


Serdica Math. J. 30 (2004), 111–134

Z2-GRADED POLYNOMIAL IDENTITIES FOR

SUPERALGEBRAS OF BLOCK-TRIANGULAR MATRICES∗

Onofrio M. Di Vincenzo

Communicated by V. Drensky

Abstract. We present some results about the Z2-graded polynomial iden-

tities of block-triangular matrix superalgebras R =
[

A M

0 B

]
. In particular, we

describe conditions for the T2-ideal of a such superalgebra to be factorable
as the product T2(A)T2(B). Moreover, we give formulas for computing the
sequence of the graded cocharacters of R in some interesting case.

1. Introduction. In the theory of polynomial identities for associative

algebras over a field of characteristic zero a basic role is played by the super-

algebras and their Z2-graded identities (see [19]). For instance, as proved by

Kemer, any proper T-ideal of the free algebra, F〈X〉, is the ideal of the poly-

nomial identities satisfied by the Grassmann envelope, G(A), of a suitable finite

dimensional superalgebra A. If A is any PI-algebra then we will denote by T (A)
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the T-ideal of all ordinary polynomial identities of A. Since in characteristic

zero any T-ideal is generated by multilinear polynomials, then it is enough to

study the vector space, Vn(A), of the multilinear polynomials of F〈X〉 of degree

n modulo T (A), for any n ∈ N. The dimension, cn(A), of this space is called the

n-th codimension of A. It is well know that the sequence cn(A) is exponentially

bounded ([22]). Recently, it has been proved that the limit limn
n
√

cn(A) does

exist for any non trivial PI-algebra (see [12] and [13]) and it is a non-negative

integer, called the PI-exponent of A. This invariant can be used in order to clas-

sify the varieties of PI-algebras, as suggested by the mentioned papers. In [15]

the authors prove that the minimal varieties with respect to a fixed exponent are

determined by the T-ideals of the Grassmann envelope of the so-called “minimal

superalgebras”. For an algebraically closed field, such superalgebras can be real-

ized as Z2-graded subalgebras of block-triangular matrix algebras equipped with

a suitable Z2-grading. Precisely, the blocks along the main diagonal are simple

superalgebras of finite dimension. It is important to notice that, as proved by

Kemer, any non trivial verbally prime variety of associative algebras is generated

by the Grassmann envelope of one of these simple superalgebras. Hence it is

an interesting problem to investigate the Z2-graded polynomial identities of the

mentioned block-triangular superalgebras. In this paper we present some recent

results concerning this matter.

2. Z2-graded cocharacters. Let F be a field of characteristic zero and

let A be an associative F-algebra. We say that A is a superalgebra, or a Z2-graded

algebra, if A =
⊕

i∈Z2
Ai, where Ai ⊆ A are subspaces and AiAj ⊆ Ai+j holds

for any i, j ∈ Z2. The subspace Ai is called the homogeneous component of A

of degree i. We say that the elements a ∈ Ai are homogeneous of degree i and

we denote their degrees as: |a| = i. Moreover, we say that a ∈ A is an even

element if |a| = 0 ∈ Z2; similarly a is an odd element if |a| = 1. By definition, a

subspace W ⊆ A is a Z2-graded subspace if W =
⊕

i∈Z2
Wi, where Wi = W ∩ Ai

for all i ∈ Z2. Finally, if A = A0 ⊕ A1 and B = B1 ⊕ B2 are superalgebras then

a homomorphism of algebras ϕ : A → B is called a Z2-graded homomorphism if

it holds ϕ(Ai) ⊆ Bi, for all i ∈ Z2.

One defines a free object in the class of superalgebras by considering the

free F-algebra over the disjoint union of two countable sets of variables, Y and

Z, whose elements are regarded as even and odd respectively. We shall denote by

F〈Y,Z〉 the free F-algebra generated by Y ∪ Z. The even component of F〈Y,Z〉

is the space spanned by those monomials in which an even number of elements
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from Z occurs. The remaining monomials span the odd component of F〈Y,Z〉.

A polynomial f(y1, . . . , yn, z1, . . . , zm) in F〈Y,Z〉 is called a Z2-graded

polynomial identity for a superalgebra A if it is in the kernel of all possible

Z2-graded homomorphisms ϕ : F〈Y,Z〉 → A. In other words, f is a graded

polynomial identity for A if it vanishes under all the possible substitutions of the

variables by elements of A with the same parity only: the yi replaced by ai ∈ A0

and the zi by bi ∈ A1. One often calls these substitutions graded substitutions.

The set T2(A) of all graded polynomial identities of A is an ideal of the free

superalgebra invariant under all graded endomorphisms. It is called the T2-ideal

of (the graded polynomial identities of) A. The factor algebra F〈Y,Z〉/T2(A)

inherits the superalgebra structure of the free superalgebra, and is a free object

for the class of the superalgebras B such that T2(A) ⊆ T2(B). This factor alge-

bra is called the relatively free superalgebra associated to A. In order to study

this relatively free superalgebra, we may use the powerful tools of representation

theory of the symmetric groups.

More precisely, let us define the Z2-graded multilinear polynomials in

F〈Y,Z〉 as follows.

Definition 2.1. For n ∈ N, the vector space

V Z2

n := span〈xσ(1)xσ(2) . . . xσ(n) | σ ∈ Sn, xi ∈ {yi, zi}〉

is called the space of Z2-graded multilinear polynomials.

Since the characteristic of the ground field F is zero, a standard process of

multilinearization shows that T2(A) is generated, as a T2-ideal, by the subspaces

V Z2
n ∩ T2(A). Actually, it is more convenient to study the factor space

V Z2

n (A) :=
V Z2

n

V Z2
n ∩ T2(A)

.

As we said above, an effective tool to this aim is provided by the representation

theory of the symmetric groups.

Indeed, one can notice that V Z2
n is an Sn-module with respect to the

natural left action, and V Z2
n ∩ T2(A) is an Sn-submodule of it. We shall denote

by χZ2
n (A) the character of such representation and we call it the n-th Z2-graded

cocharacter of the superalgebra A or equivalently of the ideal T2(A). Similarly,

we shall denote by cZ2
n (A) the dimension of the factor space V Z2

n (A) and we call

it the n-th Z2-graded codimension of A. One can define a “superexponent” by

setting

expZ2(A) := lim
n

n

√

cZ2
n (A),
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if this limit does exist. Very recently, it has been proved the existence of this

superexponent for any finite dimensional superalgebra, or more generally for any

finitely generated superalgebra which satisfies an ordinary polynomial identity

[3].

We remark that in the study of the Z2-graded polynomial identities of

the superalgebra A we can consider “smaller” spaces of multilinear polynomials.

To be more precise, for fixed h, k, let

Vh,k := span〈m monomials of V Z2

h+k | just y1, . . . , yh, zh+1, . . . , zh+k occur in m〉.

Setting n := h + k, and Hh,k := Sym({1, . . . , h}) × Sym({h + 1, . . . , n}) 6 Sn,

the space Vh,k is an Hh,k-module, and the subspace Vh,k ∩ T2(A) is a submodule.

Therefore one can consider the factor Hh,k-module

Vh,k(A) :=
Vh,k

Vh,k ∩ T2(A)
.

We shall denote by χh,k(A) its Hh,k-character, and by ch,k(A) its dimension.

We briefly recall that if H is a subgroup of a group G and M is an H-

module, we can turn M into a G-module by considering the induced G-module

structure. In other words, one sets MG := FG ⊗FH M . This is the so-called

G-module induced by M . The relation between the Sn-structure of V Z2
n (A) and

the Hh,k-structure of Vh,k(A) then is displayed by the following result (see [2],

[5]):

Theorem 2.2. Let A be a superalgebra. Then for all n ∈ N

V Z2

n (A) ∼=

n∑

k=0

(Vn−k,k(A))Sn

as Sn-modules. In particular,

cZ2

n (A) =
n∑

k=0

(
n

k

)

cn−k,k(A).

In this way the study of the Sn-structure of T2(A) is reduced to the study

of the modules Vn−k,k(A).

Since the characteristic of the field F is zero, then any representation of

the groups Hh,k = Sh × Sk (h + k := n) is completely reducible. The irreducible
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Hh,k-characters are in a bijective correspondence with the pairs of partitions

(λ, µ) where λ ⊢ h and µ ⊢ k. More precisely, if χν denotes the irreducible

S|ν|-character associated to the partition ν, then the irreducible Hh,k-character

associated to (λ, µ) is χλ,µ = χλ ⊗ χµ.

In order to simplify the notation, we shall often identify an irreducible

character χν of the symmetric group with the corresponding partition ν = (ν1, . . .,

νr). So for instance, we shall write

χh,k(A) =
∑

λ⊢h
µ⊢k

mλ,µ λ ⊗ µ

for certain multiplicities mλ,µ = mλ,µ(A).

Let E = E0⊕E1 be the Grassmann (or exterior) algebra of a vector space

of countable dimension equipped with its natural Z2-grading. For any superalge-

bra A, the Grassmann envelope of A is defined as the following superalgebra:

G(A) = (A0 ⊗ E0) ⊕ (A1 ⊗ E1)

The relationship between the graded identities of the superalgebras A,G(A) is

described in [18] by means of an involution I 7→ I∗ defined on the lattice of the

T2-ideals of the free superalgebra F〈Y,Z〉. Using the language of the representa-

tion theory, one has the following relationship between the sequences of graded

cocharacters of A and G(A):

χh,k(A) =
∑

µ,ν

mµ,νµ ⊗ ν ⇔ χh,k(G(A)) =
∑

µ,ν

mµ,νµ ⊗ ν ′(1)

where ν ′ ⊢ k is the conjugate partition of ν. We recall that the involution ∗

satisfies also the property (IJ)∗ = I∗J∗.

The relation between the sequences of Z2-graded cocharacters of the T2-

ideals I, J and IJ is described in the following result. It has been obtained in [8]

as generalization of the previous result in [4] about ordinary T -ideals.

More precisely, if χ′, χ′′ are sequences of characters χ′
k,l and χ′′

k,l (k, l ≥ 0)

of the product group Sk × Sl, we define (χ′ ◦ χ′′)k,l to be the following sequence

of characters:

(χ′ ◦ χ′′)k,l =
k∑

i=0

l∑

j=0

χ′
i,j ⊗̂χ′′

k−i,l−j

where ⊗̂ is the outer tensor product of the characters of the symmetric group.

Explicitly for the irreducible characters χµ,ν , χρ,τ , where µ, ν, ρ, τ are partitions
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of m,n, r, t respectively, one has:

χµ,ν⊗̂χρ,τ = (χµ⊗̂χρ) ⊗ (χν⊗̂χτ ) = (χµ ⊗ χρ)
Sm+r ⊗ (χν ⊗ χτ )

Sn+t .

We are ready to state the following result:

Theorem 2.3. Let I, J be T2-ideals of the superalgebras A and B respec-

tively. Denote by R any superalgebra whose T2-ideal factorizes as the product IJ .

Then, the Z2-graded cocharacters χk,l(R) of this superalgebra verifies:

χk,l(R) = χk,l(A) + χk,l(B) + χ(1),∅⊗̂(χ(A) ◦ χ(B))k−1,l

+ χ∅,(1)⊗̂(χ(A) ◦ χ(B))k,l−1 − (χ(A) ◦ χ(B))k,l

(2)

These results, together with the classification of the simple superalgebras

of finite dimension, allow us to reduce the study in this paper just to the matrix

algebras with entries in the field F.

3. Block-triangular superalgebras. Let A,B be Z2-graded algebras

and W be a Z2-graded A-B-bimodule, that is W = W0 ⊕ W1 where Wi are

subspaces of W and AiWjBh ⊆ Wi+j+h for any i, j, h ∈ Z2 We denote by R the

block-triangular matrix algebra defined as the following:

R =

[
A W
0 B

]

The algebra R can be graded by Z2 in a natural way by putting for any

i ∈ Z2:

Ri =

[
Ai Wi

0 Bi

]

With respect to such Z2-grading, we have clearly that T2(A)T2(B) ⊆ T2(R). We

shall describe in a greater detail the relations between T2(R) and the Z2-graded

identities of A and B in some relevant case. We begin with an easy example:

Example 3.1. A,B are PI-algebras over F and

A1 = B1 = W1 = 0

In this case, R is a superalgebra with the trivial Z2-grading, that is

R = R0 and R1 = 0. Therefore, the odd indeterminates z are always in T2(R)



Z2-graded polynomial identities 117

and the polynomial f(y1, . . . , yq) is a Z2-graded polynomial identity for R if and

only if f(x1, . . . , xq) lies in T (R). As a consequence we obtain F〈Y,Z〉/T2(R) ≈

F〈X〉/T (R). Moreover, Vh,k(R) = 0 if k > 0 and Vn,0(R) ≈ Vn(R) = Vn/Vn ∩

T (R) as Sn-modules. Therefore, by Theorem 2.2 one has

χZ2

n (R) = χn,0(R) = χn(R), cZ2

n (R) = cn(R)

Moreover, if A = Mm, B = Mn and W = Mm×n the vector space of m × n rec-

tangular matrices then R = UTm,n. In this case it is well know that T (UTm,n) =

T (Mm(F))T (Mn(F)) (see [14]). This decomposition is a particular case of deep

result of Giambruno and Zaicev. More precisely, in [15] they solve in the posi-

tive a conjecture due to Drensky [10, 11] about the factorability of the T-ideals

of minimal varieties as a product of verbally prime T-ideals. In [16] Formanek

gave a formula for the Hilbert series of the product of a couple of T -ideals as a

function of the Hilbert series of the factors. The proof of this result given in [17]

works for arbitrary homogeneous ideals of the free algebra. Using the result of

Formanek, Berele and Regev [4] proved a formula that relates the sequence of

ordinary cocharacters of a product of T-ideals to the sequences of cocharacters

of these ideals. In our case we have:

χZ2

n (R) = χn(A) + χn(B) + (χ(1) ⊗ χn−1(A))Sn+

(χ(1) ⊗ χn−1(B))Sn −

n∑

p=0

(χp(A) ⊗ χn−p(B))Sn .

The second instance is:

Example 3.2. A,B are PI-algebras over F and

A1 = B1 = W0 = 0

In this case the superalgebra R =

[
A W
0 B

]

is equipped with the cano-

nical Z2-grading:

R0 =

[
A 0
0 B

]

R1 =

[
0 W
0 0

]

If we assume that W is a free A−B bimodule, then the main result of [6]

allows us to describe a generating set for the Z2-graded polynomial identities for

the superalgebra R in terms of the ordinary polynomial identities of A and B.
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More precisely, Theorem 1 of [6] can be written as the following:

Theorem 3.3. Let the T -ideals T (A ⊕ B), T (A) and T (B) have bases

{fl(x) | l ∈ L}, {gl′(x) | l′ ∈ L′} and {hl′′(x) | l′′ ∈ L′′}

respectively. Then the T2-ideal of the Z2-graded polynomial identities of the su-

peralgebra R =

[
A W
0 B

]

has a basis

{z1z2, fl(y), gl′(y)z1, z1hl′′(y) | l ∈ L, l′ ∈ L′, l′′ ∈ L′′}.

A result with a similar flavor has been obtained in [9]. In fact, the authors

describe the graded cocharacter sequence of the superalgebra R in terms of the

ordinary cocharacter sequences associated to the polynomial identities of A and

B. More precisely, with the same notation of the previous theorem one has (see

Theorem 3.1 of [9]):

Theorem 3.4. The Z2-graded cocharacter sequence for the superalgebra

R is the following

χn,0(R) = χn(A ⊕ B)

χn,1(R) =
n∑

p=0

(χp(A) ⊗ χn−p(B))Sn ⊗ χ(1)

χn,k(R) = 0 for k > 2

(n ∈ N)

Now, as in [9] it is easy to show the following result about the graded

codimension of R.

Corollary 3.5. The graded codimension sequence of R is related to the

ordinary codimension sequences of A, B and A ⊕ B by the following formula:

cZ2

n (R) = cn(A ⊕ B) + n
∑

h+k=n−1

(
n − 1

h

)

ch(A)ck(B).(3)
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P r o o f. By Theorem 2.2 one has

cZ2

n (R) =

n∑

i=0

(
n

i

)

cn−i,i(R).

By [6], Theorem 1, it follows that cn−i,i(R) = 0 if i > 2, hence

cZ2

n (R) = cn,0(R) + ncn−1,1(R).

The explicit formula follows then as a consequence of Theorem 3.4 �

Using this, and the results of Giambruno and Zaicev about the PI-

exponent [12], [13], we obtain

Corollary 3.6. The Z2-graded PI-exponent of R is

expZ2(R) := lim
n

n

√

cZ2
n (R) = exp(A) + exp(B).

Now we recall the general setting, that is A,B are superalgebras, W is

a Z2-graded A − B-bimodule and R =

[
A W
0 B

]

. As we said above, if Ri =
[

Ai Wi

0 Bi

]

then T2(A)T2(B) ⊆ T2(R). The final result of this section consists

in describing a suitable condition for the structures A,B,W such that one has

T2(A)T2(B) = T2(R). For this purpose, the main tool is the Lewin’s Theorem

[20].

Let I and J be any two-sided ideals of F〈X〉. Consider the factor algebras

F〈X〉/I, F〈X〉/J and let M be a F〈X〉/I-F〈X〉/J-bimodule. We define:

R̃ =

[
F〈X〉/I M

0 F〈X〉/J

]

Assume {wi} is a countable set of elements of M . Then an algebra homomorphism

ϕ : xi ∈ F〈X〉 7→ ai ∈ R̃ is defined, where:

ai =

(
xi + I wi

0 xi + J

)

For the kernel ker(ϕ)of the homomorphism ϕ we get immediately:

IJ ⊆ ker(ϕ) ⊆ I ∩ J.
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We have:

Theorem 3.7 (Lewin, [20]). If {wi} is a countable free set of elements

of the bimodule M , then for the homomorphism ϕ defined by {wi}, we have:

ker(ϕ) = IJ.

Consider now the free superalgebra F〈Y,Z〉, let I, J be T2-ideals and let

M be a Z2-graded F〈Y,Z〉/I-F〈Y,Z〉/J-bimodule. Of course, the algebra:

R̃ =

[
F〈Y,Z〉/I M

0 F〈Y,Z〉/J

]

(4)

is also Z2-graded and one has IJ ⊆ T2(R̃). Moreover, let ui, vi ∈ M be

homogeneous elements of even and odd degree respectively, for all i ≥ 1. Let

ϕ : F〈Y,Z〉 → R̃ be the homomorphism defined by the set {ui, vi}, then ϕ is a

Z2-graded homomorphism and hence T2(R̃) ⊆ ker(ϕ). If {ui, vi} is a free subset

of the F〈Y,Z〉/I-F〈Y,Z〉/J-bimodule, then by the Lewin’s Theorem we have that

ker(ϕ) = IJ. Hence we can conclude:

Corollary 3.8. If the Z2-graded bimodule M contains a countable free

set {ui, vi} of homogeneous elements such that |yi| = |ui| and |zi| = |vi| for any

i ≥ 1, then:

T2(R̃) = IJ.

4. A free construction for matrix superalgebras. Let us con-

sider Z2-gradings on matrix algebras. Let Mm = Mm(F) be the algebra of ma-

trices of order m with entries in F and fix a map | | : {1, 2, . . . ,m} → Z2. If

eij ∈ Mm is any unit matrix, then such map can be extended to these elements

in the following way:

|eij | = |j| − |i|.

Since |eijejk| = |eik| = |k| − |i| = |eij | + |ejk|, in this way a Z2-grading is defined

on Mm. Clearly, such grading is the elementary grading defined by the vector

(|1|, . . . , |m|) ∈ Z
m
2 (see [1]). We write (Mm, | |) for the matrix superalgebra

Mm endowed with the Z2-grading defined by the map | | : {1, 2, . . . ,m} → Z2.
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Moreover, the superalgebra (Mm, | |) is simply denoted as Mk,l(F) if |i| = 0 for

1 ≤ i ≤ k and |i| = 1 for k + 1 ≤ i ≤ k + l = m.

By the classification of the finite dimensional simple superalgebras over an

algebraically closed field (see [27], [19]), it holds that there are exactly two class

of such superalgebras up to isomorphisms: Mk,l(F) with k ≥ l ≥ 0 (k 6= 0) and

Mm ⊕ tMm with m > 0, t2 = 1. Moreover, we can regard the latter superalgebra

as a Z2-graded subalgebra of Mm,m(F). More precisely, we consider the Z2-graded

monomorphism, ϕ : Mm ⊕ tMm → Mm,m(F), defined as follows:

a0 + ta1 7→

(
a0 a1

a1 a0

)

(5)

Now, if (Mm, | |m) and (Mn, | |n) are matrix superalgebras, then we define

the map | | : {1, 2, . . . ,m + n} → Z2 by putting |i| = |i|m for i ≤ m and

|i| = |i − m|n for i > m. We consider then the matrix algebra Mm+n endowed

with the Z2-grading defined by the map | |. Now consider the F-vector space W =

Mm×n of the m×n rectangular matrices, and let A,B be Z2-graded subalgebras

respectively of Mm,Mn. Clearly the space W is an A-B-bimodule. In this way

the superalgebra R =

[
A W
0 B

]

is a Z2-graded subalgebra of (Mm+n, | |).

For a given superalgebra R of this type, we will exhibit explicitly a su-

peralgebra R isomorphic to the superalgebra R̃ (see equation 4) and such that

T2(R) = T2(R). We say that R,R are Z2-graded PI equivalent. The notion of

“generic superalgebra” is very useful for this purpose. More precisely, we say

that a superalgebra Ω is a generic superalgebra associated to a superalgebra S if

it holds:

Ω ≈ F〈Y,Z〉/T2(S).

In particular, this implies that T2(Ω) = T2(S).

If S has finite dimension, then one has a canonic way to define a Z2-

graded generic algebra. In fact, assume that the superalgebra S has a F-linear

basis E = {e1, . . . , en} whose elements are all homogeneous. Denote:

P (S) = F[u
(h)
i , v

(h)
i | 1 ≤ i ≤ n, h ≥ 1 ]

the polynomial ring in the countable set of commuting variables u
(h)
i , v

(h)
i . We

call P (S) the polynomial ring associated to the finite dimensional superalgebra S.

Note that the following tensor product over the field F:

S ⊗ P (S) =
⊕

i∈Z2

Si ⊗ P (S)
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is a superalgebra such that T2(S ⊗ P (S)) = T2(S). We consider in S ⊗ P (S) the

Z2-graded subalgebra S′ generated, for all h ≥ 1, by the following homogeneous

elements:

ah =
∑

|ei|=0

u
(h)
i ei and bh =

∑

|ei|=1

v
(h)
i ei

where the index i ranges over 1 ≤ i ≤ n. We can easily prove:

S′ ≈ F〈Y,Z〉/T2(S).

Note that if S = Mm then we choose canonically the set of the unit matrices eij

as F-linear basis (for the non-graded case, see for instance [23]).

Consider now the block triangular superalgebra R. Of course, we can

produce a Z2-homogeneous linear basis of R by considering the disjoint union of

the bases for A and B with the canonical basis {eij} (1 ≤ i ≤ m,m + 1 ≤ j ≤

m + n) of W . Let P = P (R) be the polynomial ring associated to R, then R⊗P

contains the generic free superalgebras R′, A′ and B′ associated in the canonic

way to R,A and B respectively.

Let us consider the Z2-graded subalgebra of R ⊗ P defined as:

R =

[
A′ W ′

0 B′

]

(6)

where W ′ is the A′-B′-bimodule contained in R ⊗ P generated, for all h ≥ 1, by

the following homogeneous elements:

uh =
∑

|eij |=0

u
(h)
ij eij and vh =

∑

|eij |=1

v
(h)
ij eij(7)

with 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n. Then we have:

Proposition 4.1.

T2(R) = T2(R
′) = T2(R)

P r o o f. It is sufficient to note that T2(R
′) = T2(R) = T2(R ⊗ P ) and

moreover R′ ⊆ R ⊆ R ⊗ P . �

Since A′ ≈ F〈Y,Z〉/T2(A) and B′ ≈ F〈Y,Z〉/T2(B), by Corollary 3.8 in

order to prove the factorization of T2(R) = T2(R) it sufficient to show that the

homogeneous elements uh, vh defined in (7) form a free set of the bimodule W ′.
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For this purpose we need to introduce the notion of “Z2-regularity” of a matrix

subalgebra.

Let us consider a matrix superalgebra (Mm, | |). For any fixed element

g ∈ Z2 and any commutative F-algebra C we define the following F-linear map

πg : Mm(C) → Mm(C):
∑

i,j

aijeij 7→
∑

|i|=g,j

aijeij

where 1 ≤ i, j ≤ m. Clearly π0 + π1 = id, the identity map. If A is a Z2-

graded subalgebra of (Mm, | |), denote as usual P = P (A) the polynomial ring

associated to A. Since for the generic superalgebra A′ the following chain of

immersions holds:

A′ ⊆ A ⊗ P ⊆ Mm ⊗ P = Mm(P )

we can define π̂g : A′ → Mm(P ) as the restriction of πg to A′. In the same way,

we can define also the F-linear map π∗
g : Mm(P ) → Mm(P )

∑

i,j

aijeij 7→
∑

i,|j|=g

aijeij

and its restriction π̂∗
g : A′ → Mm(P ). As in [8], we have:

Proposition 4.2. The maps π̂g are all injective if and only if the maps

π̂∗
g are so, for all g ∈ Z2.

P r o o f. Let ϕ : F〈Y,Z〉 → A′ denote the canonic Z2-graded epimorphism

such that ker(ϕ) = T2(A). Let a′ be a matrix of A′ and f ∈ F〈Y,Z〉 be a

polynomial such that ϕ(f) = a′. Clearly, the condition π̂g(a
′) = 0 is equivalent

to πg(ν(f)) = 0, for any Z2-graded substitution ν : F〈Y,Z〉 → A. Therefore, if

the element a′ is homogeneous of degree h ∈ Z2 and π̂g(a
′) = 0 then π̂∗

g+h(a′) = 0

too. �

Moreover, one has:

Definition 4.3. A Z2-graded subalgebra A ⊆ Mm is said to be Z2-regular

if the maps π̂g (or equivalently the maps π̂∗
g) are injective, for any g ∈ Z2.

With the notation of equation (6) and (7), we have:

Proposition 4.4. Let A,B be Z2-graded subalgebras respectively of Mm,Mn.

If one of such subalgebras is Z2-regular then the homogeneous elements uh, vh of

the graded A′-B′-bimodule W ′ form a countable free set such that |uh| = |yh| and

|vh| = |zh| for all h ≥ 1.
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This proposition is a particular case of one among the results in [8]. We

include here its proof for the sake of completeness.

P r o o f. We assume that B is a Z2-regular subalgebra of Mn. Since the

non-zero entries of the matrices uh, vh are distinct variables for all the indices h,

clearly it is sufficient to prove that each element uh, vh is torsion-free. Then, let
∑

s asw bs = 0 with as ∈ A′, bs ∈ B′ and w in the set {uh, vh} . Suppose that

the matrices bs are linearly independent and by contradiction that as 6= 0 for any

index s. From the row-by-column product, it follows that for any pair of indices

(i, q) we have:
∑

s

∑

j,p

(as)ijwjp(bs)pq = 0.

Note that wjp 6= 0 if and only if |p| − |j| = |w|. Moreover, the entries wjp 6= 0

are variables that are distinct from those of the polynomials (as)ij and (bs)pq. It

follows:
∑

s

(as)ij(bs)pq = 0

for any quadruple of indices (i, j, p, q) such that |p| − |j| = |w|. Since a1 6= 0,

there are indices i1, j1 such that (a1)i1,j1 6= 0. By putting g = |j1| + |w| we have

then:
∑

s

(as)i1j1(bs)pq = 0

for any indices p, q with |p| = g. By multiplying now this equation for the unit

matrix epq and by summing over the indices p, q, we finally obtain:

∑

s

(as)i1j1π̂g(bs) = 0.

Note that the matrices π̂g(bs) are linearly independent since π̂g is a monomor-

phism. Since (a1)i1j1 6= 0, we get then a contradiction. We argue in a similar

way if A is a Z2-regular subalgebra of Mm. �

A similar proof works for the following proposition

Proposition 4.5. Let A,B be Z2-graded subalgebras of (Mm, | |m) and

(Mn, | |n) respectively. If both the maps | |m and | |n are constant then for the

homogeneous elements uh, vh of the graded A′-B′-bimodule W ′ it holds:

(1) If |1|m + |1|n = 0 ∈ Z2 then W ′
1 = 0 and {uh | h ≥ 1} is a countable free set

of even elements
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(2) If |1|m + |1|n = 1 ∈ Z2 then W ′
0 = 0 and {vh | h ≥ 1} is a countable free set

of odd elements.

5. Applications. First of all we state one of the main result of this

paper. More precisely, from the Corollary 3.8 and the Propositions 4.1 and 4.4 it

follows:

Theorem 5.1. Let R be the following Z2-graded block-triangular matrix

algebra:

R =

[
A U
0 B

]

where A ⊆ Mm, B ⊆ Mn are graded subalgebras and U = Mm×n. If one of such

subalgebras is Z2-regular, then the T2-ideal T2(R) factorizes as:

T2(R) = T2(A)T2(B).

Let us recall the following results about the Z2-regularity of matrix su-

peralgebras, which are special cases of more general results for gradings by an

arbitrary group (see [8]).

Proposition 5.2. Let A = (Mm, | |) be a complete matrix superalgebra.

Then A is Z2-regular if and only if the map | | is surjective and its fibers are

equipotent.

Proposition 5.3. Let A be a Z2-graded subalgebra of (Mm, | |) and set

the Z2-grading on M2m by the vector (|1|, . . . , |m|, 1 + |1|, . . . , 1 + |m|). Then the

map ϕ : Mm → M2m sending a 7→

(
a 0
0 a

)

is a graded monomorphism and

ϕ(A) is a Z2-regular subalgebra of M2m.

With regard to the finite dimensional simple superalgebra Mm(F)⊕ tMm(F), we

recall that it is isomorphic to the Z2-graded subalgebra

Dm,m(F) =

{(
a b
b a

)

| a, b ∈ Mm

}

of Mm,m(F) (see equation 5). It is easy to see that the Dm,m(F) is Z2-regular.
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Finally we have:

Theorem 5.4. Let R be a matrix superalgebra of type:

R =

[
A W
0 B

]

where A = (Mm, | |m), B = (Mn, | |n) are complete matrix superalgebras and

W = Mm×n. The T2-ideal of R factorizes as T2(R) = T2(A)T2(B) if and only if

one of the superalgebras A or B is Z2-regular.

The sufficient condition follows by the Theorem 5.1. For the necessary

condition, assume that the superalgebras A and B are both non-regular. Then

it is possible to define a polynomial f ∈ F〈Y,Z〉 such that f ∈ T2(R) but f 6∈

T2(A)T2(B).

The proof of this fact in [8] is based on the following argument. Recall

that the Z2-grading of R is defined by the vector (|1|m, . . . , |m|m, |1|n, . . . , |n|n).

Note that we can obtain a new Z2-grading for the algebra R by the vector

(|1|m, . . . , |m|m, 1 + |1|n, . . . , 1 + |n|n) ∈ Z
m+n
2 .

We denote by R∗ this latter superalgebra. Note that R and R∗ differ only for

the degree of the unit matrices in W . In particular, one has that T2(A)T2(B) ⊆

T2(R
∗). In order to prove that the polynomial f 6∈ T2(A)T2(B) it is enough to

show that f 6∈ T2(R
∗). Within this setting the construction of the polynomial

f is easier than the one for the general case, as given in [8]. For convenience of

the reader we explicitly construct f in this simpler case. Since the superalgebra

A = (Mm, | |m) is not Z2- regular the fibers of the map | |m are not equipotent.

Denote by pA the greatest cardinality of these fibers, let qA be the cardinality of

the other fiber and choose a ∈ {1, . . . ,m} among the elements of the fiber with

cardinality pA. Similarly define pB, qB and b. We distinguish two cases according

to |a|m 6= |b|n either |a|m = |b|n. In the former case the required polynomial is

the standard polynomial of degree r = 2(pA + pB) − 1 in variables from Y , that

is

f = sr(y1, . . . , yr).

In fact, R0 is canonically isomorphic to the algebra UTpA,qB
⊕UTqA,pB

while R∗
0

is isomorphic to UTpA,pB
⊕ UTqA,qB

and the standard polynomial st(x1, . . . , xt)

is a polynomial identity for UTh,k if and only if t ≥ 2(h + k). In the latter case

f is the following multilinear polynomial:

f = s2qA
(YA)dr(z1, . . . , zr; y1, . . . , yr+1)s2qB

(YB)
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where r = 2max{pAqA, pBqB} + 1, dr(z1, . . . , zr; y1, . . . , yr+1) = dr(z; y) denotes

the r-th Capelli polynomial, that is

dr(z; y) =
∑

σ∈Sr

(−1)σy1zσ(1)y2zσ(2) . . . yrzσ(r)yr+1

and YA, YB are disjoint subsets of Y − {y1, . . . , yr+1}.

Since max{dimA1, dimB1} = r − 1 and AB = BA = 0 then any non

vanishing graded substitution of dr(z; y) by unit matrices of R has values in the

odd component W1 of the bimodule W , that is in the subspace generated by the

matrices eij with 1 ≤ i ≤ m < j ≤ m + n and |i| 6= |j|. Since BW = WA = 0

in order to show that f is a Z2-graded PI for R it is enough to evaluate the

standard polynomial s2qA
(YA) by unit matrices of A and the standard polynomial

s2qB
(YB) by unit matrices of B. Now, let g ∈ Z2 such that g = |a|m = |b|n and

πg, πg+1 : Mm+n → Mm+n the F-linear maps defined above. Then we have:

A0 = πg(A0) ⊕ πg+1(A0) ≈ MpA
⊕ MqA

and

B0 = πg(B0) ⊕ πg+1(B0) ≈ MpB
⊕ MqB

Now the result follows by the Amitsur-Levitzki’s Theorem and the equation

πg(A0)W1πg(B0) = 0,

because s2qA
(A0) ⊆ πg(A0) and s2qB

(B0) ⊆ πg(B0). Considering the superalgebra

R∗, one has πg+1(B0) ≈ MpB
hence s2qB

(B0) ⊆ πg+1(B0). It is possible to find

a non vanishing graded substitution of f on R∗ by mean of a straightforward

computation and Theorem 1.4.34 of [23] about Capelli polynomials.

We close this section with some example where we apply the previous

results.

Example 5.5. Let the Z2-grading on Mm and Mn be given by the maps:

|i|m = 0 ∈ Z2, for all 1 ≤ i ≤ m and |i|n = 1 ∈ Z2, for all 1 ≤ i ≤ n.

In this case R is a Z2-graded subalgebra of Mm,n(F), more precisely we have

R0 :=

[
A 0
0 B

]

R1 :=

[
0 W
0 0

]

.
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By equation 6 a similar decomposition holds for the superalgebra R =

[
A′ W ′

0 B′

]

.

Moreover, by Proposition 4.5 for all Z2-graded subalgebras A ⊆ Mm and B ⊆ Mn

W ′ is a free A′−B′ bimodule. Precisely, it is freely generated by the odd elements

vh =

m∑

i=1

m+n∑

j=m+1

v
(h)
ij eij (h ∈ N).

Therefore T2(R) and its Z2-graded cocharacter sequence are described by the

results concerning the Example 3.2. Moreover, we obtain the same conclusions

about the graded identities of R, because T (A) = T (A′), T (B) = T (B′) and

T (R) = T (R) by Proposition 4.1.

As an instance of this procedure we consider in the superalgebra M1,1(F)

the Z2-graded subalgebra UT2. We have:

Proposition 5.6. Let R = UT2 be the superalgebra of the 2 × 2 upper

triangular matrices with the non trivial grading defined by the vector (0, 1) ∈ Z
2
2.

Then a basis of its Z2-graded polynomial identities is:

z1z2, [y1, y2].

Moreover, its Z2-graded cocharacter sequence is determined by:

• χn,0(UT2) = (n)

• χn,1(UT2) =
∑

a+b=n

m(a,b)

(

(a, b) ⊗ (1)
)

where m(a,b) = a − b + 1

• χn,k(UT2) = 0 for k > 2

P r o o f. Let us use the notation of Example 5.5. In this case m = n = 1

and A = B = F. Hence T (A) = T (B) = T (A ⊕ B) and this T -ideal is generated

by the polynomial [x1, x2]. Hence, the polynomials z1z2 and [y1, y2] generate

T2(R) by Theorem 3.3. The result about the cocharacter sequence follows by

Theorem 3.4 and the Young rule. In fact we have:

• χn,0(R) = χn(F ⊕ F) = χn(F) = (n)

• χn,1(R) =
n∑

p=0

(χp(F)⊗̂χn−p(F)) ⊗ χ(1) =
n∑

p=0

((p) ⊗ (n − p))Sn ⊗ (1) =

∑

a+b=n

m(a,b)

(

(a, b) ⊗ (1)
)

where m(a,b) = a − b + 1
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• χn,k(R) = 0 for k > 2 �

Let us remark that this result is equivalent to the decomposition of

V Z2
n (UT2) given in [25] by the use of the representation theory of the hyper-

octahedral group.

In the same way, we can consider in the superalgebra Mm,n(F) the Z2-

graded subalgebra UTm+n of the upper triangular matrices. In this case A =

UTm , B = UTn and the corresponding Z2-grading of UTm+n is the elementary

one induced by the vector g := (0, . . . , 0
︸ ︷︷ ︸

m

, 1, . . . , 1
︸ ︷︷ ︸

n

) ∈ Z
m+n
2 .

Assume m ≥ n, then T (A ⊕ B) = T (A) ∩ T (B) = T (A) and it is well know

(see [21]) that the ordinary polynomial identities of UTm are consequences of

the polynomial [x1, x2] . . . [x2m−1, x2m]. Hence in this case a basis of the graded

polynomial identities of UTm+n ⊆ Mm,n(F) is (see Corollary of [6])

z1z2, [y1, y2] . . . [y2m−1, y2m], z1[y1, y2] . . . [y2n−1, y2n].

Let us recall that in [26] has been proved that if G is a finite abelian group

and the field F is algebraically closed of characteristic zero, then any G-grading on

UTm is isomorphic to an elementary one. Moreover, in [7], the authors describe

generators for the ideals of the graded identities for any given elementary grading

on UTm.

We end the paper computing explicitly the cocharacters of a superalgebra

which has a factorable T2-ideal. Let us consider the following block-triangular

matrix algebra:

R =

[
A U
0 B

]

where A = D1,1(F), B = M1,0(F) = F and U = M2×1. We have:

Proposition 5.7. Let mµ,ν denote the multiplicities of µ ⊗ ν in the

decomposition of the Z2-graded cocharacter χk,l(R). For l > 1, the non zero

values of mµ,ν are listed in the following table:

µ/ν (l) (l − 1, 1)

(a) a + 1 a + 1
(a, b) 2(a − b + 1) a − b + 1

(a, b, 1) a − b + 1

where a, b, 6= 0. For l = 1, the table of the mµ,ν is the following:



130 O. M. Di Vincenzo

µ/ν (1)

(a) a + 1
(a, b) 2(a − b + 1)

(a, b, 1) a − b + 1

Finally, for l = 0 we have:

µ/ν ∅

(a) 1
(a, b) 2(a − b + 1)

(a, b, 1) a − b + 1

P r o o f. Note that A is a Z2-regular superalgebra and hence T2(R) =

T2(A)T2(B) by Theorem 5.1. Then we can apply the formula (2) to compute the

graded cocharacter χk,l(R). For the superalgebra A we have clearly:

χk,l(A) = (k) ⊗ (l).

Similarly one has:

χk,0(B) = (k) and χk,l(B) = 0 for any l ≥ 1.

The computation of the multiplicities is based essentially on the following equa-

tion:

(χ(A) ◦ χ(B))k,l =

k∑

i=0

l∑

j=0

χi,j(A)⊗̂χk−i,l−j(B) =

k∑

i=0

χi,l(A)⊗̂χk−i,0(B)

=

k∑

i=0

(

(i) ⊗ (l)
)

⊗̂
(

(k − i) ⊗ ∅

)

=

k∑

i=0

(

(i) ⊗ (k − i)
)Sk

⊗ (l)

=
∑

a+b=k

m(a,b)(a, b) ⊗ (l)

where m(a,b) = a − b + 1. �

As a last example we study the Z2-graded structure of one among the

PI-algebras of minimal exponent:

S =

[
E E
0 E0

]
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Indeed, S can be endowed with the natural Z2-grading

S0 =

[
E0 E0

0 E0

]

S1 =

[
E1 E1

0 0

]

.

The structure of the T -ideal of the ordinary polynomial identities of S has been

described in [24]. Here we obtain:

Corollary 5.8. The generators of T2(S) are the polynomials:

[y1, y2][y3, y4], (z1 ◦ z2)[y3, y4], [y1, z2][y3, y4],

[y1, y2]z3, (z1 ◦ z2)z3, [y1, z2]z3

where u ◦ v := uv + vu.

The non zero values of the multiplicities mµ,ν of µ ⊗ ν in the decomposi-

tion of cocharacter sequence χk,l(S) of the superalgebra S are summarized in the

following tables:

• If l > 1
µ/ν (1l) (2, 1l−2)

(a) a + 1 a + 1
(a, b) 2(a − b + 1) a − b + 1

(a, b, 1) a − b + 1

• If l = 1
µ/ν (1)

(a) a + 1
(a, b) 2(a − b + 1)

(a, b, 1) a − b + 1

• If l = 0
µ/ν ∅

(a) 1
(a, b) 2(a − b + 1)

(a, b, 1) a − b + 1

P r o o f. Notice that S is isomorphic to the Grassmann envelope of the

superalgebra R of the previous proposition. Hence we have (see [18]):

T2(S) = T2(R)∗ = T2(D1,1(F))∗T2(F)∗ = T2(E)T2(E0).
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The result concerning the cocharacter sequence follows by equation (1). �
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