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POLYNOMIAL: A SURVEY

Ersan Akyıldız

Communicated by P. Pragacz

Dedicated to the memory of my teachers

Prof. Dr. C. Arf and Prof. Dr. M.G. Ikeda

Abstract. Factorization is an important and very difficult problem in
mathematics. Finding prime factors of a given positive integer n, or finding
the roots of the polynomials in the complex plane are some of the impor-
tant problems not only in algorithmic mathematics but also in cryptog-
raphy. For a given smooth m-dimensional real manifold X , one has the

associated Poincaré polynomial P (X, t) =
m
∑

i=0

bi(X)ti of X , where bi(X) =

dimR H
i(X ; R) is the i-th Betti number of X . It is clear that the factor-

ization of P (X, t) as series over the complex numbers C will carry lots of
information about the topological and geometric invariants of X . This is
possibly why a factorization of even such a special polynomial P (X, t) is
expected to be hard. However we can still search for algorithms to write
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P (X, t) as a product of some nontrivial power series. One notes that the
factorizations

P (Pn, t1/2) =

n
∑

i=0

ti =
1 − tn+1

1 − t
,

P (GLn/B, t
1/2) =

n
∏

i=1

1 − ti

1 − t

are examples of such kind. Here P
n is the n-dimensional complex projective

space and GLn/B is the complex full flag manifold associated to the upper
triangular matrices B in the invertible complex matrices GLn. The aim of
this survey article is to give first a direct self-contained elementary algebraic
treatment of the problem and then provide examples of nonsingular complex
projective varieties X so that the C-algebra H∗(X ; C) fits into this treat-
ment. This will allow us to factorize P (X, t) as above for such a variety
X . These varieties X will include all the homogeneous spaces G/P , their
smooth Schubert subvarieties and more. It is also interesting to note that
in this approach, one can read off smoothness of a Schubert variety from
the factorization of its Poincaré polynomial, which is discussed in Section 2
and 3.

1. Poincaré series and geometry of homogeneous regular
sequences. In this section we give a self contained treatment of Poincaré series

based on [8], [19] and [22] only. Let R =

∞
⊕

i=0

Ri be a finitely generated associative,

commutative graded algebra over a field k (R0 = k). Since R is finitely generated,
dimk(Ri) <∞, and therefore the formal power series

P (R, t) =

∞
∑

i=0

dimk(Ri)t
i ∈ Z[[t]]

makes sense. This series is called the Poincaré (Hilbert) series of R. A special
case of a well-known theorem of Hilbert, improved by Serre, implies that P (R, t)
is a rational function of t. In fact it is known that if R is generated as a k-
algebra by homogeneous elements x1, . . . , xn of degrees k1, . . . , kn respectively
(i.e. xi ∈ Rki

, i = 1, . . . , n), then the Poincaré series P (R, t) has a factorization
of the form

(1) P (R, t) =
f(t)

n
∏

i=1

(1 − tki)
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for some polynomial f(t) ∈ Z[t], ([8, Theorem 11.1]). Note that when the polyno-

mial ring k[x1, . . . , xn] is considered with the usual grading k[x1, . . . , xn] =
∞
⊕

i=0

Ri,

where Ri consists of all homogeneous polynomials of degree i,

P (k[x1, . . . , xn], t) =
1

(1 − t)n
.

This fact can be easily generalized. In fact, let R be the polynomial ring k[x1, . . . , xn]
which is graded by taking the degrees of xi to be the positive integers ki ≥ 1,
i = 1, . . . , n. Then it can be checked that

P (R, t) =
1

n
∏

i=1

(1 − tki)

,

namely f(t) = 1 in the formula (1).

Let R =

∞
⊕

i=0

Ri be a finitely generated graded k-algebra with dimR = n.

We denote by dimR the dimension of R, the maximum number of elements
of R which are algebraically independent over k. By a homogeneous system of

parameters (h.s.o.p) in R we mean a set of n homogeneous elements φ1, . . . , φn
of positive degrees such that R(φ1,...,φn) = R/(φ1, . . . , φn) is a finite dimensional
vector space over k. When k is an infinite field, a basic result of commutative
algebra, known as the Noether normalization lemma, implies that a h.s.o.p for
R always exists ([8, p. 69]). For a given h.s.o.p φ1, . . . , φn in R, it is clear that
φ1, . . . , φn are algebraically independent and R is finitely generated k[φ1, . . . , φn]-
module. The following proposition shows how to compute P (R, t) from such a
h.s.o.p φ1, . . . , φn, when R is a free k[φ1, . . . , φn]-module.

Proposition 1.1. Let φ1, . . . , φn be a homogeneous system of parameters

in R. If R is a free k[φ1, . . . , φn]-module with

(2) R =

m
⊕

i=1

ψik[φ1, . . . , φn]

where for each i = 1, . . . ,m, ψi is a homogeneous element of R, then

P (R, t) =

( m
∑

i=1

tdeg(ψi)

)

/
n
∏

i=1

(1 − tdeg(φi)).
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P r o o f. Let k[φ1, . . . , φn] =
⊕∞

i=0 Si be the decomposition of the graded
k-algebra k[φ1, . . . , φn] into homogeneous parts. Since φ1, . . . , φn are algebraically
independent, k[φ1, . . . , φn] is isomorphic as a graded k-algebra to the polyno-
mial ring k[y1, . . . , yn] which is graded by deg yi = deg φi, i = 1, . . . , n. Thus

P (k[φ1, . . . , φn], t) =

(

n
∏

i=1

(

1 − tdeg(φi)
)

)−1

. On the other hand, since {ψ1, . . . , ψm}

is a homogeneous free basis of the graded algebra R =

∞
⊕

i=0

Ri over k[φ1, . . . , φn],

we get for each i = 0, 1, . . ., Ri =
⊕

ψℓSj, where the direct sum is over all
ℓ = 1, 2, . . . ,m and j = 0, 1, . . . such that deg(ψℓ)+ j = i. The claim then follows
by comparing the coefficients of ti in both sides of the formula. �

Note that for the free k[φ1, . . . , φn]-module R, the homogeneous elements
ψ1, . . . , ψm of R satisfy (2) if and only if their images {ψ1, . . . , ψm} in R(φ1,...,φn) =
R/(φ1, . . . , φn) form a vector space basis for R(φ1,...,φn). This observation gives
us the following:

Corollary 1.1. Let φ1, . . . , φn be a homogeneous system of parameters

in R, and let ψ1, . . . , ψm be homogeneous elements of R satisfying (2) above, then

P (R(φ1,...,φn), t) =
m
∑

i=1

tdeg(ψi) = P (R, t)P (k[φ1, . . . , φn], t).

When R is a free k[φ1, . . . , φn]-module, this corollary gives us an algorithm
to factorize the Poincaré series of R(φ1,...,φn). In particular, if R is the polynomial
ring k[x1, . . . , xn] graded by deg (xi) = ki ≥ 1, i = 1, . . . , n, and R is a free
k[φ1, . . . , φn]-module then we get

(3) P (R(φ1,...,φn), t) =

n
∏

i=1

1 − tdeg φi

1 − tki
.

A typical example is the polynomial ring k[x1, . . . , xn] with the usual grading
and φi = σi(x1, . . . , xn), the i-th elementary symmetric functions in x1, . . . , xn,
i = 1, . . . , n. In this case the formula (3) becomes

P (R(σ1,...,σn), t) =
n
∏

i=1

1 − ti

1 − t
.
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We shall discuss later a far-reaching generalization of this example proved by
Chevalley ([17, p. 73], [15]). A characterization of those homogeneous sys-
tems of parameters φ1, . . . , φn in R for which R is a free k[φ1, . . . , φn]-module
is well-known in commutative algebra (see [22, p. 482-483]), and they are called
homogeneous regular sequences in R. By a regular sequence in R we mean n
elements (n = dimR) φ1, . . . , φn in R such that φ1 is not a zero divisor and
for each i = 1, . . . , n − 1, φi+1 is not a zero divisor in R/(φ1, . . . , φi) ([19, p.
95]). For the sake of completeness of this note we are going to give a geometric
characterization of the homogeneous regular sequences in the polynomial alge-
bra R = k[x1, . . . , xn] where the grading is determined by deg(xi) = ki ≥ 1,
i = 1, . . . , n. Let φ1, . . . , φn be a homogeneous system of parameters in R, and
let φ : A

n → A
n be the morphism given by φ(x) = (φ1(x), . . . , φn(x)), and let

R(φ1,...,φn) = R/(φ1, . . . , φn). We note that a surjective flat morphism is called
faithfully flat.

Theorem 1.1. The following are equivalent.

(i) φ1, . . . , φn is a regular sequence in R,

(ii) φ : A
n → A

n is faithfully flat,

(iii) R is a free k[φ1, . . . , φn]-module.

P r o o f. For (i) ⇒ (ii): Since φ is a finite morphism, it is enough to
prove that dimk A(φ−1(λ)) = dimk(R/(φ1 − λ1, . . . , φn − λn)) = dimk A(φ−1

(0)) =

dimk R(φ1,...,φn) for any λ = (λ1, . . . , λn) ∈ kn. Let Iλ be the ideal of R generated
by φ1−λ1, . . . , φn−λn, and let gr(Iλ) be the ideal generated by the leading terms
f⋆ of f in Iλ. It is clear gr(Iλ) is a homogeneous ideal containing I0 = gr(I0) =

(φ1, . . . , φn). We claim gr(Iλ) = I0, for any λ ∈ kn. Let f =

n
∑

i=1

(φi − λi)fi

be an arbitrary element of Iλ. Since the property of being homogeneous regular
sequence is independent of the order of the sequence ([19, p. 96-100]), without

loss of generality we may assume

k
∑

i=1

φifi 6= 0,

n
∑

j=k+1

φjfj = 0. But

n
∑

j=k+1

φjfj =

0 implies that fj ∈ (φ1, . . . φn) for each j = k + 1, . . . , n, ([19]). Thus f =
k
∑

i=1

φifi −

k
∑

i=1

λifi + g for some g ∈ (φ1, . . . , φn). This implies immediately f⋆ ∈

(φ1, . . . , φn), because (φ1, . . . , φn) is a homogeneous ideal with deg (φi) = ki ≥
1. The rest follows from the fact that dimk A(φ−1(λ)) = dimk gr(A(φ−1(λ)) =
dimk A(φ−1(0)).

For (ii) ⇒ (iii): Let ψα, α ∈ ∧, be the homogeneous elements of R such
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that {ψα : α ∈ ∧} is a k-basis of R(φ1,...,φn) = A(φ−1(0)). It is easy to see
by induction on degree that {ψα : α ∈ ∧} spans R as k[φ1, . . . , φn]-module.
This immediately implies that R is a free k[φ1, . . . , φn]-module, because φ =
(φ1, . . . , φn) is a faithfully flat morphism.

(iii) ⇒ (i): It is enough to show that whenever fi+1φi+1 + · · ·+ f1φ1 = 0,
i = 0, . . . , n − 1, then fi+1 ∈ (φ1, . . . , φi). We prove this by using induction on
i. For i = 0, f1φ1 = 0 gives f1 = 0 because φ1 is a member of a homogeneous
system of parameters in the integral domain R. Now assume the claim for i =
t− 1 ≤ n− 1. It is clear that R is a free k[φ1, . . . , φt]-module if and only if R is
a free k[φ1, . . . , φt−1] module and R/(φ1, . . . , φt−1) is a free k[φt]-module. By the
induction hypothesis the claim follows. �

The following corollary can also be found in [12, p. 296].

Corollary 1.2. Let R be the polynomial ring k[x1, . . . , xn] graded by

deg(xi) = ki ≥ 1, for i = 1, . . . , n. If φ1, . . . , φn is a homogeneous regular R-

sequence, then the Poincaré polynomial P (R(φ1,...,φn), t) of the graded k-algebra
R(φ1,...,φn) = R/(φ1, . . . , φn) has the following factorization:

P (R(φ1,...,φn), t) =
n
∏

i=1

1 − tdeg(φi)

1 − tki
.

Poincaré polynomial of coinvariant algebra RG of finite pseu-
do-reflection group G. Let G ⊂ GLn be a finite subgroup of the group of
n × n invertible matrices GLn over C. G naturally acts on the polynomial ring
R = C[x1, . . . , xn]. Let RG = {f ∈ R : g · f = g for every g in G} be the ring
of invariants of G, and let IG be the ideal generated by f ∈ RG with f(0) = 0.
Since G preserves the degrees of polynomials, IG is a homogeneous ideal in the
graded algebra

R = C[x1, . . . , xn], where deg(xi) = 1, i = 1, . . . , n.

The following theorem was proved by Shepard and Todd, Chevalley and Serre,
see [22, p. 486] for the historical development.

Theorem 1.2. There exists homogeneous regular sequence φ1, . . . , φn in

R such that IG = (φ1, . . . , φn) if and only if G is generated by pseudo-reflections.

Recall that g ∈ GLn is called a pseudo-reflection if precisely one eigenvalue
of g is not equal to one.
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Corollary 1.3. Let G be a finite subgroup of GLn generated by pseudo-

reflections, and let φ1, . . . , φn be homogeneous elements of R such that IG =
(φ1, . . . , φn). Then the Poincaré series P (RG, t) of the coinvariant algebra RG =
R/IG has the following factorization

P (RG, t) =

n
∏

i=1

1 − tdeg(φi)

1 − t
.

In particular if G = {σ(Id) : σ ∈ Sn} is the group of n × n permuta-
tion matrices in GLn, then IG = (σ1, . . . , σn), where σi is the i-th elementary
symmetric function in x1, . . . , xn. Thus

P (RG, t) =

n
∏

i=1

1 − ti

1 − t

as mentioned above.

2. Cohomology of (Ga, Gm)-varieties. Let X be a smooth n-
dimensional complex projective variety having algebraic Ga- and Gm-actions.

ϕ : Ga ×X → X, ((z, x) → ϕ(z) · x)

λ : Gm ×X → X, ((t, x) → λ(t) · x)

satisfying

(i) Ga-action ϕ has only one fixed point, say s0.

(ii) there is a positive integer p ≥ 1 such that λ(t)ϕ(z)λ(t−1) = ϕ(tpz) for all t
in Gm and z in Ga.

We call such a X a (Ga, Gm)-variety. If X is a (Ga, Gm)-variety then it is known
that the fixed pointsXGm of the Gm-action λ form a finite set and s0 ∈ XGm ([7]).
Let XGm = {s0, s1, . . . , sr}, we now recall the Bialynicki-Birula decomposition of
X induced from the Gm-action λ. We set

X−
i = {x ∈ X : lim

t→∞
λ(t) · x = si}, i = 0, 1, . . . , r.

The X−
i are called minus cells and the decomposition X =

r
⋃

i=0

X−
i is called

the minus BB-decomposition ([9]). The Gm-action λ on X induces, via tangent
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action dλ, an action of Gm on the tangent space Tsi
X of X at the fixed point si,

i = 0, 1, . . . , r. Since dimXGm = 0, it follows from [9] that all the weights of dλ
on Tsi

(X) are nonzero, and thus we get a Gm-invariant decomposition

Tsi
(X) = Tsi

(X)− ⊕ Tsi
(X)+

of Tsi
(X), where Tsi

(X)− (resp. Tsi
(X)+) is a direct sum of negative (resp.

positive) weight spaces (v is a negative (resp. positive) weight vector, if dλ(t)·v =
tkv for every t ∈ Gm and for some k < 0 (resp. k > 0)). It follows from ([9])
that s0 is the sink of the Gm-action λ, namely Ts0(X) = Ts0(X)−, and each
minus cell X−

i is Gm-equivariantly isomorphic to the affine space Tsi
(X)−. Thus,

X =

r
⋃

i=0

X−
i is a Gm-invariant decomposition of X into complex affine spaces X−

i

with dim X−
i = dimC Tsi

(X)− = the number of negative weights of dλ in Tsi
(X),

i = 0, 1, . . . , r. It follows from this observation that odd Betti numbers are all
zero and each even Betti number b2k(X) equals the number of fixed points si of
the Gm-action dλ at which exactly k weights are negative. Thus the Poincaré
polynomial of X is given by

P (X, t1/2) =

n
∑

k=0

b2k(X)tk =

r
∑

i=0

tvi ,

where vi = dim(X−
i ) = dimC Tsi

(X)−.
So far we have discussed the contribution of the Gm-action λ to the topol-

ogy ofX, now it is time to look at the Ga-action ϕ on X. We keep the notations as

above and let V =
dϕ

dz

∣

∣

∣

∣

z=0

be the holomorphic vector field associated to ϕ, and let

Z be the zero scheme of V . It follows from the property λ(t)ϕ(z)λ(t−1) = ϕ(tpz)
that the fixed point scheme XGa of ϕ is a Gm-invariant closed subscheme of X.
Since XGa equals to Z as a scheme ([5]) and the support of Z is equal to {s0}, Z
is a Gm-invariant subscheme of U = X−

0
∼= Ts0(X) = Ts0(X)−. The Gm-action λ

on U induces Gm-action on the coordinate ring A(U) of U in the usual manner:
(λ(t) · f)(x) = f(λ(t−1) · x). This Gm-action induces a graded algebra structure

on A(U) =

∞
⊕

k=0

A(U)k, where

A(U)k = {f ∈ A(U) : λ(t) · f = tkf for all t ∈ Gm}.

Since Z is a Gm-invariant closed subscheme of U , the ideal I(Z) of Z is a ho-
mogeneous ideal in A(U), and therefore the coordinate ring A(Z) = A(U)/I(Z)
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has a natural induced graded algebra structure. In fact, if e1, . . . , en is a basis of
Ts0(X) of weight vectors of weights a1, . . . , an, respectively, and x1, . . . , xn is the
dual basis, then Sym(Ts0(X)⋆) = C[x1, . . . , xn] and the grading is given by the
fact that xi is homogeneous of degree deg xi = −ai. The following proposition
gives the graded algebra structures of A(U) and A(Z) in terms of the weights of
the Gm-action dλ on Ts0(X) and the vector field V as follows:

Proposition 2.1. Let a1, . . . , an be all the weights of the Gm-action

dλ on Ts0(X), and let R be the polynomial ring C[x1, . . . , xn] with homogeneous

generators x1, . . . , xn where deg xi = −ai, i = 1, . . . , n. Then

(i) All the weights ai are negative, and thus R is positively graded polynomial

algebra C[x1, . . . , xn] with deg(xi) = −ai ≥ 1, i = 1, . . . , n.

(ii) The algebra A(U) is isomorphic to R as a graded algebra.

(iii) Viewing V as a derivation on C[x1, . . . , xn], V (xi) = φi(x1, . . . , xn) is a

homogeneous element of R having deg(φi) = p− ai, i = 1, . . . , n. Moreover

φ1, . . . , φn form a homogeneous regular sequence in R.

(iv) A(Z) is isomorphic as a graded algebra to R(φ1,...,φn) = R/(φ1, . . . , φn).

P r o o f. Since
∂

∂xi

∣

∣

∣

∣

s0

=ei, (dλ(t)·V )u = dλ(t)(Vλ(t)−1 ·u) =

n
∑

i=1

φi(λ(t)−1 ·u)

dλ(t) · ei and ei has weight ai, it follows that λ(t) · φi = tp−aiφi by condition (ii)
above. This shows that deg(φi) = p−ai; i = 1, . . . , n. Using this we can combine
Proposition 3.1 and Lemma 3.3 of [22] to deduce that φ1, . . . , φn is a regular
sequence, since R/(φ1, . . . , φn) has finite dimension (see the next theorem). The
rest basically follows from the discussions above, for more details we refer the
reader to [6], [7]. �

Corollary 2.1. The Poincaré series P (A(Z), t) of A(Z) is given by

P (A(Z), t) = P (R(φ1,...,φn), t) =

n
∏

i=1

1 − tp−ai

1 − t−ai
.

In the following, we recall the calculation of H⋆(X; C) associated to the
vector field V from the references [3], [6] and [7], [14]. Let V be a holomorphic
vector field on a nonsingular complex projective variety X with finitely many
zeros and let i(V ) : Ωp

X → Ωp−1
X be the contraction operator associated to V .
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Here Ωp
X (resp. OX) denotes the sheaf of germs of holomorphic p-forms (resp.

functions) on X. It is clear that the structure sheaf OZ of the zero scheme Z of
V is OX/i(V )Ω1

X . That is, Z is the scheme (possibly unreduced) defined by the
sheaf of ideals J(Z) = i(V )Ω1

X in OX . We have the fundamental Koszul complex
of sheaves:

0 → Ωn
X → Ωn−1

X → · · · → Ω1
X → OX → 0

in which the differential is i(V ), n = dimX. It follows from general facts on hy-
percohomology that there are two spectral sequences {′Er} and {′′Er} abutting to
Ext⋆(X;OZ ,Ω

n
X) where ′Ep,q1 = Hq(X; Ωn−p

X ) and ′′Ep,q2 = Hp(X; Extq(OZ ; Ωn
X)).

The key fact proved in [14] is that the first spectral sequence degenerates at ′E1.
Thus, as a consequence of the finiteness of Z and H◦(X;OZ) ∼= Extn(X;OZ ,Ω

n
X)

we find

(i) Hq(X; Ωp
X) = 0 if p 6= q (consequently H2p+1(X; C) = 0 and H2p(X; C) =

Hp(X; Ωp
X)),

(ii) A(Z) = H◦(X;OZ) has a filtration A(Z) = Fn ⊃ · · · ⊃ F0 such that
Fp/Fp−1

∼= Hp(X; Ωp
X) and Fp · Fq ⊆ Fp+q,

(iii) a graded algebra isomorphism

ΦV : Gr(A(Z)) = ⊕Fp/Fp−1 → H⋆(X; C).

The main difficulty in realizing the cohomology ring ofX on Z lies in com-
puting the mysterious filtration Fp. When X is a (Ga, Gm)-variety, the following
theorem ([6]) says that the filtration Fp of A(Z) is nothing but the filtration
induced from the graded algebra structure on A(Z) discussed in Proposition 2.1.
Namely Gr(A(Z)) ∼= A(Z) ∼= R(φ1,...,φn).

Theorem 2.1. There exists an algebra isomorphism Φ : A(Z) → H⋆(X; C)
which carries A(Z)ip onto H2i(X; C). In particular A(Z)k is trivial unless k = ip
for some i, 0 ≤ i ≤ n.

Remark. A(Z) together with Φ : A(Z)
∼
→ H⋆(X; C) is called the nilpo-

tent description of H⋆(X; C) obtained from the holomorphic field induced from
the Ga-action ϕ. In view of [14], there is also another description of H⋆(X; C)
obtained from the holomorphic vector field induced from the Gm-action λ. This
description is called semi-simple description of the cohomology algebra H⋆(X; C),
see [3] for details.
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Corollary 2.2. The Poincaré polynomial P (X, tp/2) of X has the fol-

lowing factorization:

P (X, tp/2) =
n
∏

i=1

1 − tp−ai

1 − t−ai

and moreover we have also the following identity:

r
∑

i=0

tvi =
n
∏

i=1

1 − tp−ai

1 − t−ai
,

where vi = dimX−
i = dimC Tsi

(X)−, i = 0, 1, . . . , r.

Lemma 2.1. Let Y be a Ga-invariant non-empty closed subvariety of

the (Ga, Gm)-variety X. Then Y is smooth if and only if Y is smooth at s0.

P r o o f. Since Y is closed and Ga-invariant, Ga has a fixed point in Y .
Since the support of XGa is {s0}, we get s0 ∈ Y . Let Z be the singular locus of
Y . Since Z is a Ga-invariant closed subvariety of Y , Z is non-empty if and only
if s0 ∈ Z. This finishes the proof. �

Let Y be a non-empty Ga-and Gm-invariant closed subvariety of the
(Ga, Gm)-variety X, and let Ω(Y ) be the set of all Gm weights that occur in
the Zariski tangent space Ts0(Y ) of Y at s0. The following result is proved in
[13].

Proposition 2.2. Y is smooth if and only if the Poincaré polynomial of

Y has the following factorization:

P (Y, tp/2) =
∏

ai∈Ω(Y )

1 − tp−ai

1 − t−ai
.

P r o o f. If Y is smooth, the factorization follows from Corollary 2.2 above.
Now if we have the above factorization of P (Y, tp/2), then it is easy to see that
the Zariski tangent space of Y at s0 has dimension dimY , and therefore Y is
nonsingular at s0. This finishes the proof in view of Lemma 2.1. �

3. Homogeneous spaces. For the rest of the note we fix the notation
as follows:
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G ⊃ B ⊃ H : a semi-simple linear algebraic group over C,
a Borel subgroup and a maximal torus

B− ⊃ U− : The Borel subgroup of G such that B− ∩B = H
and its maximal unipotent subgroup

g, b, h : Lie algebras of G,B and H, respectively
∆ ⊂ h⋆ : the root system of (g, h)
gα = Ceα(α ∈ ∆) : the α weight space in g
∑

= {αi : i = 1, . . . , n} : the basis of ∆ corresponding to b

∆+ : the positive roots: α ∈ ∆, α > 0
ht(α) : the height of α ∈ ∆+, given

by ht(

n
∑

i=1

kiαi) = ki

W,nw : the Weyl group NG(H)/H of g, h and a representative
of w ∈W

rα : the reflection corresponding to α ∈ ∆
ℓ(w), w0 : the length function on W with respect to

∑

and the
longest element of W

A(h) = Sym (h⋆) : the coordinate ring of h.

A. Borel-Chevalley description of H⋆(G/B; C) and factor-
ization of P (G/B, t1/2). The Weyl group W acts on H as : w · s = nwsn

−1
w ,

w ∈ W , s ∈ H, and thus W acts on h via the adjoint action w · h = Ad(w)(h),
w ∈W , h ∈h. It is known that W is a finite subgroup of GL(h) and is generated
by the reflections on h. Thus the induced action of W on A(h) produces the
coinvariant algebra

RW = A(h)/IW ∼= C[x1, . . . , xn]/(φ1, . . . , φn)

of W having the Poincaré series

P (RW , t) =

n
∏

i=1

1 − tdeg(φi)

1 − t
.

In fact in this case it is known that the positive integers {deg φi : i = 1, . . . , n}
are independent of the choice of the generators of IW ([17, p. 58]). These integers
deg φi, i = 1, . . . , n, are called degrees of W .

Let χ : H → Gm be a character of H and Lχ be the associated line bundle
on G/B:

Lχ = G× C/B, where the action of B



On the factorization of the Poincaré polynomial 171

on G×C is given by (g, z)·b = (gb, α(b−1)z). Here χ is extended on B = U⋊H as
usual: χ(u) = 1, u ∈ U , where U = w0U

−w0. Now let β : A(h) → H⋆(G/B; C)
be the degree doubling graded algebra homomorphism determined by β(dχ) =
c1(Lχ), where dχ ∈ h⋆ is the differential of χ at the identity and c1(Lχ) is the
first Chern class of Lχ.

Theorem 3.1 (Borel-Chevalley). The algebra homomorphism β : A(h)
→ H⋆(G/B; C) is surjective with the kernel IW , and therefore β induces an

algebra isomorphism

β : RW
∼
→ H⋆(G/B; C)

such that (RW )i ∼= H2i(G/B; C), i = 1, 2, . . ..

Remark. This theorem was originally proved in [11]. An alternative
proof can be found in [2]. In [2] RW together with β : RW

∼
→ H⋆(G/B; C)

has been viewed as a semi-simple description of H⋆(G/B; C) associated to the
holomorphic vector field induced from the Gm-action λ(t) = exp(th), where h is
a regular semi-simple element of h; for example, h can be taken as the unique
element of h such that αi(h) = 1, i = 1, . . . , n, as will be considered later.

Corollary 3.1. The Poincaré polynomial P (G/B, t1/2) of G/B has the

following factorization:

P (G/B, t1/2) = P (RW , t) =

n
∏

i=1

1 − tmi

1 − t

where m1, . . . ,mn are the exponents of G.

When G = GLn, B = the group of upper triangular matrices, H =
the group of diagonal matrices, we get W ∼= Sn, the symmetric group on the set
{1, 2, . . . , n}; the action of W on A(h) = C[x1, . . . , xn] is nothing but
σ · f(x1, . . . , xn) = f(xσ1, . . . , xσn), f ∈ A(h), σ ∈ Sn. Therefore P (GLn/B, t

1/2)

=
n
∏

i=1

1 − ti

1 − t
, as discussed in Section 1.

B. Nilpotent description of H⋆(G/B; C) and Kostant-Mac-

donald identity. Let e be the principal nilpotent element
n
∑

i=1

eαi
in b and let h

be the unique element in h such that αi(h) = 1 for i = 1, . . . , n. By means of the
exponential function exp, the element e and h induce one parameter subgroups
Ga and Gm of B and H respectively. Now let ϕ and λ be the Ga- and Gm-action



172 Ersan Akyıldıvz

on G/B induced from these one parameter subgroups via the left multiplication.
Then the following can be found in ([2], [13], [7]): G/B is a (Ga, Gm)-variety and

(i) s0 = B ∈ G/B is the unique fixed point of the Ga-action ϕ on G/B.

(ii) {ws0 = nws0 : w ∈W} is the fixed point set of the Gm-action λ on G/B.

(iii) p = 1 and A(Z) ∼= C[xα : α ∈ ∆+]/I(Z), where the grading is determined
by deg(xα) = ht(α), α ∈ ∆+.

It follows from Section 2 and (iii) above that

P (A(Z), t) = P (G/B, t1/2) =
∏

α∈∆+

1 − tht(α)+1

1 − tht(α)
.

On the other hand we know from ([1]) that the minus BB-decomposition of G/B
obtained from the Gm-action λ is nothing but

G/B =
⋃

w∈W

B−ws0, namely X−
ws0 = B−ws0, w ∈W.

Thus dimX−
ws0 = dimB−ws0 = dimBw0ws0 = ℓ(w0w) for any w ∈ W . It

follows from Corollary 2.2 that

P (G/B, t1/2) =
∑

w∈W

tℓ(w0w) =
∑

σ∈W

tℓ(σ) =

n
∏

i=1

1 − tmi

1 − t
=
∏

α∈∆+

1 − tht(α)+1

1 − tht(α)

which is known as the Kostant-Macdonald Identity ([7]). When G = GLn, this
identity becomes

P (GLn/B, t
1/2) =

∑

σ∈Sn

tℓ(σ) =
n
∏

i=1

1 − ti

1 − t
=

∏

1≤i<j≤n

1 − tj−i+1

1 − tj−i
,

where ℓ(σ) = the number of (i, j) with 1 ≤ i < j ≤ n such that σi > σj.
The typical Ga- and Gm-invariant closed subvarieties of X = G/B are

the so-called Schubert varieties: Xw = Bws0, the Zariski closure of the B-orbit
of ws0, w ∈ W . We recall that the Bruhat order τ ≤ w on W corresponds
exactly to the inclusion of Schubert varieties Xτ ⊆ Xw. Since B = w0B

−w0,
the orbit spaces Bτs0 and B−w0τs0 are isomorphic. This gives us an affine

cellular decomposition of Xw =
⋃

τ≤w

Bτs0. Thus the Poincaré polynomial of Xw
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is given by P (Xw, t
1/2) =

∑

τ≤w t
ℓ(τ). Now if Xw is smooth, then it follows from

Proposition 2.2 that

P (Xw, t
1/2) =

∏

α∈Ωw

1 − tht(α)+1

1 − tht(α)
,

where Ωw is the set of all Gm-weights that occur in the Zariski tangent space
Ts0(Xw) of Xw at s0 = B. For a smooth Schubert variety Xw, the following fact
is due to Lakshmibai and Seshadri, D. Peterson, for more details see [13, p. 44]:

Ωw = {α ∈ ∆+ : rα ≤ w}.

Corollary 3.2. Let Xw be a smooth Schubert subvariety of G/B, then

we have

P (Xw, t
1/2) =

∑

τ≤w

tℓ(τ) =
∏

α∈∆+

rα≤w

1 − tht(α)+1

1 − tht(α)
.

For any parabolic subgroup P ⊇ B of G, it is clear ϕ and λ induce
respective Ga- and Gm-actions on G/P making G/P a (Ga, Gm)-variety. One
can easily modify the formulas above for the algebraic homogeneous space G/P
and their non-singular Schubert subvarieties. In fact let P = Pθ be the parabolic
subgroup associated to the subset θ of

∑

, (if θ is empty, Pθ = B), and let ∆θ

denote the span of θ in ∆+. Then it can be checked that

A(Z) ∼= C[xα : α ∈ ∆+ \ ∆θ]/I(Z) and A(Z) ∼= H⋆(G/P ; C).

where deg(xα) = ht(α), α ∈ ∆+. Thus we get

P (G/P, t1/2) =
∏

α∈∆+\∆θ

1 − tht(α)+1

1 − tht(α)
.

Example. The Poincaré polynomial of the Grassmann mani-
fold Grk,n. Let G = GLn, let Pk be the parabolic subgroup of all matrices in G

of the form

(

A ⋆
O B

)

, where 1 ≤ k < n, and O is the (n − k) × k zero matrix.

Let h = diag (n−1, n−2, . . . , 1, 0) and let e be the n×n upper triangular matrix
having 1 just above the diagonal and zero everywhere else. Then G/Pk ∼= Grk,n
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is the Grassmann manifold of k-planes in C
n, the Gm-action λ and Ga-action ϕ

are given by

λ(t)gPk = diag (tn−1, tn−2, . . . , t, 1)gPk , t ∈ C
⋆

ϕ(z)gPk = exp(ze)gPk , z ∈ C.

The following can be found in [4]:

Let R be the polynomial ring C[zk+i,j : 1 ≤ i ≤ n−k, 1 ≤ j ≤ k] with the
grading determined by deg zk+i,j = k + i − j, i = 1, . . . , n − k and j = 1, . . . , k.
Then A(Z) is isomorphic to the graded algebra R/I(Z), where the homogeneous
ideal I(Z) is generated by

ai,j(z) = zk+1+i,j − zk+i,j−1 − zk+i,kzk+1,j,

1 ≤ i ≤ n− k, 1 ≤ j ≤ k. Since deg (aij) = k + 1 + i− j for i = 1, . . . , n− k and
j = 1, . . . , k, we get

P (Grk,n, t
1/2) =

∏

1≤i≤n−k
1≤j≤k

1 − tk+1+i−j

1 − tk+i−j
=

k
∏

j=1

(n−k
∏

i=1

1 − tk+1+i−j

1 − tk+i−j

)

=
k
∏

j=1

1 − tn+1−j

1 − tk+1−j
=

(1 − tn)(1 − tn−1) · · · (1 − tn−k+1)

(1 − tk)(1 − tk−1) · · · (1 − t)
.

This is nothing but the Gaussian polynomial

(1 − t)(1 − t2) · · · (1 − tn)

(1 − t)(1 − t2) . . . (1 − tk)(1 − t)(1 − t2) · · · (1 − tn−k)
.

Remarks. We have already given a smoothness criterion for the Schu-
bert variety Y in G/P in terms of the factorization of the Poincaré polynomial
of Y . On the other hand, we would like to note that

(a) When G is of type A and P = B, Lascoux proved the necessity part ([18])
whereas Gasharov proved the sufficiency part ([16]) of the following result:
The Schubert variety Xw is smooth if and only if the Poincaré polynomial
P (Xw, t

1/2) factors into polynomials of the form 1+ t+ · · ·+ tr. This result
was extended later by Billey to type B in [10].
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(b) The Poincaré polynomials for G/P , where G is the symplectic group or
orthogonal group and P is maximal parabolic, were computed by different
methods in [20] and [21].

I would like to thank to Professors J. B. Carrell, J. E. Humphreys, P.
Pragacz and the referee for the valuable comments that they made on the man-
uscript.
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