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Abstract. We call a complex (quasiprojective) surface of hyperbolic type,
iff – after removing finitely many points and/or curves – the universal cover
is the complex two-dimensional unit ball. We characterize abelian surfaces
which have a birational transform of hyperbolic type by the existence of a
reduced divisor with only elliptic curve components and maximal singularity
rate (equal to 4). We discover a Picard modular surface of Gauß numbers
of bielliptic type connected with the rational cuboid problem. This paper is
also necessary to understand new constructions of Picard modular forms of
3-divisible weights by special abelian theta functions.

1. Introduction. The phenomenal change from a flat to a hyperbolic
metric (with negative constant curvature) in complex dimension 2 has been dis-
covered by F. Hirzebruch in [8]. More precisely, for some elliptic curves with
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complex multiplication field K he posed the following problem: Has the abelian
surface E × E a model which is Picard modular ? Starting from E × E he con-
structed for the field K of Eisenstein numbers covering models of general type,
which are compactifications of ball quotient surfaces, see also [1], I.4.A. In [9] we
proved that they are Picard modular. This means that the corresponding uni-
formizing ball lattices are commensurable with the (full) Picard modular group
U((2, 1),OK ). For other CM-fields K the problem remained open.

Each compact hyperbolic surface is of general type. Therefore it cannot
be a model of an abelian surface. So only non-compact surfaces with complete
hyperbolic structure and an abelian model are possible. The abelian model has
to support at least one elliptic curve coming from compactifying non-compact
ball quotient surfaces.

In section 2 we define elliptic configurations D. For abelian surfaces B we
give a simple counting criterion (see 2) in Theorem 2.5), which is necessary for
the components of such divisor to bound a (neat) open ball quotient model of B.
The model is constructed by blowing up all intersection points of D-components.
With the method of cyclic coverings we prove that the criterion 2) is also sufficient
(Theorem 2.5). For the proof in section 2 we combine the Miyaoka-Yau criterion
for neat ball quotient surfaces with the Cyclic Covering Theorem. We use the
theory of orbital heights on orbital surfaces developed in [3]. An important role
plays a quotient of two special orbital heights, which appears as singularity rate
of elliptic configurations on abelian surfaces. From the construction it is easy to
see that all the coverings support (Zariski-locally) a fibration of explicit equation
type Y n = f , where f = 0 is a (local) equation of the divisor D on B, over an
elliptic base curve E ⊂ B. The fibres are n-cyclic covers of an elliptic curve (with
moving branch loci). That’s what we call a cycloelliptic fibration.

For a neat 2-ball lattice Γ the invariant (Bergmann) metric on the ball B
goes down to a complete Kähler-Einstein metric on B/Γ with negative constant
holomorphic sectional curvature. Such metrics on surfaces we call hyperbolic.
For the role of ball lattices in connection with Picard-Fuchs systems of partial
differential equations we refer to [21], [6], [25]. The cusp points (or their resolving
cusp curves) appear as degeneration locus of the hyperbolic metric.

On this way we discover new hyperbolic surfaces by finite quotients and
coverings of E × E, E elliptic CM-curve with Gauß number multiplication. In
a forthcoming paper we will show that all these models are quotients of Picard
modular groups of the field of Gauss numbers, which can be determined precisely.
Among them the K3 (Kummer) surface (E×E)/〈−1〉 is most interesting because
it is closely connected with rational cuboid problems: Find rational cuboids with
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(some) rational diagonals. For details and new starts we refer to [20], [4], [7].
There is a modular approach to the congruence number problem (dedicated to
rational rectangular triangles with rational area) due to Tunnell [23], see also
Koblitz’ book [15]. I think that a Picard modular approach to the rational cuboid
problems is now possible and could be fruitful.

In [12] we already used the results of this paper for the construction of
Picard modular forms of weights divisible by 3 by abelian functions. Our abelian
method lifts old theta constructions of Jacobi and Weierstraß from the first to
the second dimension. In contrast, Matsumoto’s theta constants produce Picard
modular forms for a Gauß lattice of weights divisible by 4, see [18]. The first
explicit and complete construction of modular forms of a Picard modular group
(of Eisenstein numbers with theta constants was given by H. Shiga in [22]. There
is also an abelian approach which should be written down. For hyperbolic surfaces
of abelian type we found in general explicit dimension formulas for automorphic
forms of the corresponding ball lattices of all weights divisible by 3, see [13].

2. Numerical ball quotient criterion for abelian surface mo-

dels. Let B be an abelian surface, D ∈ Div+ B a reduced curve on B and Y ′ =
B′ −→ B the blowing up of all intersection points of the irreducible components
of D. The proper transform of D on Y ′ is denoted by D′. We look for curves D′

such that the open surface Y := Y ′ \ suppD′ is a neat ball quotient surface B/Γ,
where

B = {z = (z1, z2) ∈ C2; |z|2 = |z1|2 + |z2|2 < 1}

is the two-dimensional complex unit ball and

Γ ⊂ Authol B = PU((2, 1), C) =: G

is a neat ball lattice. A ball lattice is a discrete subgroup of Authol B with
fundamental domain of finite volume with respect to a G-invariant hermitian
metric on B. Γ is neat , iff the eigenvalues of each element γ ∈ Γ generate a torsion
free subgroup of C∗. In this case the analytic quotient morphism B −→ B/Γ

is the universal covering of B/Γ and the Baily-Borel compactification B̂/Γ is a
(projective) algebraic surface with finitely many cusp singularities compactifying
B/Γ. The cusp singularities are of simple elliptic type, which means that they
have an elliptic curve as singularity resolution. For details and proofs we refer to
[3], Ch.IV.

In order to get Y ′ as (smoothly compactified) neat ball quotient surface,
it is clear that the irreducible components of D have to be elliptic curves. Its
proper image D′ on Y ′ must be a disjoint sum of elliptic curves. It follows that
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the intersections of two components of D have to be transversal. Fortunately, this
condition is automatically satisfied. Namely, assume that two different elliptic
curves F , F ′ on B meet in P . Then the embeddings F, F ′ →֒ B can be lifted via
universal coverings to embeddings of lines L, L′ →֒ C2. So the tangent lines of
F , F ′ at P , hence F , F ′ themselves, cross each other in P .

Moreover, it follows that the abelian surface B splits up to isogeny into
a product of two elliptic curves. Namely, the existence of only one elliptic curve
on B induces such a splitting.

Alltogether we found the following (necessary) basic conditions:

(i) all irreducible components of D are elliptic curves;

(ii) these components have (at most) transversal intersections with each other;

(iii) the irreducible components of D′ have negative selfintersection;

(iv) B is isogeneous to a product of two elliptic curves.

On abelian surfaces B the third property is equivalent to

(iii′) each irreducible component of D intersects properly with at least one other
component.

Namely, the adjunction formula

(1) −e(C) = (C · (C + KX)),

C a smooth curve on a smooth (compact) surface X, KX a canonical divisor,
e(C) = 2− 2g(C) the Euler number of C, yields

(2) 0 = (E2) + (E ·O) = (E2)

for elliptic curves E on any abelian surface B because the canonical class of B is
trivial. It becomes negative after blowing up some points of B if and only if at
least one of these points lies on E.

Definition 2.1. A reduced effective divisor D on an abelian surface
B with only elliptic components is called elliptic configuration. It is called an
intersecting elliptic configuration if and only if (additionally) there are (at least
two) components intersecting each other properly.

It is clear that the properties (i),(ii),(iii) ∼ (iii′) are satisfied for intersect-
ing elliptic configurations. They could be used as definition. Namely, looking at
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the simultaneous universal covering of the abelian surface B and the embedded
elliptic curve E →֒ B via tangential spaces it is clear that E does not intersect
another elliptic curve E′ if and only if the affine tangential lines TE and TE′ at
points on E or E′, respectively, are parallel in the affine tangential plane TB .
The intersection must be transversal, so property (ii) is satisfied automatically.
Moreover, if there are two components of D intersecting each other properly,
then each third component has to intersect at least one of these two first compo-
nents, because its universal covering line cannot be parallel to TE and TE′ at the
same time. So, also the properties (iii′) ∼ (iii) are satisfied. It follows also that
intersecting elliptic configurations are connected.

Let Y ′ = B′ −→ Ŷ be the contraction of all components of D′. The image
D̂ of D′ is considered as set (or cycle) of cusp points . We consider (Y ′,D′), Y
or (Ŷ , D̂) as orbital surfaces in the sense of [3]. There we defined orbital Euler
and signature heights He(Y ), Hτ (Y ) of open orbital surfaces, namely:

He(Y ) = e(Y ′) = Euler number of Y ′,

Hτ (Y ) = τ(Y ′)− 1

3
(D

′2), τ(Y ′) = signature of Y ′.

We set

Prop(Y ) = Prop(B,D) := He(Y )− 3Hτ (Y ).

In [3], see Ch. IV, (4.8.1), (4.8.2) we proved

Proposition 2.2. If Y is a ball quotient, then Prop(Y ) = 0.

Definition 2.3. An intersecting elliptic configuration D on the surface
B sa-tisfying Prop(B,D) = 0 is called proportional.

Let S = S(D) be the set of intersection points of all pairs of D-components
and s := #S its number of elements. For abelian surfaces B we know that

e(B) = 0 =
1

3
((K2

B)− 2e(B)) = τ(B),

hence

(3) e(Y ′) = He(Y ) = s, τ(Y ′) = −s, Prop(Y ) = 4s + (D
′2).

Going back to B we write D =
N∑

i=1
Di, Di irreducible, and set

Si = S(Di) = SD(Di) := S ∩Di, si := #Si.
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Then we get with (1) for the proper transforms D′
i on Y ′ the selfintersections

(D
′2
i ) = −si, hence

(4) (D
′2) =

∑
(D

′2
i ) = −

∑
si, Prop(Y ) = 4s− (s1 + · · · + sN ),

and the

Corollary 2.4. If B is an abelian surface with intersecting elliptic con-
figuration D such that Y is a ball quotient, then

(5) 4s = s1 + · · ·+ sN .

The basic result of this paper is the following

Theorem 2.5. Let A be an abelian surface, C =
∑

Cj, an intersecting
elliptic configuration on A, s = #S(C), sj = #S(Cj) defined as above, A′ −→ A
the blowing up of A at all points of S(C), C ′ the proper transform of C and
A′

fin := A′ \ suppC ′. Then it holds that

1) 4s >
∑

sj.

2) A′
fin is a neat ball quotient surface (with smooth compactification A′) if and

only if C is proportional, or, equivalently

4s =
∑

sj.

3) If the properties of C in 2) are satisfied, then A is isogeneous to the square
E × E of an elliptic curve E.

We start the proof with

Proposition 2.6. Let f : B −→ A be an isogeny of abelian surfaces, C

an intersecting elliptic configuration on A and D := f
−1

(suppC) the preimage of
the curve C identified with its reduced inverse image. Then D is an intersecting
elliptic configuration on B. If C is proportional, then also D is.

P r o o f. Let E be an elliptic curve on A. By the base change property

for étal morphisms (see e.g. [19], I, Prop. 3.3) the restriction f
−1

(E) −→ E of f

is étal, too. Especially, f
−1

(E) is smooth, hence this preimage is a disjoint finite
union of smooth irreducible curves. These curves have to be elliptic because this
is the only possibility of unramified covers of elliptic curves by Hurwitz genus
formula.
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We proved that property (i) lifts from C to D. The lift of the intersection
property (iii′) ∼ (iii) to D is obvious.

Now let σ : X ′ −→ A be the blowing up of S = S(C) and ρ : Y ′ −→ B

the blowing up of S(D) = f
−1

(S) with proper preimages D′, C ′ of D or C,
respectively. Contracting D′ and C ′ we get a commutative diagram

(6)

B Y ′ Ŷ Y = Y ′ \D′

A X ′ X̂ X = X ′ \ C ′
?

f

� ρ -q̂

?
f ′

?
f̂

�

?
f

� σ -p̂ �

with vertical Galois coverings of order d, say. Counting preimage points, it is easy
to see, that together with f also f ′ is unramified. Namely, over the exceptional
rational curve MP = σ−1(P ), P ∈ S, lie precisely d exceptional rational curves

LQ, Q ∈ f
−1

(P ). Therefore each R ∈ MP has at least d preimage points, each
in one LQ. But it cannot have more, because its number is restricted by the
degree d of f ′. Therefore f ′ is unramified everywhere. This property restricts to
f . This means that the orbital quotient surface Y/G, G = Ker f , coincides with
X. Hence Y −→ X is a finite orbital morphism. By definition of orbital heights
we get the relations

He(Y ) = d ·He(X) , Hτ (Y ) = d ·Hτ (X)

(see [3], III, Prop. 3.7.6). Therefore the proportionality relation He(X) =
3Hτ (X) lifts to He(Y ) = 3Hτ (Y ). �

Corollary 2.7. If an abelian surface A has a proportional elliptic con-
figuration C, then each abelian surface B isogeneous to A has infinitely many of
them. More precisely, for arbitrary N ∈ N there exist on B a proportional elliptic
configuration with more than N components.

P r o o f. For n ∈ N, n > 1, we consider the isogeny µn : A −→ A
multiplying each point with n. Let E be a component of C such that O = OA ∈ E.
There is a unique addition on E with zero point O. The embedding E →֒ A is a
homomorphism, this means the addition on A restricts to the addition on E. The
multiplication morphism with n on E is denoted by nE. Since nE : E −→ E is an
isogeny of degree n2 = # Ker nE, each point P ∈ E has precisely n2 preimages on
E but n4 preimages on A. Therefore µ−1

n (E) consists of n2 disjoint components
consisting of the translates E + t of E by n-division points t ∈ A.

More generally, we need not assume that E goes through O. Then for any
point Q ∈ E we have E = Q+E0 with an elliptic curve E0 through O. Counting
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preimages it is easy to see now, that also µ−1
n (E) = µ−1

n (E0) + µ−1
n (Q) consists

of n2 components. Its number of components is greater than N , if
√

n >
√

N .

With notations and implication of Proposition 2.6 we know that f
−1

(µ−1
n (C)) is

a proportional elliptic divisisor on B. Obviously, its number of components is
also greater than N . �

Corollary 2.8. If an abelian surface B supports a proportional elliptic
configuration, then it is isogeneous to E × E for a suitable elliptic curve E.

P r o o f. With the assumption of the corrollary we know that B is isoge-
neous to E1 × E2 for two elliptic curves E1, E2 (see iv). There exists an isogeny
E1 × E2 −→ B. By Proposition 2.6 it suffices to show that E1 × E2 has no
proportional elliptic configuration, if E1 and E2 are not isogeneous. We assume
this latter property. Each elliptic curve F on E1 × E2 must be a fibre of one of
the natural projections of E1×E2 onto E1 or E2, because F cannot be a covering
of E1 and E2 at the same time. Otherwise E1 and E2 would be isogeneous to F ,
hence to each other, in contradiction to our latter assumption. Therefore each
elliptic configuration D ∈ Div E1×E2 is a sum of horizontal fibres Hn

∼= E1 and
vertical fibres Vm

∼= E2:

D =

M∑

m=1

Vm +

N∑

n=1

Hn.

We show that D is not proportional checking the proportionality condition (5)
of Corollary 2.4. We have

s = #S(D) = M ·N, #S(Vm) = N, #S(Hn) = M,

hence

4s = 4M ·N 6= M ·N + N ·M =
∑

#S(Vm) +
∑

#S(Hn). �

Remark 2.9. We have the estimation

2s ≤ s1 + · · ·+ sN , with s = s(D), sj = sj(D),

for arbitrary intersecting elliptic configurations D =
N∑

i=1
Di on abelian surfaces B.

Namely, on the right hand side we count each intersecting point of D at
least twice because of (iii′). So a sum of fibres on E ×E takes the minimal value
2 of the singularity rate

σ(D) =

(
N∑

i=1

si

)
/s
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of D. By the way we proved statement 3) of Theorem 2.5.

3. Cyclic coverings of general type. We want to prove that abelian
surfaces with proportional elliptic configurations D become neat ball quotient
after blowing up S(D). For this purpose we look first for finite cyclic coverings
of general type satisfying the (neat) proportionality condition He = 3Hτ . The
strategy is given by the following two general results.

Ball Uniformization Theorem 3.1 (see [11], Th. 0.1 or [10], Introduc-
tion). For an orbital surface X = (X,Z) the following conditions are equivalent:

(i) X has a ball uniformization

(ii) The proportionality conditions

(Prop 2) He(X) = 3Hτ (X) > 0

(Prop 1) he(C) = 2hτ (C) < 0 for all orbital curves C ⊂ Z

are satisfied, and there exists a finite uniformization Y of X, which is of
general type.

Cyclic Cover Theorem 3.2 (cit. in [6], proof e.g. in [17]). Let V be a
smooth algebraic variety, d > 2 a natural number, ∆ a reduced effective divisor
on V whose linear equivalence class ∆ is divisible by d in Pic V . Then:

(a) There exist d-sheeted cyclic coverings V (δ) −→ V with branch locus ∆ and
totally branched there.

(b) These cyclic covers V (δ) are in one-to-one correspondence with the ”d-th
roots” (tensor language) δ of ∆ in Pic V , that means with all δ ∈ Pic V
satisfying d · δ = ∆.

We start with an abelian surface B and a reduced divisor D =
∑

Dk on B
with properties (i), (ii), (iii) ∼ (iii′). As in the upper row of diagram (6) we blow
up the intersection point set S = S(D). We use the notations there and assume
that the class of D is divisible by n > 1 in PicB. Then also the class of the
proper image D′ =

∑
D′

k is n-divisible in PicY ′. By the Cyclic Cover Theorem
there exists a n-cyclic covering ζ ′ : W ′ −→ Y ′ (totally) branched over D′. The
surface W ′ is smooth because D′ is a disjoint sum by (ii). The normalization of
B in the function field C(W ′) along ζ ′ is denoted by W . The components of the
preimage of D′

k in W ′ are contractible because they have together with ζ∗(Dk)
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negative selfintersection. The latter is equal to n · (D2
k), which is negative by (iii).

Alltogether we get a commutative diagram with vertical n-cyclic coverings

(7)

W W ′ Ŵ W

B Y ′ Ŷ Y
?

ζ

� -

?
ζ′

?
ζ̂

�

?

ζ

� ρ -q̂ �

In contrast to W ′, the surfaces W and Ŵ are not smooth. We use orbital
heights for calculating the Chern numbers of W ′. For this purpose we consider
the Galois quotient Y ′ of W ′ as support of the orbital surface Y′ = (Y ′,Z′) with
orbital cycle Z′ =

∑
D′

k, where D′
k is the orbital curve nD′

k (without orbital
points, because the curves D′

k do not intersect each other). Each component D′
k

has a unique preimage D
′′

k on W ′ with identical restriction ζ ′k : D
′′

k ↔ D′
k of ζ ′.

According to [3], chapters II, III, we have the following orbital curve heights

hτ (D
′′

k ) = (D
′′2
k ), he(D

′
k) = e(D′

k) = e(Dk) = 0,

hτ (D′
k) =

1

n
· (D′2

k ) =
1

n
(D2

k − sk) = −sk

n
, sk = #S(Dk).

and the orbital relation (degree formula)

hτ (D
′′

k ) = (deg ζ ′k) · hτ (D′
k) = hτ (D′

k).

because W ′ −→ Y′ is a finite orbital covering. It turns out that

(D
′′2
k ) = −sk

n
.

The orbital heights of W ′, Y′ are

He(W
′) = e(W ′), Hτ (W

′) = τ(W ′),

He(Y
′) = e(Y ′)−

∑(
1− 1

n

)
he(D

′
k) = e(Y ′) = s = #S,

Hτ (Y
′) = τ(Y ′)− 1

3

∑(
n− 1

n

)
hτ (D′

k) = −s +
1

3

(
1− 1

n2

)∑
sk

with relations

He(W
′) = (deg ζ ′) ·He(Y

′) = n ·He(Y
′),
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Hτ (W
′) = (deg ζ ′) ·Hτ (Y

′) = n ·Hτ (Y
′).

We assume n > 1. Using the Riemann-Roch formulas (K2
W ′) = 2e(W ′) + 3τ(W ′)

for the selfintersection of canonical class, χ(W ′) =
1

12
(e(W ′) + (K

′2
W )) for the

arithmetic genus, and s ≤ −s +
∑

sk by Remark 2.9 it follows that

(8)

e(W ′) = n · e(Y ′) = n · s > 0,

τ(W ′) = −n · s +
1

3

(
n− 1

n

)∑
sk,

(K2
W ′) = −n · s +

(
n− 1

n

)∑
sk ≥ n · s− 1

n

∑
sk

χ(W ′) =
1

12

(
n− 1

n

)∑
sk > 0.

Most interesting is the Chern quotient

(9)
c2
1

c2
(W ′) = (K2

W ′)/e(W ′) = −1 +

(
1− 1

n2

)
1

s

∑
sk.

Denoting the singularity rate by

σ = σ(D) :=
1

s

∑
sk

we can write

(10)

e(W ′)/s = n,

τ(W ′)/s = −n +
1

3

(
n− 1

n

)
σ(D),

(K2
W ′)/s = −n +

(
n− 1

n

)
σ(D) ≥ n− 2

n
,

χ(W ′)/s =
1

12

(
n− 1

n

)
σ(D),

c2
1

c2
(W ′) = −1 +

(
1− 1

n2

)
σ(D).

The estimation comes from σ(D) ≥ 2, see Remark 2.9. For proportional divisors
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D we have σ(D) = 4 by Corollary 2.4, hence

(11)

3τ(W ′)/s = n− 4

n
,

(K2
W ′)/s = 3n− 4

n
,

3χ(W ′)/s = n− 1

n
,

c2
1

c2
(W ′) = 3− 4

n2
.

Proposition 3.3. Let B be an abelian surface with intersecting elliptic
configuration D, which is n-divisible in Pic B, n > 1. Then each n-cyclic cover
W ′ of Y ′ totally branched over D′ is a smooth surface of general type. The
contraction W ′ −→ W is the minimal singularity resolution. Moreover, W ′ is
the unique minimal model in its birational equivalence class.

P r o o f. We already mentioned that W ′ is smooth. Now we show that
there is no exceptional curve of first kind (−1 line) on W ′. Assume there is one,
denote it by M . Then its ζ ′-image L is rational too. On the abelian surface
B there is no rational curve. Therefore L = LQ is the blowing up of a point
Q ∈ S(D). The ζ-preimage P of Q is a unique point because Q is the intersection

of some components of D, say Q ∈ Dk, and ζ
−1

(Dk) −→ Dk is bijective. The
point P is the contraction of M =: MP . We have an orbital Galois covering
M −→ L with Galois group G := GP = Gal(W ′/Y ′) ∼= Z/nZ. The number of
branch points coincides with the number t(Q) = tD(Q) ≥ 2 of elliptic components
of D through Q. We calculate orbital heights of

L = (LQ, t(Q) smooth curve germs of weight n crossing LQ)

he(L) = e(L)− t(Q)

(
1− 1

n

)
= 2− t(Q)

(
1− 1

n

)
,

hτ (L) = (L2) = −1.

Therefore

e(M) = he(M) = n · he(L) = (2− t(Q))(n − 1) + 2,

genus g(M) = (2− e(M))/2 =
1

2
(t(Q)− 2)(n − 1),

(M2) = hτ (M) = n · hτ (L) = −n ≤ −2.

The curve M is rational if and only if t(Q) = 2, but (M2) < −1. Therefore M
is not exceptional of first kind. We proved that W ′ is minimal in its birational
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class, hence W ′ −→W is the minimal singularity resolution.

The Kodaira dimension κ(Y ′) is not negative because B is abelian. For
any non-constant morphism X −→ Y ′, X an irreducible compact complex al-
gebraic surface, it holds that κ(X) ≥ κ(Y ′). Since W ′ covers Y ′ finitely, we
get κ(W ′) ≥ 0. Surfaces with non-negative Kodaira dimension have a unique
minimal model. This proves the last statement of the proposition.

From (10) we know that the selfintersection of the canonical class of W ′

is positive. But for minimal surfaces X of Kodaira dimension 0 and 1 one knows
that (K2

X) vanishes (see e.g. [2]). Therefore the Kodaira dimension of W ′ is equal
to 2. This means that W ′ is of general type. �

Now let A be an abelian surface with proportional elliptic configuration
C =

∑
Cj . It defines birational morphisms

A X ′ X̂ X = X ′ \ suppC ′� σ -p̂ �

as described in the bottom of Diagram (6) for B instead of A. Consider the
isogeny µ = µn : A −→ A of multiplication with n > 1 of degree n4. Following
the proof of Corollary 2.7 we know that each component E = Q + E0 of C has
preimage

µ−1(E) = µ−1(E0) + µ−1(Q)

consisting of n2 components, which are translations of each other. The corre-
sponding sheaves on E are isomorphic (via the translations ). So all of them
represent the same element in Pic A consisting of isomorphy classes of invert-
ible sheaves (line bundles). Therefore µ−1(E) and also D = Dn := µ−1(C)
is n-divisible in PicA (even n2-divisible). Moreover, µ−1(C) is an elliptic pro-
portional divisor by Proposition 2.6. We use it for the construction of n-cyclic
coverings as in Diagram (7) with (A,D) instead of (B,D). Together with Di-
agram (7) we get the following tower of birational morphism triples (for each
fixed n).
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(12)

W W ′ Ŵ W

A Y ′ Ŷ Y = Y ′ \D′

A X ′ X̂ X = X ′ \ C ′

?
ζ

� -

?
ζ′

?
ζ̂

�

?
ζ

?
µ

� ρ -q̂

?
µ′

?
µ̂n

�

?
µ

� σ -p̂ �

Now we are well-prepared for the
P r o o f o f T h e o r e m 2.5. 1). By the above diagrams – choose one

for each natural number n > 1 – we dispose on a series of minimal surfaces
W ′ = W ′

n = W ′(µ′
n, ζ) of general type. The well-known Miyaoka-Yau Theorem

says that the Chern quotient c2
1/c2 is not greater than 3 for smooth compact

algebraic surfaces of general type. Combined with the quotient formula in (10)
we get

c2
1

c2
(W ′

n) = −1 +

(
1− 1

n2

)
σ(D) ≤ 3

for all n. This is only possible if σ(D) ≤ 4. This relation is the same as σ(C) ≤ 4
by the next proposition. The latter relation coincides with 1) of Theorem 2.5.

Proposition 3.4. The singularity rate of intersecting elliptic configura-
tions on abelian surfaces is an isogeny invariant.

This means that for isogenies f : B −→ A, intersecting elliptic configu-

rations C on A, D = f
−1

(C) considered as reduced intersecting elliptic configu-
ration on A (see Proposition 2.6), the singularity rates σ(C) and σ(D) coincide.

P r o o f. We use the notations of Diagram (6). From (4), (3) and the
definition of Prop(Y ) before follows that the singularity rate

σ(D) = −(D
′2)/s = (4s− Prop(Y ))/s

= (4He(Y )−He(Y ) + 3Hτ (Y ))/He(Y ) = 3(He(Y ) + Hτ (Y ))/He(Y )

is a quotient of orbital heights. But f : Y −→ X is a B-orbital unramified finite
morphism. For each orbital height H the degree formula H(Y ) = d ·H(X), with
d = deg f , holds. Therefore

σ(D) = −3(He(Y ) + Hτ (Y ))/He(Y ) = −3(He(X) + Hτ (X))/He(X) = σ(C)

�
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Corollary 3.5. The Chern-quotients of the minimal surfaces W ′ = W ′
n =

W ′(µ′
n, ζ) of general type constructed in Diagram (12) approach the extreme value

3 for n → ∞ if and only if the intersecting elliptic basic divisor C on A is
proportional.

P r o o f. This is now an immediate consequence of the last formula of
(10):

c2
1

c2
(W ′

n) = −1 + (1− 1

n2
)σ(Dn) = −1 + (1− 1

n2
)σ(C).

with limit −1 + σ(C). �

P r o o f o f Th e o r e m 2.5. 2). One direction has already been proved
before the statement 2), see Corollary 2.4. Now assume that C is a proportional
divisor on the abelian surface A. For an arbitrary fixed natural number n > 1
we construct diagram (12). The cyclic covering ζ : W −→ Y is unramified
because we omitted the branch locus (Y = Y ′ \ suppD). We consider again ζ as
morphism in the category of open B-orbital surfaces because we omitted elliptic
curves with negative selfintersections. Together with C also D is proportional
elliptic by Proposition 2.6. So we have the relation

Prop(Y ) = He(Y )− 3Hτ (Y ) = 0

by Definition 2.3 and (4). Multiplication with n = deg ζ yields

Prop(W ) = n ·He(Y )− 3n ·Hτ (Y ) = He(W )− 3Hτ (W ) = 0.

The theorem of Miyaoka-Kobayashi-Yau (MKY) for open surfaces (generalizing
the compact version, see e.g. [16]) says that an open surface Z with negative
elliptic curve compactification Z ′ of general type satisfying Prop(Z) = 0 is a neat
ball quotient. This theorem is now part of the most general Ball Uniformization
Theorem 3.1 (proved also by R. Kobayashi [16] in the case of surfaces of general
type). The MKY-theorem is applicable to Z = W , because W ′ is of general
type, see Proposition 3.3. Therefore W is a neat ball quotient, with Baily-Borel
compactification Ŵ .

Both ζ and µn are unramified coverings. Therefore X has the same uni-
versal covering as Y and W , namely the two ball B. It follows that Y and X
themselves are neat ball quotient surfaces. The proof of Theorem 2.5 is fini-
shed. �

4. Bisectional proportional elliptic configurations. It is not
easy to find proportional elliptic configurations on abelian surfaces. Theorem 2.5,
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3) and Corollary 2.7 reduce the existence problem to abelian biproduct surfaces
E × E, E an arbitrary elliptic curve. The endomorphism algebra is

End◦ E × E = Mat2(End◦ E) = Mat2(Q) or Mat2(K),

K an imaginary quadratic number field. We concentrate our attention on the
latter (decomposed CM-) case, which happens iff E has complex multiplication.
Then we dispose on the matrix ring Mat2(O) acting on E × E, EndE ∼= O,
O an order of K, which is enough to produce a few special, but arithmetically
important, examples.

As in linear algebra the action of G =
(

α β
γ δ

)
∈ Mat2(O) can be described

by

E × E ∋
(

P
Q

)
7→
(

α β
γ δ

) (
P
Q

)
:=
(

αP+βQ
γP+δQ

)
=
(

α(P )+β(Q)
γ(P )+δ(Q)

)

G : E×E−→E×E is an isogeny iff det G=αδ−βγ 6=0. It is an automorphism iff
G ∈ GL2(O). The multiplicative semigroup of isogenies is denoted by Isog E×E.
We identify

EndE × E = Mat2(O) , AutO E × E =: End∗ E × E = Gl2(O) (unit group).

The isogenies G applied to fibres produce elliptic curves on E × E, e.g.

E1(G) := G(E ×O) =
{(

αP
γP

)
; P ∈ E

}
,

E2(G) := G(O × E) =
{(

βQ
δQ

)
; Q ∈ E

}

Transposing columns we get the same class of elliptic curves on E×E through O:

(Isog E × E)(E ×O) = (Isog E × E)(O × E).

Identifying E with E ×O the isogeny G induces an isogeny

g : E ↔ E ×O −→ G(E ×O), P 7→ (P,O) 7→
(

α(P )
γ(P )

)

with kernel

(13) Ker g = g−1(O ×O) = Eα−tor ∩ Eγ−tor = Ker α ∩Ker γ.

For each ideal I of O we set EI−tor := {T ∈ E; IT = O}.
Lemma 4.1. For any G ∈ Mat2(O) as above, the restriction g to E ×O

is an isomorphism onto G(E ×O) iff
(a) Kerα ∩Ker γ = O.
This condition is satisfied if
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(b) I := Oα + Oγ = O.
In the principal case O = OK , both properties (a) and (b) are equivalent.

P r o o f. The first statement follows from (13). It is clear that

(14) Kerα ∩Ker γ = EI−tor,

hence (a) is a consequence of (b).

In any case we have E = E(C) = C/a, a an ideal of O with

[a : a]K := {c ∈ K; ca ⊂ a}.

The (natural) torsion points of E are represented by K, more precisely, Etor =
K/a. In the principal case O is a Dedekind domain. Then we know for ideals
I $ O that

(15) [a : I]K = a · I−1 % a,

hence there is an element c ∈ K \ a such that cI ⊆ a. The class c mod a is a
non-trivial I-torsion point of E. By (14) condition (a) is not satisfied. We proved
the implication (a) ⇒ (b) in the principal case. �

Let p1, p2 be the projections of E × E onto the first or second factor,
respectively. By abuse of language, the curve C ⊂ E × E is called a horizontal
(vertical) section iff p1 (p2) induces an isomorphism C ←→ E. It is called a
bisection, iff C is simultaneously a horizontal and vertical section. The image
curve g(E) = G(E×O) is a horizontal section iff the implication α(P ) = α(Q)⇒
γ(P ) = γ(Q) holds for all pairs P,Q ∈ E. Now the first three statements of the
following corollary are immediately clear.

Corollary 4.2. With the notations of the lemma it holds that:
The image curve G(E × O) is a horizontal section iff Ker α ⊆ Ker γ. It is
a vertical section iff Ker γ ⊆ Ker α. The curve G(E × O) is a bisection iff
EI−tor = Ker α = Ker γ. The morphism g is an isomorphism onto a bisection if
and only if α and γ are units in O.

P r o o f. We have only to check the last statement. The if-direction is
trivial. Together with (a) and (13) it is easy to see now that the isomorphy and
bisectional assumptions are equivalent with

O = Kerα ∩Ker γ = Ker α = Ker γ.

Therefore the E-endomorphisms α and γ are invertible because they are also
surjective. �
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We want to count intersection points of End(E × E)-induced elliptic

curves. It is immediately clear that for G =
(

α β
γ δ

)
, G′ =

(
α′ β′

γ′ δ′

)
we have

surjective homomorphisms

(16)
KerE×E

(
α −α′

γ −γ′

)
−→ E1(G) ∩ E1(G

′)

KerE×E

(
α −β′

γ −δ′

)
−→ E1(G) ∩ E2(G

′)

with kernels Ker α ∩ Ker α′ ∩ Ker γ ∩ Ker γ′ and Ker α ∩ Ker β′ ∩ Ker γ ∩ Ker δ′,

respectively. For instance, the surjection in the first row sends
(

P
Q

)
to
(

α(P )
γ(P )

)
=

(
α′(Q)
γ′(Q)

)
.

Lemma 4.3. Assume that these kernels in (16) are finite. The number
of intersection points are

#(E1(G) ∩ E1(G
′)) = N(det

( α γ
α′ γ′

)
)

#(E1(G) ∩ E2(G
′)) = N(det

( α γ
β′ δ′

)
),

where N = NK/Q denotes the absolute norm.

P r o o f. Along the uniformizing exact sequence

0 −→ Λ −→ C2 −→ E × E −→ 0

we lift, for instance, the curves E1(G), E2(G
′) to the universally covering lines

(17) C2 ⊃ L1(G) : γZ1 − αZ2 = 0 or L2(G
′) : δ′Z1 − β′Z2 = 0.

The number of intersection points of E1(G), E2(G
′) coincides with the norm of

the determinant of the coefficient matrix of the system of two linear equations
in (17). For this result we refer to [1], I.5.G (8), or originally, to [9], Lemma
II.5. This proves the second equality of the lemma. The proof of the first is the
same. �

Example 4.4 (Hirzebruch [8], see also [1], I.4.A). Let K = Q(ρ), ρ =
e2πi/3 primitive third unit root, the field of Eisenstein numbers, E = C/OK and
G =

(
1 −ρ
1 1

)
. Then D = E×O+O×E +E1(G)+E2(G) is a proportional elliptic

configuration on E ×E. After blowing up the zero point of E ×E one gets a D-
compactified neat ball quotient surface.

P r o o f. The elliptic curves E1(G), E2(G) are bisections by Corollary 4.2.
Therefore they intersect each horizontal and vertical fibre in one point only. Since
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det G is a unit, the curves E1(G), E2(G) have also only O = OE×E as intersection
point by Lemma 4.3. So D is an intersecting elliptic configuration with

s = #S(D) = 1,

s(E ×O) = #SD(E ×O) = s(O × E) = s(E1(G)) = s(E2(G)) = 1.

The proportionality condition (4 ·1 = 1+1+1+1) is satisfied. Now Theorem 2.5,
2) yields the conclusion. �

Fail Example 4/5 ([1], I.4.G,H). For the ring O = Z + Zi of Gaussian
integers and the elliptic curve E = C/O the authors of [1] present on E ×E the
intersecting elliptic configuration

D = E1(F ) + E2(F ) + E1(G) + E2(G) + E1(H) + E2(H)

with F =
(

0 1−i
1 1

)
, G = ( 1 1

1 i ), H =
(

1 1
0 1+i

)
, E1(F ) = O × E, E1(H) = E ×O,

s(D) = 4,

s(E1(F )) = s(E2(F )) = s(E1(G)) = s(E2(G)) = s(E1(H)) = s(E2(H)) = 2.

The proportionality condition of Theorem 2.5 2) is not satisfied:

4 · 4 > 2 + 2 + 2 + 2 + 2 + 2.

So the example fails to be a Picard modular (after blowing up intersection points).
The authors of [1] used this example for the construction of a smooth compact
surface with c2

1 = 3c2 by means of a special Kummer covering of small degree.
Knowing proportionality relation 2) of Theorem 2.5 we are able to construct a
proportional elliptic configuration on this surface.

Main Example 4.6. Take the same abelian surface E × E as in the
previous (fail) example. The matrices G =

(
1 −1
1 1

)
, H =

(
i −i
1 1

)
define four

bisectional (see Corollary 4.2) elliptic curves

E1 := E1(G) , E2 := E2(G) , E3 := E1(H) , E4 := E2(H)

on E ×E. With the formulas of Lemma 4.3 it is easy to calculate the numerical
intersection matrix N (number of intersection points as entries) for these curves:

N =




∞ 4 2 2
4 ∞ 2 2
2 2 ∞ 4
2 2 4 ∞


 .
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For a matrix A ∈ Mat2(O), det A 6= 0, we set

(E × E)A−tor := KerE×E A.

Since the adjoint matrix A′ ∈ Mat2(O) of A satisfies AA′ = A′A = (detA) ( 1 0
0 1 ),

we have the inclusions

(18)

(E ×E)A−tor ⊆ (E × E)det A−tor = Edet A−tor × Edet A−tor

|⋂

EN(det A)−tor × EN(det A)−tor = (E × E)N(det A)−tor,

Edet A−tor ⊆ EN(det A)−tor
∼= (Z/N(det A)Z)2.

The latter relations transfer to our elliptic curves Ej, j = 1, 2, 3, 4. Restricting
diagonal endomorphisms of E × E to Ej we get

(19) Ej,λ−tor = Ej ∩ (E × E)λ−tor for all λ ∈ O.

For A = G or H we have |det A| = 2, N(det A) = 4. Therefore the four intersec-
tion points of E1, E2 or of E3, E4 coincide with the four 2-torsion points of these
curves, respectively. For example, according to (16) we have

E1(G) ∩ E2(G) ∼= (E ×E)G−tor ⊆ E2−tor × E2−tor = (E × E)2−tor.

(The minus sign in the second column of G′ in (16) can be omitted if only 2-torsion
points appear in the kernel). Therefore, by (19),

E1 ∩ E2 ⊆ (E × E)2−tor ∩ Ej = Ej,2−tor, j = 1, 2.

The inclusion is the identity because the number of elements is 4 on both sides.
To be more explicit we set Tmn := (Tm, Tn) ∈ E ·E with the vector

(T0, T1, T2, T3) = (0,
1

2
,
1 + i

2
,
i

2
) mod O

of 2-torsion points of E and get

(E × E)2−tor = {Tmn; 0 6 m,n 6 3},
(E × E)(1+i)−tor = {O,T02, T20, T22} ∼= (Z/2Z)2;

E1,2−tor = {O,T11, T22, T33} = 〈T11〉 × 〈T33〉 ∼= (Z/2Z)2.

because E1 is the diagonal curve on E ×E. We proved that

E1 ∩ E2 = 〈T11〉 × 〈T33〉,
E1,(1+i)−tor = E2,(1+i)−tor = {O,T22} = 〈T22〉 ∼= Z/2Z,
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For further intersections one needs only to look at the inverses A−1 of matrices
A constructed by pairs of two different columns taken from G and H. Namely,
the columns c of A−1 satisfy Ac ∈ O×O, therefore c mod O ∈ E = C/O belongs
to (E × E)A−tor. This allows already to fill the numerical intersection matrix N
to get the following point intersection scheme P for E1, E2, E3, E4:

P =




E1 〈T11〉×〈T33〉 〈T22〉 〈T22〉
〈T11〉×〈T33〉 E2 〈T22〉 〈T22〉

〈T22〉 〈T22〉 E3 〈T13〉×〈T31〉
〈T22〉 〈T22〉 〈T13〉×〈T31〉 E4




The elliptic configuration C := E1 + E2 + E3 + E4 is not proportional:

S(C) = {O,T11, T22, T33, T13, T31} , #S(Ek) = 4, k = 1, 2, 3, 4;

4 ·#S(C) = 4 · 6 > 4 + 4 + 4 + 4.

But we can enrich it by adding some horizontal and vertical fibres. We take

H1 := E × T1, H3 := E × T3, V1 := T1 ×E, V3 := T3 × E

and consider the elliptic configuration

(20) D := E1 + E2 + E3 + E4 + H1 + H3 + V1 + V3 = C + F

Since the elliptic curves Ek are bisections, they have only one intersection point
with each fibre. The intersection indices are equal to 1. Identifying divisors with
supports we have

S(F ) = {T11, T33, T13, T31} = C ∩ F ⊂ S(C),

hence

S = S(D) = S(C), S(Ek) = SD(Ek) = S ⊆ (Ek), k = 1, 2, 3, 4,

S(Hm) = SD(Hm) = SF (Hm) = {T1m, T3m}, m = 1, 3,

S(Vm) = SD(Vm) = SF (Vm) = {Tm1, Tm3},m = 1, 3.

Counting the intersection points of the components we get the proportionality
relation

(21) 4 ·#S = 4 · 6 = 4 + 4 + 4 + 4 + 2 + 2 + 2 + 2

we looked for.

With Theorem 2.5 we get
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Proposition 4.7. Blowing up E × E at S(D), E = C/(Z + Zi), D the
intersec-ting elliptic configuration (20), we get a compactified neat ball quotient
surface (E × E)′. The compactification divisor is the proper transform D′ of D
on (E × E)′.

5. Explicit cycloelliptic fibrations. We want to understand more
explicitly our surface models W ′ as curve fibrations over elliptic curves. Since
ball quotients are extreme from the metric (or other numerical) view point one
should expect that specializations of the curves over finite fields have also ex-
treme properties, which are interesting in Coding Theory. We present one of the
simplest explicit example starting from an elliptic curve over its own function
field. It is then easy to generalize the method to other cases.

Let k = C(x, y) be the function field of the elliptic curve E : Y 2 = X3−X
and C̃ = C̃C(x) the normalization of the projective plane elliptic curve
C : T 2 = (U − x)(U + x)(U − 1)(U + 1) over the rational function field C(x). By
base change from C(x) to k we get the following Galois tower of curves over k:

C̃k :V 2 = U3 − U, T 2 = (U − x)(U + x)(U − 1)(U + 1)

|
Ek :V 2 = U3 − U

|
P1

k

with (2 : 1)-Galois quotient morphisms (u, v, t) 7→ (u, v) 7→ u. The top curve C̃k is
understood as normalization of the projective model of the space curve described
by the two affine equations above. One has only to desingularise the point at
infinity lying over ∞E = (0 : 1 : 0). The ramification locus of C̃k over Ek consists
of six points:

Ram(C̃k/Ek) = {(x,±y, 0), (−x,±iy, 0), (±1, 0, 0)};

the branch locus on P1
k

is

(22) {e1, e2, e3, e4;h1, h3}={(x, y), (−x, iy), (x,−y), (−x,−iy); (1, 0), (−1, 0)}.

By Hurwitz’ formula we get the genus

g(C̃k) = 1 + (g(Ek)− 1) + 6/2 = 4.

The elliptic curve Ek/k is nothing else but the general fibre of the (vertical) projec-
tion E ×E −→ E onto the first component. Looking back to the main example,
especially to (20), we see that the branch locus of C̃k/Ek is the intersection (pull
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back) of the bisectional elliptic curves E1, E2, E3, E4 and the horizontal fibres
H1, H3 with the general fibre Ek. Namely, the set of the four bisections is the
〈( 1 0

0 i )〉-orbit of the diagonal curve in E × E. Their equations on E × E are
(u, v) = ((−1)kx, iky), k = 0, 1. On the other hand, the points (1, 0) and (−1, 0)
are obviously the odd 2-torsion points on E or Ek.

On the global surface E×E with general fibre Ek we add to the above six
sections the vertical fibres V1 and V3 to get the divisor D as in (20). The framed
surface (E × E,D) restricts to (Ek, e1 + e2 + e3 + e4 + h1 + h3) with the same
divisor as described in (22). The components of D are E × E- isomorphic with
each other. Therefore D is 8-divisible in PicE×E, especially 2-divisible. By the
Cyclic Cover Theorem 3.2 we dispose of a global 2-cyclic covering diagram (7)
with B = E × E. The framed 2-cyclic surface coverings (W,D)/(E × E,D) and
also (W ′,D′)/((E×E)′,D′) “restrict” to C̃k/Ek over the general point Spec k; but
W/E and also W ′/E “restrict” to C̃k/k. We see that W ′/E is a genus 4 fibration
over the horizontal elliptic basic curve E : Y 2 = X3 − X. The fibres are the
2-cyclic coverings Cx,y of the vertical elliptic curve E : V 2 = U3−U with moving
branch locus described in (22).

Proposition 5.1. The surface W ′ supporting the cycloelliptic genus-4
family {Cx,y} has a complete hyperbolic metric degenerating along D′. It is a
minimal smooth surface of general type with Chern numbers

τ(W ′) = 0, e(W ′) = 12, (K2
W ′) = 24, χ(W ′) = 3.

P r o o f. Since D is a proportional divisor on E × E by (21) we know
from the Theorem 2.5 that Y = (E ×E)′ \D′ is a neat ball quotient. Repeating
arguments, the unramified covering W of Y , see (7), has the same universal
covering ball B as Y . For the calculation of Chern numbers we use (11) with
s = #S(D) = 6 and σ = 4 (proportionality). For the properties of minimality
and general type we use the following

Corollary 5.2. of Proposition 3.3 and Theorem 2.5.
Let B be an abelian surface with proportional elliptic configuration D, which is
n-divisible in PicB, n > 1. Then each n-cyclic cover W ′ of Y ′ totally branched
over D′ is a smoothly compactified neat ball quotient surface of general type. The
contraction W ′ −→ W is the minimal singularity resolution. Moreover, W ′ is
the unique minimal model in its birational equivalence class. �

Following this way and the proof of Theorem 2.5 one can construct further
explicit n-cycloelliptic curve families over elliptic curves with Gauß or Eisenstein
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complex multiplication supporting a complete hyperbolic metric. The equations
for the fibre curves are as explicit as the algebraic description of n-torsion points
on the elliptic basic curve E. It is an open question to find such fibred hyperbolic
models over other elliptic curves.

6. Going down to rational and Kummer surfaces. Let D′ be
the proper transform of an intersecting elliptic B-divisor D along the blowing up
β : Y ′ := B′ −→ B of S(D), B an abelian surface. We look for finite Galois
quotients X ′ = Y ′/G of Y ′ = B′, which are ball quotients with compactification
curve D′/G. This means that X := (Y ′ \ D′)/G = Y/G = B/Γ for a suitable
ball lattice Γ ⊂ U((2, 1), C). Obviously, G must be a finite subgroup of

Authol(B,D) := {g ∈ Authol(B); g(D) = D}.

Proposition 6.1. The surface X = Y/G is a ball quotient B/Γ if D is
proportional.

P r o o f. From Theorem 2.5 we know that Y is an open neat ball quotient
B/Γ′. The action of G on Y lifts along the universal covering B −→ Y . This
yields an exact sequence of group homomorphisms

(23) 1 −→ Γ′ := π1(Y ) −→ Γ −→ G −→ 1,

with inclusion Γ′ ⊆ Γ without loss of generality. Therefore X = Y/G = B/Γ is a
ball quotient. �

We apply this proposition to our Main Example 4.6 on E × E, E =
C/Z + Zi with proportional elliptic divisor D described in (20). The bicyclic
group

G := 〈( i 0
0 1 )〉 × 〈( 1 0

0 i )〉 ∼= (Z/4Z)2 ⊂ AutE × E

acts transitively on the columns of
(

1 −1 i −i
1 1 1 1

)
mod×

O
∗

defining C = E1 + E2 + E3 + E4 via column pairs. Therefore G acts also on
S(C) = S(D), thereby transitively on its even part {O,T22} and on its odd part
S(F ) = {T11, T13, T31, T33}. Moreover, the generators of G

I := ( i 0
0 1 ) J := ( 1 0

0 i )

send vertical and horizontal fibres to fibres of the same type. Therefore G acts
on the four fibres through horizontal and vertical pairs of the odd points, hence
transitively on {V1, V3} and on {H1,H3}. Alltogether we have an action of G on
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D = C + F . Along β the action pulls back to (E × E)′, D′ and to the inverse
image

(24) D̃ = D′ + L00 + L22 + L11 + L33 + L13 + L31, Lij := β−1(Tij) ∼= P1

of D with G-orbits

(25)

G(E1) = {E1, E2, E3, E4},
G(H1) = {H1,H3}, G(V1) = {V1, V3}
G(L00) = {L00}, G(L22) = {L22},
G(L11) = {L11, L33, L13, L31}.

Corollary 6.2. For each subgroup U of G = 〈I, J〉 the surface (E×E)′/U
is a compactified ball quotient surface with cusp curve D′/U .

Beside of interesting rational surface models among quotients of E×E by
subgroups of G there is an important case closely connected with Rational Cuboid
Problems, see [20], [7], [4]. We take U = 〈−1〉 = 〈(IJ)2〉 to get a K3-quotient.

Corollary 6.3. The Kummer surface S := (E × E)/〈−1〉 has the com-
pactified ball quotient model S′ = (E × E)′/〈−1〉 with cusp divisor

B
′
∞ = D

′
= E

′
1 + E

′
2 + E

′
3 + E

′
4 + H

′
1 + H

′
3 + V

′
1 + V

′
3

being a disjoint sum of smooth rational curves

E
′
1, E

′
2, E

′
3, E

′
4,H

′
1,H

′
3, V

′
1, V

′
3,

which are the images of the D′-components along (E × E)′ −→ S′. The cusp

singularities of the corresponding Baily-Borel model Ŝ = B̂/ΓS are rational of
type (2, 2, 2, 2). The open orbital ball quotient on

S = B/ΓS = (E ×E)′ \D′)/〈−1〉

is

S = B/ΓS = (S,B∗) = (S,B∗
1 + B0)

with open disconnected orbital 1-cycle

B∗
1 = L

∗
00 + L

∗
11 + L

∗
22 + L

∗
33 + L

∗
13 + L

∗
31

with smooth rational components all of weight 2, selfintersection −2, and with
0-cycle

B0 = T 02 + T 20
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consisting of two isolated cyclic surface singularities of type 〈2, 1〉.
Notations. The upper index ∗ means that we omit cusp points lying on

the curve, and bar markes image curves along the 〈−1〉-quotient maps. Rational
cusp type (2, 2, 2, 2) means that the (rational) cusp curve is crossed by four curves
of branch weight 2 and no other orbital curves, see [3], III.

P r o o f. It is easy to verify that S is a Kummer surface, whose minimal
smooth model is K3. We refer to [24] or to [20], [7], [4] for this simple fact.
The action of −1 on E × E has precisely sixteen isolated fixed points, namely
(E×E)2−tor = {Tmn; 0 6 m,n 6 3}. The image points Tmn are the singularities
of S, all of type 〈2, 1〉. In order to get S′ we have to blow up six of them. Their
preimages form a divisor

B′
1 := L

′
00 + L

′
11 + L

′
22 + L

′
33 + L

′
13 + L

′
31,

which is a disjoint sum of −2-lines. The reduced branch cycle of the covering
(E × E)′ −→ S′ is B′ = B′

1 + B0, where B0 is the sum of 10 points T kl with
double index set complementary to the index set used for the B′

1-components.
Since the action of−1 on each elliptic curve Hk, Vk, Ek+1, 0 6 k 6 3, is not trivial,
their images Hk, V k, Ek+1 on S, hence also the proper transforms H

′
k, V

′
k, E

′
k+1,

are rational (and smooth). From Proposition 4.7 and Corollary 6.2 we know that
Y = (E×E)′ \D′ is a neat open ball quotient B/ΓY . It follows immediately that

S = S′ \D
′
is a ball quotient B/ΓS with exact sequence

(26) 1 −→ ΓY −→ ΓS −→ 〈−1〉 ∼= Z/2Z −→ 1,

see Proposition 6.1 with S instead of X. Only the 2-torsion points T02 and T20

survive after removing D′ from (E × E)′. Obviously, the ramification indices
the B′

1-components are all equal to 2. Since B −→ Y is unramified, the ramified
coverings B −→ S and Y −→ S have the same orbital cycle. So we get the orbital
cycle B∗ as defined in the corollary. �

7. The Kummer surface of rational cuboid problem and

other quotients are Picard modular. In a forthcoming paper we will
show that the cycloelliptic covers and the U -quotients, U ⊂ 〈I, J〉, of the main
example, especially the above orbital Kummer surface, are Picard modular. More
precisely, the corresponding ball lattices are well-determined congruence sub-
groups of Γ := SU((2, 1), Z + Zi). Let π := 1 + i be the Gauss prime dividing 2.
Consider the inclusion chain

Γ(4) −→ Γ(2π) −→ Γ(2) −→ Γ(π) −→ Γ
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of principal congruence subgroups of Γ. The index

[Γ : Γ(4)] =
1

4
· 48 · (1− 2−2) · (1− 0 · 2−3) = 3 · 212

can be read off from the general (2,1)-unitary index formula for natuaral principal
congruence subgroups in [3], Proposition 5A.2.14. We refine the chain by the
following diagram of inclusions:

(27)

Γ(4) Γ(4)

Γ(2π)

Z8
2 { ΓE×E ΓE×E

ΓK3 { 〈I, J〉 ∼= Z2
4

Γ(2) Γ2

2O { Γ(π)

Γ Γ

?

-=

?

Z5

2

? ?

Z2

? ?

〈−1〉

-=

?

?

�
�

�
�

�	
〈J

2
〉

@
@

@
@

@R
〈I,J〉

?

?

@
@

@
@@R

Z3

2

-
Z2

-
Z2

�
�

�
�

�	

Z2

? ?

S3

-=
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At the arrows we wrote the corresponding factor groups. For instance, Γ/Γ(2) is
the binary octahedron group 2O of order 48 defined as preimage of the octahedron
group O along the classical group epimorphism SU(2) −→ SO(3) with kernel
〈−1〉. This has been proved in [10], Proposition 8.3. In the same paper, see (35)
in section 8 there, we proved that Γ(2)/Γ(4) is a power of Z2, where Z2 is the
cyclic group of order 2. Comparing indices we get Γ(2)/Γ(4) ∼= Z8

2 .

The corresponding diagram of Galois coverings of ball quotient surfaces
is the following one:

(28)

X ′
Γ(4) X ′

Γ(4) general type

X ′
Γ(2π) general type

Z8
2 { (E × E)′ (E × E)′ abelian

X ′
K3 } 〈I, J〉 ∼= Z2

4

F ′ X ′
Γ(2) (P1 × P1)′ rational

2O { (P2
Apoll)

′
rational

X ′
Γ X ′

Γ rational

?

-=

?
Z5

2

?
?
Z2

?
?
〈−1〉

-=

?

?

�
�

�
��+ 〈J

2
〉

Q
Q

Q
QQs〈I,J〉 ?

-=

?

Q
Q

Q
QQs

Z3

2

-
Z2

-
Z2

�
�

�
��+

Z2

? ?
S3

-=
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Except for the K3-surface X ′
K3 we announced the rough Kodaira classification

type of the surfaces of each line in the last column. For the non-general types we

announce also the fine classifications:

E×E is the abelian surface of our main example with E ∼= C/Z+Zi, and

(E × E)′ the blowing up of E × E at the six intersection points of eight elliptic

components of the divisor (20).

P2
Apoll denotes the projective plane with the Apollonius cycle consisting

of a plane quadric together with three tangent lines, and (P2
Apoll)

′ is the blowing

up of P2 at the three tangent points, which are precisely the cusp points of the

Baily-Borel compactification of B/Γ(π), see [10] or [11].

On P1 × P1 one finds the three cusp points on the diagonal curve. They

have to be blown up to get the model (P1 × P1)′ in the diagram.

We remark that X ′
Γ(2) comes near to the Picard modular Theta surface

constructed by van Geemen in [5], which could not precisely classified until now.

Our X ′
Γ(2) is understood now as a special degeneration of E7-del-Pezzo surfaces.

In simpler words, we found the following construction. Take four points on P2

in general position. The configuration of six lines through the pairs of the four

points is known as complete quadrilateral. The quadrilateral, considered as plane

curve, has seven singular points: four intersection points of three lines and three

intersection points of precisely two lines of the configuration. The blowing up of

these seven points yield the smoothly compactified ball quotient surface X ′
Γ(2) of

Diagram (28). The proper transforms of the six lines have selfintersection −2 on

X ′
Γ(2). So they can be contracted to singular points. The arising surface X̂Γ(2) is

the Baily-Borel compactification of B/Γ(2) with these six cusp points.

The link with Picard modular groups comes with the Apollonius model.

This main point of proof is well prepared in [10] or [11]. It needs also some

effort to determine the factor groups in Diagram (27) precisely and the orbital

cycles with their weights. Then one compares with the quotients of (E×E)′ and

discovers coincidences. This will be done in a forthcoming paper dedicated to

Picard modular forms.
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