufficent
for several important purposes. For instance, if F is a relation on one relator
space X(R) to another Y (S), then we have to consider the relators F ◦ R and
S ◦ F too.

In the sequel, we shall be frequently dealing with relations on families of
sets. In particular, for any A ⊂ X we write:

C(A) = X \ A and P(A) = {B : B ⊂ A}.

Moreover, if R is a relator on X to Y , then for any A ⊂ X, B ⊂ Y , x ∈ X
and y ∈ Y we write:

(1) A ∈ IntR(B) if R(A) ⊂ B for some R ∈ R;

(2) A ∈ ClR(B) if R(A) ∩ B 6= ∅ for all R ∈ R;

(3) x ∈ intR(B) if {x} ∈ IntR(B); (4) x ∈ clR(B) if {x} ∈ ClR(B);

(5) B ∈ ER if intR(B) 6= ∅; (6) B ∈ DR if clR(B) = X;
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Furthermore, if in particular R is a relator on X, then for any A ⊂ X we also
write:

(7) A ∈ τ
R

if A ∈ IntR(A); (8) A ∈ τ-
R

if Ac /∈ ClR(A);

(9) A ∈ TR if A ⊂ intR(A); (10) A ∈ FR if clR(A) ⊂ A.
The relations IntR and intR are called the proximal and the topological

interiors induced by R. While, the members of the families, τ
R

, TR and ER are
called the proximally open, the topologically open and the fat subsets of X(R),
respectively.

The fat sets are frequently more important tools than the open sets. For
instance, if ≺ is a certain order relation on X, then T≺ and E≺ are just the families
of all ascending and residual subsets of the ordered set X(≺), respectively. And
the residual sets are certainly more important than the ascending ones.

Moreover, it is also worth mentioning that if for instance R is a relation
on R such that R(x) = ] −∞, x] ∪ {x + 1} for all x ∈ R, then TR = {∅, R}, but
ER 6= {R}. Therefore, in contrast to the open sets, the fat sets may be useful
tools even in a topologically indiscrete relator space.

Hence, it is not surprising that if R is a relator on X to Y , then besides
the relations

δ
R

=
⋂

R and σ
R

=
⋃

R,

sometimes we also need the sets

ER =
⋂

ER and DR =
⋃

(P(Y ) \ DR).

3. Proximal upper and lower bounds.

Definition 3.1. If R is a relator on X to Y , then we define two relations
UbR on P(X) to P(Y ) and LbR on P(Y ) to P(X) such that for all A ⊂ X and
B ⊂ Y

UbR(A) = {D ⊂ Y : ∃ R ∈ R : A × D ⊂ R}

and
LbR(B) = {C ⊂ X : ∃ R ∈ R : C × B ⊂ R}.

The members of the families UbR(A) and LbR(B) are called the proximal upper
and lower bounds of the sets A and B in the relator space (X,Y )(R), respectively.

Remark 3.2. To see the appropriateness of the above definition, we can
note that A × B ⊂ R if and only if (a, b) ∈ R or equivalently aRb for all a ∈ A
and b ∈ B.
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Therefore, if ≺ is a certain order relation on X, then for any A,B ⊂ X
we have B ∈ Ub≺(A) if and only if A ≺ B in the sense that a ≺ b for all a ∈ A
and b ∈ B.

Note that, by writing ≺R in place of UbR, we could also write A ≺R B
in place of B ∈ UbR(A). However, the latter notation is usually more convenient
than the former one.

By the corresponding definitions, we evidently have the following

Theorem 3.3. If R is a relator on X to Y , then

UbR = LbR−1 = Lb−1
R

and LbR = UbR−1 = Ub−1
R

.

H i n t. Note that the second statement of the theorem can be immediately
derived from the first one by writing R−1 in place of R. �

Remark 3.4. By the above theorem, it is clear that the relations UbR

and LbR are equivalent tools in the relator space (X,Y )(R).

Moreover, by using the corresponding definitions, we can easily prove

Theorem 3.5. If R is a relator on X to Y and A ⊂ X, then

UbR(A) =
⋃

R∈R

P(Rc(A)c) =
⋃

R∈R

⋂

a∈A

P(R(a)).

P r o o f. By Definition 3.1, for any B ⊂ Y , we have

B ∈ UbR(A) ⇐⇒ ∃ R ∈ R : A × B ⊂ R.

Moreover, we can easily see that

A × B ⊂ R ⇐⇒ ∀ a ∈ A : B ⊂ R(a) ⇐⇒ B ∈
⋂

a∈A

P(R(a)).

Therefore, we actually have

B ∈ UbR(A) ⇐⇒ B ∈
⋃

R∈R

⋂

a∈A

P(R(a)).

On the other hand, by Theorem 1.1, it is clear that

⋂

a∈A

P(R(a)) = P

(

⋂

a∈A

R(a)

)

= P(Rc(A)c).
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Therefore, the required inequalities are true. �

Now, as an immediate consequence of Theorems 3.5 and 3.3, we can also
state

Theorem 3.6. If R is a relator on X to Y , then

UbR =
⋃

R∈R

UbR and LbR =
⋃

R∈R

LbR .

Remark 3.7. These simple facts will guarantee the existence of a largest
relator R� on X to Y such that UbR = Ub

R� ( LbR = Lb
R� ).

Moreover, by Theorem 3.6, it is clear that we also have the following

Theorem 3.8. If Ri is a relator on X to Y for all i ∈ I, with I 6= ∅,
and R =

⋃

i∈I Ri, then

UbR =
⋃

i∈I

UbRi
and LbR =

⋃

i∈I

LbRi
.

However, it is now more interesting to note that, by using Theorem 3.5,
we can also easily prove the following counterparts of Euler’s famous formulas on
exponential and trigonometric functions [15, p. 227].

Theorem 3.9. If R is a relator on X to Y , then

LbR = (ClRc)c and ClR = (LbRc)c.

P r o o f. By Theorems 3.3 and 3.5, for any A ⊂ X and B ⊂ Y , we have

A ∈ LbR(B) ⇐⇒ A ∈ Ub−1
R

(B) ⇐⇒ B ∈ UbR(A) ⇐⇒
⇐⇒ B ∈

⋃

R∈R
P(Rc(A)c) ⇐⇒ ∃ R ∈ R : B ∈ P(Rc(A)c)

Moreover, we can easily see that

B ∈ P(Rc(A)c) ⇐⇒ B ⊂ Rc(A)c ⇐⇒ Rc(A) ∩ B = ∅.

Therefore, we actually have

A ∈ LbR(B) ⇐⇒ ∃ R ∈ R : Rc(A) ∩ B = ∅ ⇐⇒
⇐⇒ A /∈ ClRc(B) ⇐⇒ A ∈ ClRc(B)c ⇐⇒ A ∈ (ClRc)c(B).
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Thus, LbR(B) = (ClRc)c(B), and therefore the first statement of the theorem is
true. The second statement of the theorem is immediate from the first one. �

From the above theorem, by the equality ClR = (IntR ◦C)c, it is clear
that we also have the following

Theorem 3.10. If R is a relator on X to Y , then

LbR = IntRc ◦C and IntR = LbRc ◦C.

Remark 3.11. The above properties can also be expressed in the forms
that

ClRc = (LbR)c and IntRc = LbR ◦C.

By Definition 3.1 and Theorem 3.3, we evidently have the following

Theorem 3.12. If R is a relator on X to Y , then
(1) UbR(∅) = P(Y ) and Ub−1

R
(∅) = P(X);

(2) UbR(A) ⊂ UbR(C) for all C ⊂ A ⊂ X and Ub−1
R

(B) ⊂ Ub−1
R

(D)
for all D ⊂ B ⊂ Y .

Remark 3.13. The above characteristic properties can also be expressed
in the forms that:

(1) ∅ ∈ UbR(A) and B ∈ UbR(∅) for all A ⊂ X and B ⊂ Y ;
(2) B ∈ UbR(A) implies D ∈ UbR(C) for all C ⊂ A ⊂ X and

D ⊂ B ⊂ Y .

By Theorem 3.12, we evidently have the following

Theorem 3.14. If R is a relator on X to Y and Ai ⊂ X for all i ∈ I,
then

UbR

(

⋃

i∈I

Ai

)

⊂
⋂

i∈I

UbR(Ai) and
⋃

i∈I

UbR(Ai) ⊂ UbR

(

⋂

i∈I

Ai

)

.

Remark 3.15. Note that if in particular R is a singleton, then the
equality is also true in the first statement of the above theorem.

Moreover, by using Theorems 3.12 and 1.1, we can also easily prove

Theorem 3.16. If R is a relator on X to Y , then
(1) UbR = UbR ◦P−1 = P ◦ UbR;
(2) UbR = ((UbR)c ◦ P)c = (P−1◦ (UbR)c)c.
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P r o o f. By Theorems 3.12 and 1.1, it is clear that

UbR(A) =
⋃

A⊂C

UbR(C) = UbR(P−1(A)) = (UbR ◦P−1)(A)

and
UbR(A) =

⋂

C⊂A

UbR(C) = (UbR)c(P(A))c = ((UbR)c ◦ P)c(A)

for all A ⊂ X. Therefore, UbR = UbR ◦P−1 and UbR = ((UbR)c ◦ P)c. Hence,
by using Theorems 3.3 and 1.1, we can infer that

UbR = (Ub−1
R

)−1= (UbR−1)−1= (UbR−1 ◦P−1)−1= (Ub−1
R

◦P−1)−1= P ◦ UbR

and

UbR = (UbR−1)−1 =
(

((UbR−1)c ◦ P)c
)−1

=

=
(

((Ub−1
R

)c ◦ P)c
)−1

=
(

(((UbR)c)−1 ◦ P)−1
)c

= (P−1◦ (UbR)c)c. �

By Theorems 3.12 and 3.3, it is clear that in particular we also have

Theorem 3.17. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

UbR(A) ⊂
⋂

a∈A

UbR(a) and LbR(B) ⊂
⋂

b∈B

LbR(b).

Remark 3.18. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

However, it is now more important to prove the following

Theorem 3.19. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

UbR(A) = {D ⊂ Y : P(A) ⊂ LbR(D)}

and
LbR(B) = {C ⊂ X : P(B) ⊂ UbR(C)}.

P r o o f. If D ∈ UbR(A), then by Definition 3.1 we have D ⊂ Y . More-
over, by Theorem 3.12, for any C ⊂ A, we have D ∈ UbR(C), and hence
C ∈ Ub−1

R
(D). This, by Theorem 3.3, implies that C ∈ LbR(D). Therefore,

P(A) ⊂ LbR(D) is also true.
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On the other hand, if D is a subset of Y such that P(A) ⊂ LbR(D), then
in particular we also have A ∈ LbR(D), and hence D ∈ Lb−1

R
(A). Therefore, by

Theorem 3.3, D ∈ UbR(A) is also true. �

Remark 3.20. The first statement of the latter theorem is actually a
reformulation of the second statement of Theorem 3.16.

Namely, for any A ⊂ X and D ⊂ Y , we have P(A) ⊂ LbR(D) if and only
if C ∈ LbR(D), and hence D ∈ UbR(C) for all C ⊂ A.

4. Topological upper and lower bounds.

Definition 4.1. If R is a relator on X to Y , then we define two relations
ubR on P(X) to Y and lbR on P(Y ) to X such that for all A ⊂ X and B ⊂ Y

ubR(A) = {y ∈ Y : {y} ∈ UbR(A)}

and
lbR(B) = {x ∈ X : {x} ∈ LbR(B)}.

The members of the families ubR(A) and lbR(B) are called the topological
upper and lower bounds of the sets A and B in the relator space (X,Y )(R),
respectively.

Remark 4.2. Hence, by Remark 3.2, it is clear that if ≺ is a certain
order relation on X, then for any A ⊂ X and b ∈ X we have b ∈ ub≺(A) if and
only if A ≺ b in the sense that a ≺ b for all a ∈ A.

By Definitions 3.1 and 4.1, we evidently have the following

Theorem 4.3. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

ubR(A) = {y ∈ Y : ∃ R ∈ R : A × {y} ⊂ R}

and
lbR(B) = {x ∈ X : ∃ R ∈ R : {x} × B ⊂ R}.

Hence, it is clear that, analogously to Theorem 3.3, we also have

Theorem 4.4. If R is a relator on X to Y , then

ubR = lbR−1 and lbR = ubR−1 .

Furthermore, as an immediate consequence of the corresponding defini-
tions, we can also state the following
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Theorem 4.5. If R is a relator on X to Y , and x ∈ X and y ∈ Y , then

lb−1
R

(x) = Lb−1
R

(x) and ub−1
R

(y) = Ub−1
R

(y).

H i n t. To prove the first statement, note that for any B ⊂ Y we have

B ∈ lb−1
R

(x) ⇐⇒ x ∈ lbR(B) ⇐⇒ {x} ∈ LbR(B) ⇐⇒ B ∈ Lb−1
R

(x). �

Concerning the inverses of the relations lbR and ubR, it is also worth
proving

Theorem 4.6. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

UbR(A) ⊂
⋂

a∈A

lb−1
R

(a) and LbR(B) ⊂
⋂

b∈B

ub−1
R

(b).

P r o o f. By Theorems 3.17, 3.3 and 4.5, we have

UbR(A) ⊂
⋂

a∈A

UbR(a) =
⋂

a∈A

Lb−1
R

(a) =
⋂

a∈A

lb−1
R

(a).

Hence, by Theorems 3.3 and 4.4, it is clear that the second statement of the
theorem is also true. �

However, it is now more important to prove the following

Theorem 4.7. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

UbR(A) ⊂ P(ubR(A)) and LbR(B) ⊂ P(lbR(B)).

P r o o f. If D ∈ UbR(A), then by Remark 3.13 and Definition 4.1 we
evidently have {d} ∈ UbR(A), and hence d ∈ ubR(A) for all d ∈ D. Therefore,
D ⊂ ubR(A), and thus the first statement of the theorem is true.

The second statement of the theorem is again immediate from the first
one by Theorems 3.3 and 4.4. �

Remark 4.8. The second statement of Theorem 4.7 can also be derived
from the first statement of Theorem 4.6.

Namely, by Theorem 3.3, A ∈ LbR(B) implies B ∈ UbR(A). Moreover,
for any A ⊂ X and B ⊂ Y , we have

B ∈
⋂

a∈A lb−1
R

(a) ⇐⇒ ∀ a ∈ A : B ∈ lb−1
R

(a) ⇐⇒
⇐⇒ ∀ a ∈ A : a ∈ lbR(B) ⇐⇒ A ⊂ lbR(B) ⇐⇒ A ∈ P( lbR(B)).
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By Theorem 3.5 and Definition 4.1, we evidently have the following

Theorem 4.9. If R is a relator on X to Y and A ⊂ X, then

ubR(A) =
⋃

R∈R

Rc(A)c =
⋃

R∈R

⋂

a∈A

R(a).

Now, as an immediate consequence of Theorems 4.9 and 4.4, we can also
state

Theorem 4.10. If R is a relator on X to Y , then

ubR =
⋃

R∈R

ubR and lbR =
⋃

R∈R

lbR .

From Theorems 3.9 and 3.10, by the corresponding definitions, it is clear
that we also have the following two theorems.

Theorem 4.11. If R is a relator on X to Y , then

lbR = (clRc)c and clR = (lbRc)c.

Theorem 4.12. If R is a relator on X to Y , then

lbR = intRc ◦C and intR = lbRc ◦C.

Remark 4.13. The first statement of Theorem 4.11 can also be easily
derived from Theorem 4.9 by noticing that

lbR(B) = ubR−1(B) =
⋃

R∈R
(R−1)c(B)c =

⋃

R∈R
(Rc)−1(B)c =

=

(

⋂

R∈R
(Rc)−1(B)

)c

= clRc(B)c = (clRc)c(B)

for all B ⊂ Y . Moreover, Theorem 4.12 can also be easily derived from Theorem
4.11 by using that clR = (intR ◦C)c.

As a very particular cases of Theorem 4.9, we can also state the following

Theorem 4.14. If R is a relator on X to Y and x ∈ X, then

σ
R

(x) = ubR(x).
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P r o o f. By the corresponding definitions and Theorem 4.9, it is clear
that

σ
R

(x) =
(

⋃

R
)

(x) =

(

⋃

R∈R

R

)

(x) =
⋃

R∈R

R(x) = ubR(x). �

Hence, by using that σ
R

= (δ
Rc )

c, we can immediately get the following

Theorem 4.15. If R is a relator on X to Y and x ∈ X, then

ubR(x) = δ
Rc (x)c and δR(x) = ubRc(x)c.

Remark 4.16. Note that this theorem is actually a particular case of
Theorem 4.11 since we have δ

R
(x) = clR−1(x) for all x ∈ X.

Now, by using Theorems 4.9 and 4.15, we can also easily prove the fol-
lowing two theorems.

Theorem 4.17. If R is a relator on X to Y , then

ER =
⋂

R∈R

Rc(X)c =
⋂

R∈R

ubR(X).

P r o o f. By the corresponding definitions and Theorem 4.9, it is clear
that

ER =
⋂

ER =
⋂

R∈R

⋂

x∈X

R(x) =
⋂

R∈R

Rc(X)c =
⋂

R∈R

ubR(X). �

Theorem 4.18. If R is a relator on X to Y , then

DR = (δ
R

)c(X) =
⋃

x∈X

ubRc(x).

P r o o f. By the corresponding definitions and Theorem 4.15, it is clear
that

ER =
⋂

x∈X

⋂

R∈R

R(x) =
⋂

x∈X

(

⋂

R
)

(x) =
⋂

x∈X

δ
R

(x) =
⋂

x∈X

ubRc(x)c.

Hence, since DR = X \ER, it is clear that the second statement of the theorem
is also true. �



Relator spaces 253

From Theorems 3.12, 3.16 and 3.17, by Definition 4.1, it is clear that we
also have the following three theorems.

Theorem 4.19. If R is a relator on X to Y , then
(1) ubR(∅) = Y ; (2) ubR(A) ⊂ ubR(C) for all C ⊂ A ⊂ X.

Theorem 4.20. If R is a relator on X to Y , then

ubR = ubR ◦P−1 and ubR = ((ubR)c ◦ P)c.

Theorem 4.21. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

ubR(A) ⊂
⋂

a∈A

ubR(a) and lbR(B) ⊂
⋂

b∈B

lbR(b).

However, in contrast to Theorem 3.19, we can only prove the following

Theorem 4.22. If R is a relator on X to Y , and A ⊂ X and B ⊂ Y ,
then

ubR(A) ⊂ {d ∈ Y : A ⊂ lbR(d)} and lbR(B) ⊂ {c ∈ X : B ⊂ ubR(c)}.

P r o o f. By Definition 4.1 and Theorems 3.3 and 4.7, it is clear that

d ∈ ubR(A) ⇒ {d} ∈ UbR(A) ⇒ A ∈ LbR(d) ⇒ A ⊂ lbR(d). �

Remark 4.23. Note that if in particular R is a singleton, then the
equalities are also true in the assertions of Theorems 4.6, 4.7, 4.21 and 4.22.

5. Proximal maxima and minima.

Definition 5.1. If R is a relator on X, then we define two relations
MaxR and MinR on P(X) to itself such that for all A ⊂ X

MaxR(A) = P(A) ∩ UbR(A) and MinR(A) = P(A) ∩ LbR(A).

The members of the families MaxR(A) and MinR(A) are called the proximal
maxima and minima of the set A in the relator space X(R), respectively.
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Remark 5.2. Hence, by Remark 3.2, it is clear that if ≺ is a certain
order relation on X, then for any A,B ⊂ X we have B ∈ MaxR(A) if and only
if B ⊂ A and A ≺ B.

Moreover, by Definitions 3.1 and 5.1, we evidently have the following

Theorem 5.3. If R is a relator on X and A ⊂ X, then

MaxR(A) = {B ⊂ A : ∃ R ∈ R : A × B ⊂ R}

and
MinR(A) = {B ⊂ A : ∃ R ∈ R : B × A ⊂ R}.

By Theorem 3.3 and Definition 5.1, it is clear that we also have the
following

Theorem 5.4. If R is a relator on X, then

MaxR = MinR−1 and MinR = MaxR−1 .

Moreover, as an immediate consequence of the corresponding definitions
and Theorem 3.3, we can also state the following

Theorem 5.5. If R is a relator on X, then

Max−1
R

= P−1 ∩ LbR and Min−1
R

= P−1 ∩ UbR .

H i n t. To prove the first statement, note that MaxR = P ∩ UbR, and
thus

Max−1
R

= (P ∩ UbR)−1 = P−1 ∩ Ub−1
R

= P−1 ∩ LbR . �

From Theorem 3.5, by using Definition 5.1, we can easily get the following

Theorem 5.6. If R is a relator on X and ∅ 6= A ⊂ X, then

MaxR(A) =
⋃

R∈R

P(A \ Rc(A)) =
⋃

R∈R

⋂

a∈A

P(A ∩ R(a)).

P r o o f. By the corresponding definitons and Theorem 3.5, we have

MaxR(A) = P(A) ∩ UbR(A) = P(A) ∩
⋃

R∈R P(Rc(A)c) =
=

⋃

R∈R
P(A) ∩ P(Rc(A)c) =

⋃

R∈R
P(A ∩ Rc(A)c) =

⋃

R∈R
P(A \ Rc(A)).
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Moreover, it is clear that we also have

MaxR(A) = P(A) ∩ UbR(A) = P(A) ∩
⋃

R∈R

⋂

a∈A P(R(a)) =
=

⋃

R∈R

⋂

a∈A P(A) ∩ P(R(a)) =
⋃

R∈R

⋂

a∈A P(A ∩ R(a)). �

Remark 5.7. Note that the first equality in the above theorem is also
true for the case A = ∅. However, if A = ∅, then the left hand side of the second
equality is {∅}, while its right hand side is P(X).

Now, as an immediate consequence of Theorems 5.6 and 5.4, we can also
state

Theorem 5.8. If R is a relator on X, then

MaxR =
⋃

R∈R

MaxR and MinR =
⋃

R∈R

MinR .

From Theorems 3.9 and 3.10, by using Definition 5.1, we can easily derive
the following two theorems.

Theorem 5.9. If R is a relator on X, then

MinR = P \ ClRc and (MinRc)c = Pc ∪ ClR .

P r o o f. For any A ⊂ X, we have

MinR(A) = P(A) ∩ LbR(A) = P(A) ∩ (ClRc)c(A) =
= P(A) ∩ ClRc(A)c = P(A) \ ClRc(A) = (P \ ClRc)(A).

Moreover, it is clear that we also have

(MinRc)c(A) = MinRc(A)c = (P(A) ∩ LbRc(A))c = P(A)c ∪ LbRc(A)c =
= Pc(A) ∪ (LbRc)c(A) = Pc(A) ∪ ClR(A) = (Pc ∪ ClR)(A). �

Theorem 5.10. If R is a relator on X, then

MinR = P ∩ (IntRc ◦C) and MinRc ◦C = (P ◦ C) ∩ IntR .

H i n t. To prove the second statement, note that for any A ⊂ X we have

(MinRc ◦C)(A) = MinRc(C(A)) = P(C(A)) ∩ LbRc(C(A)) =
(P ◦ C)(A) ∩ (LbRc ◦C)(A) = (P ◦ C)(A) ∩ IntR(A) = ((P ◦ C) ∩ IntR) (A).

�
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From Theorem 5.3, it is clear that the mapping A 7→ MaxR(A) need
not be monotonic. However, by Theorem 5.5 and the dual of Theorem 3.12, we
evidently have he following

Theorem 5.11. If R is a relator on X, then
(1) Max−1

R
(∅) = P(X);

(2) Max−1
R

(A) ⊂ Max−1
R

(B) for all B ⊂ A ⊂ X.

Therefore, analogously to Theorem 3.16, we can also prove the following

Theorem 5.12. If R is a relator on X, then

MaxR = P ◦ MaxR and MaxR =
(

P−1◦ (MaxR)c
)c

.

H i n t. To prove the second statement, note that by Theorem 5.11 we
have Max−1

R
=

(

(Max−1
R

)c ◦ P
)c

. Hence, by using Theorem 1.3, we can infer that

MaxR = (Max−1
R

)−1 =
((

(Max−1
R

)c ◦ P
)c)−1

=

=
((

((MaxR)c)−1◦ P
)−1)c

=
(

P−1◦ (MaxR)c
)c

.
�

Moreover, as an immediate consequence of Theorem 3.19 and Definition
5.1, we can also state the following

Theorem 5.13. If R is a relator on X and A ⊂ X, then

MaxR(A) = {B ⊂ A : P(A) ⊂ LbR(B)}

and
MinR(A) = {B ⊂ A : P(A) ⊂ UbR(B)}.

6. Topological maxima and minima.

Definition 6.1. If R is a relator on X, then we define two relations
maxR and minR on P(X) to X such that for all A ⊂ X

maxR(A) = {b ∈ X : {b} ∈ MaxR(A)}

and
minR(A) = {b ∈ X : {b} ∈ MinR(A)}.
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The members of families maxR(A) and minR(A) are called the topological
maxima and minima of the set A in the relator space X(R), respectively.

Remark 6.2. Hence, by Remark 4.2, it is clear that if ≺ is a certain
order relation on X, then for any A ⊂ X and b ∈ X we have b ∈ max≺(A) if and
only if b ∈ A and A ≺ b.

Moreover, by Definition 6.1 and Theorem 4.3, we evidently have the fol-
lowing

Theorem 6.3. If R is a relator on X and A ⊂ X, then

maxR(A) = {b ∈ A : ∃ R ∈ R : A × {b} ⊂ R}

and
minR(A) = {b ∈ A : ∃ R ∈ R : {b} × A ⊂ R}.

From Theorem 5.4, by Definition 6.1, it is clear that we also have the
following

Theorem 6.4. If R is a relator on X, then

maxR = minR−1 and minR = maxR−1 .

Moreover, as an immediate consequence of the corresponding definitions,
we can also state the following

Theorem 6.5. If R is a relator on X and x ∈ X, then

max−1
R

(x) = Max−1
R

(x) and min−1
R

(x) = Min−1
R

(x).

However, it is now more important to note that in particular we also have

Theorem 6.6. If R is a relator on X and A ⊂ X, then

maxR(A) = A ∩ ubR(A) and minR(A) = A ∩ lbR(A).

H i n t. To prove the first statement, note that for any b ∈ X we have

b ∈ maxR(A) ⇐⇒ {b} ∈ MaxR(A) ⇐⇒ {b} ∈ P(A), {b} ∈ UbR(A)
⇐⇒ b ∈ A, b ∈ ubR(A) ⇐⇒ b ∈ maxR(A).

�
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Now, as an immediate consequence of Theorems 4.7 and 6.6, we can also
state

Theorem 6.7. If R is a relator on X and A ⊂ X, then

MaxR(A) ⊂ P(maxR(A)) and MinR(A) ⊂ P(minR(A)).

H i n t. To prove the first inclusion, note that

MaxR(A) = P(A) ∩ UbR(A) ⊂ P(A) ∩ P(ubR(A)) =
= P(A ∩ ubR(A)) = P(maxR(A)).

�

Remark 6.8. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

From Theorem 4.9, by Definition 6.1, it is clear that we also have the
following

Theorem 6.9. If R is a relator on X and ∅ 6= A ⊂ X, then

maxR(A) =
⋃

R∈R

(A \ Rc(A)) =
⋃

R∈R

⋂

a∈A

A ∩ R(a).

Remark 6.10. Note that the first equality in the above theorem is also
true for the case A = ∅. However, if A = ∅, then the left hand side of the second
equality is ∅, while the right hand side is X.

Now, as an immediate consequence of Theorems 6.9 and 6.4, we can also
state

Theorem 6.11. If R is a relator on X, then

maxR =
⋃

R∈R

maxR and minR =
⋃

R∈R

minR .

From Theorems 5.9 and 5.10, by using Definition 6.1, we can easily get
the following two theorems.

Theorem 6.12. If R is a relator on X and A ⊂ X, then

minR(A) = A \ clRc(A) and minRc(A)c = Ac ∪ clR(A).
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Theorem 6.13. If R is a relator on X and A ⊂ X, then

minR(A) = A ∩ intRc(Ac) and minRc(Ac) = Ac ∩ intR(A).

Moreover, from Theorems 4.14, 4.15, 4.17 and 4.22, by Theorem 6.6, it is
clear that we also have the following three theorems.

Theorem 6.14. If R is a relator on X and x ∈ X, then

maxR(x) = {x} ∩ σ
R

(x) = {x} \ δ
Rc (x).

Theorem 6.15. If R is a relator on X, then

ER =
⋂

R∈R

maxR(X).

Theorem 6.16. If R is a relator on X and A ⊂ X, then

maxR(A) ⊂ {b ∈ A : A ⊂ lbR(b)} and minR(A) ⊂ {b ∈ A : A ⊂ ubR(b)}.

Remark 6.17. Note that if in particular R is a singleton, then the
corresponding equalities are also true.

7. Proximal self upper and lower bound sets.

Definition 7.1. If R is a relator on X, then we define

u
R

= {A ⊂ X : A ∈ UbR(A)}.

The members of the family u
R

are called the proximal self upper bound subsets of
the relator space X(R).

Remark 7.2. Hence, by Remark 3.2, it is clear that if ≺ is a certain
order relation on X, then for any A ⊂ X we have A ∈ u

R
if and only if A ≺ A.

Moreover, by Definitions 3.1 and 7.1, we evidently have the following

Theorem 7.3. If R is a relator on X, then

u
R

= {A ⊂ X : ∃ R ∈ R : A2 ⊂ R}.
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Remark 7.4. Hence, it is clear that if d is a certain distance function
on X, then u

Rd
is just the family of all bounded subsets of the space X(d).

From Theorem 7.3, it is clear that the following two theorems are also
true.

Theorem 7.5. If R is a relator on X, then

u
R

=
⋃

R∈R

u
R
.

Theorem 7.6. If R is a relator on X, then u
R

is a nonvoid descending
family such that

u
R

= u
R−1

.

By the corresponding definitions and Theorem 3.3, it is clear that we also
have

Theorem 7.7. If R is a relator on X and A ⊂ X, then the following
assertions are equivalent:

(1) A ∈ u
R

; (2) A ∈ LbR(A);

(3) A ∈ MaxR(A); (4) A ∈ MinR(A).

Now, by using Theorems 5.3 and 7.3, we can also easily prove the following

Theorem 7.8. If R is a relator on X, then

u
R

= MaxR(P(X)) and u
R

= MinR(P(X)).

P r o o f. If A ∈ u
R

, then by Theorem 7.7 we also have A ∈ MaxR(A).
Hence, since A ∈ P(A), it is clear that A ∈ MaxR(P(X)) is also true.

On the other hand, if A ∈ MaxR(P(X)), then there exists B ⊂ X such
that A ∈ MaxR(B). Hence, by Theorem 5.3, it follows that A ⊂ B, and there
exist R ∈ R such that B × A ⊂ R. These, in particular, imply that A2 ⊂ R.
Hence, by Theorem 7.3, it is clear that A ∈ u

R
is also true.

Therefore, the first statement of the theorem is true. The second state-
ment of the theorem is immediate from the first one by Theorems 7.6 and 5.4. �
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Moreover, by using Theorems 3.9 and 3.10, we can easily establish the
following

Theorem 7.9. If R is a relator on X and A ⊂ X, then the following
assertions are equivalent:

(1) A ∈ u
R

; (2) A /∈ ClRc(A); (3) A ∈ IntRc(Ac).

8. Topological self upper and lower bound sets.

Definition 8.1. If R is a relator on X, then we define

UR = {A ⊂ X : A ⊂ ubR(A)} and LR = {A ⊂ X : A ⊂ lbR(A)}.

The members of the families UR and LR are called the topological self upper and
lower bound subsets of the relator space X(R), respectively.

Remark 8.2. Hence, by Remark 4.2, it is clear that if ≺ is a certain
order relation on X, then for any A ⊂ X we have A ∈ UR if and only if A ≺ a
for all a ∈ A.

Moreover, by Theorem 4.3 and Definition 8.1, we evidently have the fol-
lowing

Theorem 8.3. If R is a relator on X, then

UR = {A ⊂ X : ∀ a ∈ A : ∃ R ∈ R : A × {a} ⊂ R}

and
LR = {A ⊂ X : ∀ a ∈ A : ∃ R ∈ R : {a} × A ⊂ R}.

Hence, is clear that we also have the following

Theorem 8.4. If R is a relator on X, then UR and LR are nonvoid
descending families such that

UR = LR−1 and LR = UR−1 .

Moreover, by using Theorems 4.7, 7.6 and 8.4, we can easily prove the
following

Theorem 8.5. If R is a relator on X, then

u
R
⊂ UR ∩ LR.
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P r o o f. By the corresponding definitions and Theorem 4.7, it is clear
that

A ∈ u
R

⇒ A ∈ UbR(A) ⇒ A ∈ P(ubR(A)) ⇒ A ∈ UR.

Therefore, u
R
⊂ UR. Hence, by using Theorems 7.6 and 8.4, we can see that

u
R

= u
R−1

⊂ UR−1 = LR. �

By the corresponding definitions and the dual Remark 4.8, it is clear that
we also have the following

Theorem 8.6. If R is a relator on X and A ⊂ X, then the following
assertions are equivalent:

(1) A ∈ UR; (2) A = maxR(A); (3) A ∈
⋂

a∈A ub−1
R

(a).

In addition to this theorem, it is also worth proving the following

Theorem 8.7. If R is a relator on X, then

UR = {maxR(A) : A ⊂ X} and LR = {minR(A) : A ⊂ X}.

P r o o f. By Theorem 8.6, we evidently have UR ⊂ {maxR(A) : A ⊂ X}.
Moreover, if A ⊂ X and B = maxR(A), then by Theorem 6.3, it follows that
B ⊂ A, and for each b ∈ B there exists R ∈ R such that A × {b} ⊂ R. This, in
particular, implies that for each b ∈ B there exists R ∈ R such that B×{b} ⊂ R.
Hence, by Theorem 8.3, it follows that B ∈ u

R
.

Therefore, the first statement of the theorem is true. The second state-
ment of the theorem is immediate from the first one by Theorems 6.4 and 8.4. �

Moreover, by Theorems 4.11 and 4.12, it is clear that we also have the
following

Theorem 8.8. If R is a relator on X and A ⊂ X, then the following
assertions are equivalent:

(1) A ∈ LR; (2) clRc(A) ⊂ Ac; (3) A ⊂ intRc(Ac).

9. The unicity of topological maxima and minima.

Definition 9.1. A relator R on X is called antisymmetric if for all
R,S ∈ R

R ∩ S−1 ⊂ ∆X .
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Remark 9.2. More precisely, in this case, we should rather say that
the relator R is uniformly antisymmetric.

Namely, by using some basic operations on relators [12], the above con-
dition can be expressed in the form that (R ∧R−1)c ⊂ ({∆X}c)∗.

By Definition 9.1, we evidently have the following

Theorem 9.3. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric; (2) R−1 is antisymmetric.

Moreover, as a useful characterization of antisymmetric relators, we can
prove

Theorem 9.4. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric;
(2)

⋃

R is antisymmetric;
(3) ubR(x) ∩ lbR(x) ⊂ {x} for all x ∈ X.

P r o o f. If the assertion (1) holds, then by the corresponding definitions
we have

(

⋃

R
)

∩
(

⋃

R
)−1

=
(

⋃

R
)

∩
(

⋃

R−1
)

=

=

(

⋃

R∈R
R

)

∩

(

⋃

S∈R S−1

)

=
⋃

R∈R

⋃

S∈R(R ∩ S−1) ⊂ ∆X .

Therefore, the assertion (2) also holds.
While, if the assertion (2) holds, then we have

(

⋃

R
)

∩
(

⋃

R−1
)

=
(

⋃

R
)

∩
(

⋃

R
)−1

⊂ ∆X .

Hence, by using Theorems 4.14 and 4.4, we can infer that

ubR(x) ∩ lbR(x) =
(

⋃

R
)

(x) ∩
(

⋃

R−1
)

(x) =

=

(

(

⋃

R
)

∩
(

⋃

R−1
)

)

(x) ⊂ ∆X(x) = {x}

for all x ∈ X. Therefore, the assertion (3) also holds.
Finally, if the assertion (3) holds and R,S ∈ R, then again by Theorems

4.14 and 4.4 it is clear that

(R ∩ S−1)(x) = R(x) ∩ S−1(x) ⊂

⊂
(

⋃

R
)

(x) ∩
(

⋃

R−1
)

(x) = ubR(x) ∩ lbR(x) ⊂ {x} = ∆X(x)
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for all x ∈ X. Therefore, R∩S−1 ⊂ ∆X , and thus the assertion (1) also holds. �

From Theorem 9.4, it is clear that in particular we also have

Corollary 9.5. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antisymmetric;
(2) there exists an antisymmetric relation V on X such that R ⊂ P(V ).

P r o o f. If the assertion (1) holds, then by defining V =
⋃

R and using
Theorem 9.4 we can at once see that the assertion (2) also holds.

While, if the assertion (2) holds and R,S ∈ R, then we can also at once
see that R ∩ S−1 ⊂ V ∩ V −1 ⊂ ∆X . Therefore, the assertion (1) also holds. �

The importance of antisymmetric relators lies mainly in the following

Theorem 9.6. If R is a reflexive relator on X, then the following asser-
tions are equivalent:

(1) R is antisymmetric;
(2) card(A) ≤ 1 for all A ∈ UR;
(3) card(maxR(A)) ≤ 1 for all A ⊂ X.

P r o o f. If the assertion (2) does not hold, then there exists A ∈ UR such
that card(A) ≥ 2. Therefore, there exist x, y ∈ A such that x 6= y. Hence, by
Definition 8.1, it follows that x, y ∈ ubR(A). Therefore, by Theorem 4.3, there
exist R,S ∈ R such that A× {x} ⊂ R and A× {y} ⊂ S. Thus, in particular, we
also have (y, x) ∈ R and (x, y) ∈ S. However, this implies that (y, x) ∈ R ∩ S−1.
Therefore, the assertion (1) does not also hold. Thus, the implication (1)⇒(2) is
true.

While, if the assertion (1) does not hold, then there exist R,S ∈ R such
that R ∩ S−1 6⊂ ∆X . Therefore, there exist x, y ∈ X, with x 6= y, such that
(x, y) ∈ R ∩ S−1. This implies that (x, y) ∈ R and (y, x) ∈ S. Now, by defining
A = {x, y} and using the reflexivity of R and S, we can see that A × {y} ⊂ R
and A × {x} ⊂ S. Therefore, by Theorem 4.3, we have A ⊂ ubR(A). Hence, by
Definition 8.1, it follows that A ∈ UR. Therefore, the assertion (2) does not also
hold. Thus, the implication (2)⇒(1) is also true.

Finally, to complete the proof, we note that the equivalence (2) ⇐⇒ (3)
is immediate from Theorem 8.7. �

Remark 9.7. From the above proof, we can see that the implications
(1)⇒(2) ⇐⇒ (3) do not require the relator R to be reflexive.

From Theorem 9.6, by using Theorems 9.3, 8.4 and 6.4, we can easily get

Theorem 9.8. If R is a reflexive relator on X, then the following asser-
tions are equivalent:
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(1) R is antisymmetric;
(2) card(A) ≤ 1 for all A ∈ LR;
(3) card(minR(A)) ≤ 1 for all A ⊂ X.

Remark 9.9. By Remark 9.7, it is clear that the implications (1)⇒(2) ⇐⇒
(3) do not require the relator R to be reflexive.

10. The unicity of proximal maxima and minima. From The-
orem 9.6, we can also easily get the following

Theorem 10.1. If R is a reflexive relator on X, then the following
assertions are equivalent:

(1) R is antisymmetric;
(2) card(MaxR(A)) ≤ 2 for all A ⊂ X.

P r o o f. If the assertion (2) does not hold, then there exists A ⊂ X such
that card(MaxR(A)) ≥ 3. Hence, since ∅ ∈ MaxR(A), we can infer that there
exist B,C ∈ MaxR(A), with B 6= ∅ and C 6= ∅, such that B 6= C. Here, we may
assume, without loss of generality, that B 6⊂ C. That is, there exists b ∈ B such
that b /∈ C. Therefore, if c ∈ C, then b 6= c. Moreover, by Theorem 6.7, it is clear
that b, c ∈ maxR(A). Therefore, by Theorem 9.6, the assertion (1) does not also
hold. Thus, the implication (1)⇒(2) is true.

On the other hand, if the assertion (1) does not hold, then by Theorem 9.6
there exist A ⊂ X such that card(maxR(A)) ≥ 2. Therefore, there exist x, y ∈
maxR(A) such that x 6= y. Hence, by Definition 6.1, it follows that {x}, {y} ∈
MaxR(A). Therefore, since ∅ ∈ MaxR(A), we necessarily have card(MaxR(A)) ≥
3. Thus, the assertion (2) does not also hold. Therefore, the implication (2)⇒(1)
is also true. �

Remark 10.2. Note that the assertions 9.6(3) and 10.1(2) are actually
equivalent for any relator R on X.

Therefore, by Remark 9.7, the implication (1)⇒(2) in Theorem 10.1 does
not also require the relator R to be reflexive.

Now, by Theorems 10.1, 9.3 and 5.4, it is clear that we also have

Theorem 10.3. If R is a reflexive relator on X, then the following
assertions are equivalent:

(1) R is antisymmetric;
(2) card(MinR(A)) ≤ 2 for all A ⊂ X.

Remark 10.4. Moreover, by Remark 10.2, it is clear that the implica-
tion (1)⇒(2) does not require the relator R to be reflexive.

Analogously to Definition 9.1, we may also have the following
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Definition 10.5. A relator R on X is called antifiltered if for any R,S ∈
R and x ∈ X there exists T ∈ R such that

(R ∩ S−1)(x) ⊂(T ∩ T−1)(x).

Remark 10.6. More precisely, in this case we should rather say that the
relator R is topologically antifiltered.

Namely, by using some basic operations on relators [12], the above con-
dition can be expressed in the form that (R∧R−1)c ⊂ ((R △ R−1)c)∧.

By Definition 10.5, we evidently have the following

Theorem 10.7. If R is a relator on X, then the following assertions are
equivalent:

(1) R is antifiltered; (2) R−1 is antifiltered.

Moreover, analogously to Theorem 9.6, we can also prove the following

Theorem 10.8. If R is a reflexive and antifiltered relator on X, then
the following assertions are equivalent:

(1) R is antisymmetric;
(2) card(A) ≤ 1 for all A ∈ u

R
;

(3) card(A) ≤ 1 for all A ∈ MaxR(P(X)).

P r o o f. If the assertion (2) does not hold, then there exists A ∈ u
R

such
that card(A) ≥ 2. Hence, by Theorem 8.5, it follows that A ∈ UR. Therefore,
by Theorem 9.6, the assertion (1) does not also holds. Thus, the implication
(1)⇒(2) is true.

While, if the assertion (1) does not hold, then by the second part of the
proof of Theorem 9.6 there exist R,S ∈ R and x, y ∈ X, with x 6= y, such that
y ∈ (R∩S−1)(x). Moreover, since R is antifiltered, there exists T ∈ R such that
(R ∩ S−1)(x) ⊂ (T ∩ T−1)(x). Therefore, we also have y ∈ (T ∩ T−1)(x), and
hence (x, y) ∈ T and (y, x) ∈ T . Now, by defining A = {x, y} and using the
reflexivity of T , we can see that A2 ⊂ T . Hence, by Theorem 7.3, it follows that
A ∈ u

R
. Therefore, the assertion (2) does not also hold. Thus the implication

(2)⇒(1) is also true.
Finally, to complete the proof, we note that the equivalence (2) ⇐⇒ (3)

is immediate from Theorem 7.8. �

Remark 10.9. From the above proof and Remark 9.7, we can see that
the implications (1) ⇒ (2) ⇐⇒ (3) do not require the relator R to be reflexive
or antifiltered.

Now, by Theorems 10.8, 9.3 and 5.4, it is clear that we also have
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Theorem 10.10. If R is a reflexive and antifiltered relator on X, then
the following assertions are equivalent:

(1) R is antisymmetric;
(2) card(A) ≤ 1 for all A ∈ MinR(P(X)).

Remark 10.11. Moreover, by Remark 10.9, it is clear that the impli-
cation (1) ⇒ (2) does not require the relator R to be reflexive or antifiltered.

11. Some supplementary notes and comments. If R is a relator
on X and A ⊂ X, then the members of the families

Ub∗R(A) = {B ⊂ X : P(A) ∩ UbR(B) ⊂ LbR(B)}

and

Lb∗R(A) = {B ⊂ X : P(A) ∩ LbR(B) ⊂ UbR(B)}

may be called the proximal quasi upper and lower bounds of the set A in the
relator space X(R), respectively. Namely, by Theorem 3.19, we have

UbR(A) ⊂ Ub∗R(A) and LbR(A) ⊂ Lb∗R(A).

Quite similarly, by Theorem 4.22, the members of the families

ub∗R(A) = {b ∈ X : A ∩ ubR(b) ⊂ lbR(b)}

and

lb∗R(A) = {b ∈ X : A ∩ lbR(b) ⊂ ubR(b)}

may be called the topological quasi upper and lower bounds of the set A in
the relator space X(R), respectively. However, if R is not a singleton, then in
contrast to Definition 6.1 we can only prove that

{b : {b} ∈ Ub∗R(A)} ⊂ ub∗R(A) and {b : {b} ∈ Lb∗R(A)} ⊂ lb∗R(A).

Now, analogously to Definitions 5.1 and 6.1, the members of the families

Max∗R(A) = P(A) ∩ Ub∗R(A) and Min∗
R(A) = P(A) ∩ Lb∗R(A)

may be called the proximal quasi maxima and minima of the set A in the relator
space X(R), respectively. Moreover, the members of the families

max∗R(A) = A ∩ ub∗R(A) and min∗
R(A) = A ∩ lb∗R(A).
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may called the topological quasi maxima and minima of the set A in the relator
space X(R), respectively.

The members of the latter families may also be called the maximal and the
minimal elements of the set A in the relator space X(R), respectively. Namely,
if for instance ≺ is a certain order relation on X, then for any A ⊂ X and b ∈ X
we have b ∈ max∗

R
(A) if and only if b ∈ A, and b ≺ a implies a ≺ b for all a ∈ A.

That is, b is a maximal element of A in the usual sense [4, p. 30]. Therefore, in
view of the various maximality principles (such as those of Zorn, Bourbaki [1],
Bishop–Phelps, Brondsted [2], Brézis–Browder, Altman and the present author
[29], for instance), it seems to be of particular importance to find some algebraic
or analytical conditions in order that the set max∗

R
(X) be nonempty.

Analogously to the families u
R

, UR and LR, we may also naturally
consider the families

u∗
R

= {A ⊂ X : A ∈ Ub∗R(A)} and l∗
R

= {A ⊂ X : A ∈ Lb∗R(A)}.

and

U∗
R = {A ⊂ X : A ⊂ ub∗R(A)} and L∗

R = {A ⊂ X : A ⊂ lb∗
R(A)}.

Concerning the above families, for instance, we can also prove that u
R
⊂ u∗

R
and

UR ⊂ U∗
R

, and moreover

u
R

= {A ⊂ X : MaxR(A) ⊂ LbR(A)} = {A ⊂ X : MaxR(A) ⊂ MinR(A)}.

Finally, we note that the members of the families

SupR(A) = MinR(UbR(A)) and sup∗R(A) = min∗R(ub∗
R(A))

may, for instance, be called the proximal and the quasi topological suprema of
the set A in the relator space X(R), respectively. Concerning proximal suprema,
for instance we can prove that

SupR(A) = u
R
∩ UbR(A) and u

R
= {A ⊂ X : A ∈ SupR(A)}.
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(electronic to appear).

[13] W. J. Pervin. Quasi-uniformization of topological spaces. Math. Ann. 147
(1962), 316–317.

[14] F. Riesz. Die Genesis der Raumbbegriffs, Friedrich Riesz Gesammelte Ar-
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