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A NOTE ON THE ASYMPTOTIC BEHAVIOUR OF A
PERIODIC MULTITYPE GALTON-WATSON BRANCHING

PROCESS

M. González, R. Mart́ınez, M. Mota
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Abstract. In this work, the problem of the limiting behaviour of an irre-
ducible Multitype Galton-Watson Branching Process with period d greater
than 1 is considered. More specifically, almost sure convergence of some
linear functionals depending on d consecutive generations is studied under
hypothesis of non extinction. As consequence the main parameters of the
model are given a convenient interpretation from a practical point of view.
For a better understanding of the theoretical results, an illustrative example
is provided.

1. Introduction. The Multitype Galton-Watson Branching Process
(MP) is a modification of standard Galton-Watson Branching process, in which
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several types of individuals coexist in a population. These individuals reproduce
independently of each other and with the same probability distribution inside a
type. This process has been widely studied (see for example [7], [9]). Among
the main results we can find an exhaustive classification of the process, based
on the matrix of means, in positively regular, periodic and reducible cases. The
problem of the limiting behaviour of such a process has been also considered in the
literature (see for example [1], [3], [4], [5] and [6], among others). Some of these
authors deal with the periodic MP but without taking into account the cyclic
structure of this particular process. The aim of this paper is the study, under
non extinction assumption, of certain cycle of the process. We start our research,
in Section 2, with a short description of the MP. We focus our attention on the
periodic case and on the investigations on its asymptotic behaviour developed in
[4]. In Section 3 the study of some linear functionals associated to the process
is considered. These functionals summarize somehow the cyclic structure of the
process and allow us to provide in Section 4 adequate interpretations for the main
parameters, analogous to those given for the positively regular case. Finally, in
Section 5, a simulated example is proposed as an illustration of the theoretical
results.

2. The probability model. Let us consider a MP with m types,
i.e. a sequence of m-dimensional random vectors {Z(n)}n≥0, valued on N

m
0 , and

defined in a recursive manner as follows:

Z(0) = εi, εi = (δi1, . . . , δim), δij : Kronecker’s Delta

Z(n + 1) =
m
∑

i=1

Zi(n)
∑

j=1

(Y 1
ij(n), . . . , Y m

ij (n))

considering the empty sum as the vector 0. The random vectors {Yij(n) : i =
1, . . . ,m, j = 1, 2, . . . , n = 0, 1, 2, . . .}, with Yij(n) := (Y 1

ij(n), . . . , Y m
ij (n)), are

assumed independent, taking values on N
m
0 , and such that, for every fixed type

i, they are distributed according to the same probability law, namely pi(·), i.e.
for an index i and a vector z fixed, pi(z) := P [Yij(n) = z] for n = 0, 1, . . ., j =
1, 2, . . . Thus, Yij(n) denotes the vector formed by the number of individuals of
the different types produced by the jth individual of type i who lives in generation
n, according to the reproduction law pi(·). Consequently, Z(n) denotes the vector
of individuals of the different types who form the nth generation. It is obvious
that the process {Z(n)}n≥0 is a m-dimensional homogenous Markov Chain.

The elements of the matrix of means of the process, M = (mij)1≤i,j≤m can
be defined by mij := E[Zj(1)|Z(0) = εi], i.e. mij represents the average number
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of individuals of type j produced by an individual of type i. The coefficient

(i, j) of the matrix Mn will be denoted as m
(n)
ij . We can formulate the following

classification of MP {Z(n)}n≥0, based on the structure of the matrix of means M .

Definition 2.1. A MP {Z(n)}n≥0 is said to be irreducible, if for each pair

i, j ∈ {1, . . . ,m}, there exists a generation n = n(i, j) ≥ 1 such that m
(n(i,j))
ij > 0.

Otherwise the process is said to be reducible.

If {Z(n)}n≥0 is irreducible, then for every type i ∈ {1, . . . ,m} it can be

defined the constant d := g.c.d.{n ≥ 1 : m
(n)
ii > 0} (g.c.d. denotes the greatest

common divisor), which does not depend on the type i (see [2]). Moreover, the
m types can be reordered and grouped in d disjoint groups {D[a]d : 1 ≤ a ≤ d},
where [x]d denotes the rest of dividing x by d. Moreover mij = 0 except if
i ∈ D[a]d and j ∈ D[a+1]d , so that the matrix of means M can be written in the
following way:

M =















0 M(1, 2) 0 · · · 0
0 0 M(2, 3) · · · 0
...

...
...

. . .
...

0 0 0 · · · M(d − 1, d)
M(d, 1) 0 0 · · · 0















where M([a]d, [a + 1]d) = (mij)i∈D[a]
d
, j∈D[a+1]

d

for a = 1, . . . , d. Intuitively that
means that if an individual’s type belongs to the group D[a]d , this individual
will generate with probability one individuals whose types belong to the group
D[a+1]d . Thus, only after a number of generations multiple of d it can be found
again in the population individuals of a type belonging to the group D[a]d .

Definition 2.2. An irreducible MP {Z(n)}n≥0 is said to be positively
regular if d = 1. Otherwise, it will be called periodic, and d > 1 will be referred
as the period of the process.

Since the matrix M is supposed non negative and finite, Perron-Frobenius’
Theory establishes (see [8]) that if {Z(n)}n≥0 is periodic, then there exists an
eigenvalue of M , ρ, real positive with maximum modulus and left and right
associated eigenvectors, ν and µ respectively, which can be normalized as follows:

ν1 =

m
∑

i=1

νi = 1, ν(a)µ(a) =
∑

j∈D[a]
d

µjνj = 1, a = 1, . . . , d

where µi > 0, νi > 0 for all i ∈ {1, . . . , n}, being 1 the m-dimensional vector with
all the coordinates equal to 1, µ(a) := (µj : j ∈ D[a]d) and ν(a) := (µj : j ∈ D[a]d).
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From now on we will assume ν and µ subject to such restrictions.

In order to study the asymptotic behaviour of the periodic MP, let us
examine first some results related to the extinction of this process. With the
following definition we avoid trivialities.

Definition 2.3. The irreducible MP {Z(n)}n≥0 is called singular if
m
∑

j=1
pi(εj) = 1 for all i ∈ {1, . . . ,m}.

The magnitude of the maximum modulus eigenvalue ρ plays a crucial role
in the study of the extinction of the process. Sevast’yanov (see [10]) obtains that
an irreducible, non singular process becomes extinct almost surely if and only if
ρ ≤ 1, independently of the type which the process starts with. Consequently,
since every non null vector is a transient state of the Markov Chain {Z(n)}n≥0,
if ρ > 1 then the total number of individuals in the process approaches to infinity
along the generations with a positive probability. So, in order to study the
asymptotic behaviour of the process in the periodic case we consider ρ > 1. In
this sense we have the following result due to Kesten and Stigum (see [4]).

Theorem 2.1. Let {Z(n)}n≥0 be a periodic, not singular MP with period
d and ρ > 1. If Z(0) = εi with i ∈ D[a]d, then there exists a random variable W
such that, for every j ∈ D[b]d, the following equality holds almost surely

(1) lim
n→∞

1

ρnd+b−a
Zj(nd + b − a) = Wνj

Moreover if the following logarithm condition holds for all i ∈ D[a]d , j ∈ D[a+1]d
and a ∈ {1, . . . , d}

(2) E[Zj(1) log+ Zj(1)|Z(0) = εi] < ∞

then E[W |Z(0) = εi] = µi(a). Otherwise W = 0 almost surely.
If (2) holds and there exist indices a and i′ ∈ D[a]d such that

(3)
∑

j∈D[a+1]d

Zj(1)µj(a + 1)

can take on at least two values with positive probability given that Z(0) = εi′ , then
the distribution of W has a jump of magnitude qi := P (Z(n)1 → 0|Z(0) = εi) at
the origin and continuous density function on the set of the positive real numbers,
given that Z(0) = εi. If (3) does not hold for any pair (i′, a) with 1 ≤ i′ ≤ m and
1 ≤ a ≤ d, then the distribution of W is degenerate at one point.
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In the same way it can be obtained the asymptotic behaviour of every
linear functional bZ(n), with b ∈ R

m.

3. Asymptotic behaviour of a cycle of the periodic process
{Z(n)}n≥0. Until now, the study of the asymptotic behaviour of the periodic
process {Z(n)}n≥0, summarized in Theorem 2.1, is considered generation by gen-
eration for every group, because once the process has started with one individual
of type i belonging to the group D[a]d , then, with probability one, individuals of
the types belonging to the group D[a+l]d only can be found in the generations
nd + l, and no individuals of other types exist in these generations. So, only in
generations multiple of d can be found individuals of the types belonging to group
D[a]d . Taking into account this cyclic structure, it is interesting the study of func-
tionals depending on d consecutive generations of the process, which we refer as
cycle. The main property of a cycle is the possibility of recording individuals of
all the types.

Denote by |ZD[a]
d

(n)| := ZD[a]
d

(n)1 =
∑

i∈D[a]
d

Zi(n) and suppose Z(0) = εi

with i ∈ D[a]d . Let us consider the cycle:

ρd−1|ZD[a]
d

(nd)|+ρd−2|ZD[a+1]
d

(nd + 1)|+. . .+|ZD[a−1]
d

(nd + d − 1)|

where individuals from all types, weighted in a convenient way, in d consecutive
generations of the process are considered.

In relation with the asymptotic behaviour of the previous cycle we can
provide the following result.

Theorem 3.1. Let {Z(n)}n≥0 be a periodic, non singular MP with period
d and ρ > 1. If Z(0) = εi with i ∈ D[a]d then there exists a random variable W
such that:

lim
n→∞

ρd−1|ZD[a]
d

(nd)| + . . . + |ZD[a−1]
d

(nd + d − 1)|

ρnd+d−1
= W a.s.

Moreover the logarithm condition

d
∑

a=1

∑

i∈D[a]
d

∑

j∈D[a+1]
d

E[Zj(1) log+ Zj(1)|Z(0) = εi] < ∞

is equivalent to E[W |Z(0) = εi] = µi > 0.
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P r o o f. Since Z(0) = εi with i ∈ D[a]d , applying Theorem 2.1, we have
that

lim
n→∞

Zj(nd + l)

ρnd+l
= Wνj a.s. j ∈ D[a+l]d , l = 0, . . . , d − 1

The sum extended to the group D[a+l]d is

lim
n→∞

|ZD[a+l]
d

(nd + l)|

ρnd+l
= W

∑

j∈D[a+l]
d

νj a.s.

Note that, since ν1 = 1, summing over all the groups we obtain:

lim
n→∞

(

|ZD[a]
d

(nd)|

ρnd
+ . . . +

|ZD[a+d−1]
d

(nd + d − 1)|

ρnd+d−1

)

= W a.s.

and the proof is concluded. The properties of the random variable W can be
directly deduced from Theorem 2.1. �

The following results, specially interesting from a practical point of view,
are consequence of the previous Theorem.

Corollary 3.1. Let {Z(n)}n≥0 be a periodic, non singular MP with period
d and ρ > 1. If Z(0) = εi with i ∈ D[a]d and logarithm condition (2) holds, then,
for every group D[a+l]d with l = 0, . . . , d − 1, we have that on {Z(n)1 → ∞}:

(i) For each k ∈ D[a+l]d

lim
n→∞

ρd−1−lZk(nd + l)

ρd−1|ZD[a]
d

(nd)| + . . . + |ZD[a−1]
d

(nd + d − 1)|
= νk a.s.

(ii)

lim
n→∞

ρd−1−l|ZD[a+l]
d

(nd + l)|

ρd−1|ZD[a]d
(nd)| + . . . + |ZD[a−1]d

(nd + d − 1)|
=

∑

j∈D[a+l]
d

νj a.s.

P r o o f. Applying Theorem 3.1, we deduce that if Z(0) = εi with i ∈
D[a]d , then:

lim
n→∞

ρd−1|ZD[a]
d

(nd)| + . . . + |ZD[a−1]
d

(nd + d − 1)|

ρnd+d−1
= W a.s.
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and P (W > 0) > 0, because logarithm condition holds. Moreover, due to the fact
that {W > 0} = {ZD[a]

d

(dn) → ∞} a.s., the result follows from the application
of Theorem 2.1 for k ∈ D[a+l]d . �

Moreover, for every group D[a]d , the following relation is verified.

Corollary 3.2. Let {Z(n)}n≥0 be a periodic, non singular MP with
period d and ρ > 1. If Z(0) = εi with i ∈ D[a]d and logarithm condition (2) holds,
then, for every group D[a+l]d with l = 0, . . . , d − 1, we have for each k ∈ D[a+l]d,
that on {Z(n)1 → ∞}:

lim
n→∞

Zk(nd + l)

|ZD[a+l]
d

(nd + l)|
=

νk
∑

j∈D[a+l]
d

νj
a.s.

Remark 3.1. The previous results are also valid for d = 1. In this
case we obtain the asymptotic behaviour for the positively regular process given
by [3].

Remark 3.2. Taking into account the additive property of the MP
{Z(n)}n≥0, and the previous results, it is easy to obtain the asymptotic behaviour
of the kth coordinate of the cycle

ρd−1Zk(nd) + . . . + Zk(nd + d − 1), k ∈ D[a]d

supposed the process to start with any vector Z(0). The results we get for this
cycle are analogous to the Corollaries above.

4. Interpretation of the main parameters. Mode (see [7]) pro-
vides adequate interpretations for the main parameters of the positively regular
process from its asymptotic behaviour. In this sense we propose convenient in-
terpretations, with an specially practical interest, for the parameters ρ, µ and
ν associated to the periodic process {Z(n)}n≥0, making use of the asymptotic
behaviour of the cycle

ρd−1|Z(nd)| + . . . + |Z(nd + d − 1)|

First note that, since under the logarithm condition this cycle normalized by
ρnd+d−1 converges almost surely to a non null random variable, then ρd represents
the rate of growth of the cycle in d consecutive generations, independently of the
initial type and number of individuals.

On the other hand, the convergence of kth coordinate of the cycle

ρd−1Zk(nd) + . . . + Zk(nd + d − 1)
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indicates that the proportion of individuals of type k that one can expect in a
large enough generation of the cycle is νk, independently of the type of individual
which started the process. Moreover, taking into account the behaviour of the
cycle

ρd−1|ZD[a]
d

(nd)| + . . . + |ZD[a]
d

(nd + d − 1)|,

νk/
∑

j∈D[a]
d

νj represents the expected proportion of individuals of a type k ∈ D[a]d

in large generations, with respect to the total of individuals of the cycle with types
belonging to the group D[a]d .

Finally, taking into account that E[W |Z(0) = εi] = µi if logarithm con-
dition holds, the parameter µi represents the reproductive mean value of the
individuals of type i.

5. Illustrative example. In order to illustrate the results obtained
and the interpretations proposed for the parameters ρ, µ and ν, let us model the
polyphase birth of certain biological specie by means of a MP. More specifically,
suppose three phases in the life of individuals of such specie: birth (1), growth (2)
and reproduction (3), after which individuals disappear. Denote by p and q the
probabilities of going from phase (1) to (2) and from phase (2) to (3) respectively.
If we assume there exist two forms of reproduction respectively, namely A and B,
which happen with probabilities pA and pB , with pA +pB = 1, then we have that
qA := qpA, is the probability of entering the reproductions phase according to
type A and qB := qpB, according to type B. The average number of descendants
per individual belonging to the reproduction phase is mA and mB , depending on
the type A or B, respectively. This model can describe, for example, the growth of
animal species with two forms of reproduction: sexual (A) or hermaphrodite (B).

A possible model for the previous situation is a periodic MP with 4 types,
where the matrix of means M is

M =









0 p 0 0
0 0 qA qB

mA 0 0 0
mB 0 0 0









We have simulated 29 generations of this model, starting with Z(0) = (1, 1, 1, 0),
and supposing that p = 0.8, qA = 0.3, qB = 0.6. Both forms of reproduc-
tion produce new descendants according Poisson distributions of parameters
mA = 3 and mB = 6. From this values we obtain ρ = 1.533 > 1, the re-
productive value µ = (1.828, 3.503, 3.579, 7.158) and the vector of proportions
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ν = (0.548, 0.285, 0.059, 0.118). The data corresponding to the simulation made
are summarized in the following table:

n Z1(n) Z2(n) Z3(n) Z4(n)

0 1 1 1 0
1 14 1 0 1
2 3 7 1 0
3 8 3 1 5
4 18 8 1 2
...

...
...

...
...

25 23884 6313 1584 3239
26 19296 19220 1875 3818
27 22553 15500 5700 11589
28 69033 18071 4650 9243
29 55257 55251 5440 10819

First consider the branch {Z(1)(n)}n≥0 of the process generated by the
individual belonging to the birth phase in the initial generation:

n Z
(1)
1 (3n) Z

(1)
2 (3n + 1) Z

(1)
3 (3n + 2) Z

(1)
4 (3n + 2)

0 1 1 1 0
1 8 8 0 7
2 21 17 3 9
3 48 37 6 25
4 114 93 25 61

5 326 267 79 160
6 924 745 211 474
7 2785 2221 651 1363
8 7894 6313 1875 3818
9 22553 18071 5440 10819

Next, in figure 1, the number of individuals of each type is represented
in front of the total number of individuals in each period (left graphic). Their
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respective logarithms are represented in front of the rate of growth 3 log ρ (solid
line in right graphic).

As it can be noticed, the total number of individuals is not distributed
among the different types according to the vector ν in each period. However if

we represent the cycle ρ2Z
(1)
1 (nd)+ρZ

(1)
2 (nd+1)+Z

(1)
3 (nd+2)+Z

(1)
4 (nd+2) the

proportion of individuals of each type agrees with the values in ν (left graphic
figure 2). In the right graphic the cycle of reproduction Z3(nd + 2) + Z4(nd + 2)
is represented.
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Finally, by considering the process {Z(n)}n≥0 and the cycle ρ2|Z(nd)| +
ρ|Z(nd+1)|+ |Z(nd+2)| the results obtained are analogous to the previous ones,
as it is shown in figures 3 and 4.
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Notice that the proportion of individuals belonging to both reproduction
types in the cycle ρ2(Z3(nd) + Z4(nd)) + ρ(Z3(nd + 1) + Z4(nd + 1)) + Z3(nd +

2) + Z4(nd + 2) is controlled by the vector

(

ν3

ν3 + ν4
,

ν4

ν3 + ν4

)

= (1/3, 2/3).
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