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REGULAR AVERAGING AND REGULAR EXTENSION
OPERATORS IN WEAKLY COMPACT SUBSETS OF

HILBERT SPACES

Spiros A. Argyros, Alexander D. Arvanitakis∗
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Abstract. For weakly compact subsets of Hilbert spaces K, we study the
existence of totally disconnected spaces L, such that C(K) is isomorphic
to C(L).

We prove that the space C(BH) admits a Pe lczyński decomposition and
we provide a starshaped weakly compact K, subset of BH with non-empty
interior in the norm topology, and such that C(K) ∼= C(L) with L totally
disconnected.

1. Introduction. A long standing problem concerning C(K) spaces
was if for every compact Hausdorff space K there exists a compact totally dis-
connected space L such that C(K) is isomorphic to C(L). In the positive direction
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the classical A. Milutin’s theorem ([7]) settles this problem for the case of metriz-
able spaces K. We recall that A. Milutin has shown that if K is compact metric
and uncountable then C(K) is isomorphic to C(C) where C denotes the Cantor
set. Other approaches in this direction have been provided by A. Pe lczyński in
[8], S. Ditor in [3] and Y. Benyamini in [2].

In the non metrizable case, A. Pe lczyński has shown in [8] that if K is
either a compact Abelian group or a Cartesian product of metrizable compact
spaces, then there exists a totally disconnected compact L such that C(K) is
isomorphic to C(L).

On the other hand, recent achievements have settled the problem in the
general case:

Indeed, assuming CH, P. Koszmider, [5], has shown that there is a com-
pact space K, such that for any totally disconnected space L, C(K) is not iso-
morphic to C(L).

Recently, G. Plebanek [9], has obtained the same result without any ad-
ditional axioms. Therefore in the general case the problem has negative solution.

Our main intention on the present paper is to study this problem for K
belonging to the class of connected Eberlein compact sets.

The basic technique of attacking such a problem is due to Milutin and
Pe lczyński and goes as follows:

For a given compact K we are seeking for a totally disconnected space L
such that C(K) is a complemented subspace of C(L) and C(L) is a complemented
subspace of C(K). If in addition for either K or L we have that C(K) ∼= (C(K)⊕
C(K) ⊕ · · ·)0 then Pe lczyński’s decomposition method (see [6, 8]) implies that
C(K) ∼= C(L).

A sufficient condition for the complemented embedding of C(K) into C(L)
is described by A. Pe lczyński in [8] through a continuous onto map φ : L → K that
admits a regular averaging operator. That means that there exists a continuous
s : P(K) → P(L) such that φ∗ ◦ s = idP(K) . Here P(K) and P(L) are the spaces
of regular Borel probability measures endowed with the w∗ topology and φ∗ is the
induced by φ map into these spaces. We refer to section 2 for further definitions.
Also the complemented embedding of C(L) into C(K) follows from the existence
of a continuous injection φ : L → K which admits a regular extension operator.
That means that there exists a continuous s : P(K) → P(L) such that s ◦ φ∗ =
idP(L) .

Summing up all the above we may say that for a given compact K we are
looking for a compact totally disconnected L such that, roughly speaking, P(K)
is a retraction of P(L) and P(L) is a retraction of P(K). Thus this problem is of
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strong topological flavor.
Before passing to describe our result we should mention a result due

to S. Ditor that, in a sense, solves a half of the above mentioned problem of
retractions. S. Ditor in [3] has shown that for every compact K there exists a
totally disconnected compact L, with the same as K topological weight, and a
continuous surjection φ : L → K which admits a regular averaging operator. This
result and the main ideas of its proof play key role in our approach.

It is well known that the class of Eberlein compact spaces is the class
which is nearest to the compact metrizable spaces. On the other hand it is far
away from the class of products of metrizable spaces. So it seems very natural to
consider this problem on this class. Furthermore, it is shown in [1] that if K is
Eberlein compact, then there is a Ditor space L for K which is also an Eberlein
compact. If it is moreover the ball of a Hilbert space endowed with its weak
topology then L can be chosen to be embedable into K. Thus if there existed a
regular extension operator for this embedding then the problem would be settled
in this case. Unfortunately we are not able to prove this assertion.

In the rest of this paper, we will say that X admits a p-Pe lczyński decom-

position if X is isomorphic to (
⊕∞

n=1 X)
p

for some 1 ≤ p < ∞ or p = 0.
Let us explain now the results contained in this paper.
Section 2 is devoted to various definitions and notation.
In section 3 we briefly present some results which will be used in the next

section.
In sections 4 and 5, we prove the following theorems:

Theorem 1.1. Let K be the closed unit ball of an infinite dimensional

Hilbert space with its weak topology. Then C(K) admits a 0-Pe lczyński decompo-

sition.

The proof requires the following steps: First we observe that denoting
with I, C the unit interval and the Cantor set respectively, the spaces C(I ×K)
and C(C × K) are isomorphic. Next, which is the main argument, we show that
the space

C00(I × K) = {f ∈ C(I × K) : f(1, k) = f(−1, k) = 0, for all k ∈ K},

is isomorphic to the space

C00(K) = {f ∈ C(K) : f(x1) = f(x−1) = 0}

for some x1, x−1 ∈ K and this yields the desired result.
Finally, using the fact that K is Eberlein compact, we get that C00(K) is

isomorphic to C(K).
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It follows from our arguments that C(K) ∼= C(I × K). Notice that it is
not clear that I × K and K are homeomorphic.

Theorem 1.2. Let H be a Hilbert space, ǫ > 0. Then there exists a

symmetric, starshaped weakly compact set K and a totally disconnected compact

space L such that BH(1 − ǫ) ⊂ K ⊂ BH(1) and C(K) ∼= C(L).

This result is proved using an iteration method. Let us recall that if K0

is the ball of a Hilbert space, then there exists a Ditor space L1 for K0 such that
L1 is embeddable in K0, but it is not clear whether this embedding admits a
regular extension operator. So in the next step, we take a subspace of K0, let us
call it K1, containing the image of L1, and such that the embedding in K1 does
admit a regular extension operator. The problem now is that L1 is no longer
a Ditor space for K1. So we proceed by constructing L2 which is a Ditor space
for K1 and finding a subspace K2 of K1, such that L2 embeds in K2 by a map
that admits a regular extension operator. The procedure ends up by constructing
two sequences of spaces Kn, and Ln, n ∈ N, and at the end the desired spaces
L and K are obtained as the inverse limits of Kn and Ln. The space L can be
mapped onto K by a map that admits a regular averaging operator and at the
same time it can be embedded in K by a map that admits a regular extension
one. Moreover C(K) admits a 0–Pe lczyński decomposition.

2. Notation and definitions. Let L,K be Hausdorff compact spaces
and φ : L → K a continuous map. We denote by φo : C(K) → C(L) the map
φo(f) = fφ. It is well known that φo is a bounded linear operator and moreover
if φ is onto then φo is an isometric embedding; if φ is one to one then φo is onto.

A bounded operator u : C(L) → C(K) is called regular provided u(f) ≥ 0
whenever f ≥ 0 and u(1L) = 1K , where 1L : L ∋ ℓ 7→ 1 ∈ R is the constant one
function on L.

We say that φ admits a regular averaging operator if there exists a regular
operator u : C(L) → C(K) such that uφo = idC(K) (where by idX we denote the
identity map on X). Also φ admits a regular extension operator if there exists a
regular operator u : C(L) → C(K) such that φou = idC(L) .

We say that φ admits a choice function, if φ is onto and moreover there
exists a continuous map s : K → L such that s(k) ∈ φ−1(k) or equivalently
φs = idK .

We denote by M(K) the regular measures on K. It is well known by
Riesz’s representation Theorem that M(K) can be identified with C(K)∗, i.e.
the dual of C(K). Also, by P(K) is denoted the regular probability measures on
K. Unless otherwise stated P(K) will be endowed with the weak-* topology.
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By δk we denote the Dirac measure on k ∈ K.
By φ∗ is denoted the map (φo)∗|P(L) : P(L) → P(K), i.e. the restriction

of the dual map of φo to P(L).
If x ∈ AΓ and B ⊂ Γ, by x|B is denoted the unique element of AB taking

the same values on B as x, i.e.

x|B(b) = x(b) for every b ∈ B.

3. Some preliminaries. Next we remind the definition and some
notation about trees. A tree of height ω is a partially ordered set by a relation
≺, such that for every t ∈ T, the set {s ∈ T : s ≺ t} is linearly ordered and finite.

If t ∈ T, then the set of immediate successors of t will be denoted by St.
We say that T is finitely branching, if St is finite for every t ∈ T. By B(T ) we
denote the set of branches of T, namely all maximal linearly ordered subsets of
T. B(T ) is naturally topologized by the sets Vt = {b ∈ B(T ) : t ∈ b}.

It can be easily shown that T is finitely branching if and only if B(T ) is
compact. In the sequel we assume that every T has a unique minimal element,
denoted by r(T ).

Finally for t ∈ T, we denote by |t|, the cardinality of the set {s ∈ T : s ≺
t and s 6= t} and for b ∈ B(T ) (respectively t ∈ T ) we denote by b|n, (resp. t|n)
the unique s ∈ b, (resp. s ≺ t) such that |s| = n.

We will make use of the following two theorems. Both are contained in
[1]. The second one is due to A. Pe lczyński and is also contained in [8].

Theorem 3.1. Let T be a finitely branching tree and K a normal topo-

logical space. We assume that to each t ∈ T an open subset Ut of K has been

assigned, such that

(1) Ur(T ) = K.

(2) For every t ∈ T, Ut = ∪{Us : s ∈ St}.

Then there exists a continuous function p : K → (P(B(T )), w∗) such that for

every k ∈ K, p(k) is supported by

{x ∈ B(T ) : k ∈ ∩s∈xUs}.

Theorem 3.2. Let {Li}i∈I , {Ki}i∈I be families of Hausdorff compact

topological spaces and for each i ∈ I, φi : Li → Ki continuous maps. Set

φ : L =
∏

i∈I

Li ∋ (ℓi)i∈I 7→ (φi(ℓi))i∈I ∈
∏

i∈I

Ki = K
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Then

(1) If each φi is onto and admits a regular averaging operator, then also φ is

onto and admits a regular averaging operator.

(2) If each φi is one to one and admits a regular extension operator, then also

φ is one to one and admits a regular extension operator.

Let us make some observations regarding to the function φ∗ introduced
in the previous section. Recall that for a continuous map φ : L → K we have
denoted by φ∗ : P(L) → P(K) the induced affine map. Actually φ∗ could be
also defined as φ∗(p)(A) = p(φ−1(A)), for every p ∈ P(L) and A ⊂ K Borel
measurable set. Therefore we easily obtain that if p ∈ P(L), then supp φ∗(p) ⊂
φ(supp p). These observations lead to the proof of the next lemma which in the
sequel we will repeatedly use.

Lemma 3.3. Let φ : L → K a continuous map with L and K Hausdorff

compact spaces. Assume that M is a closed subset of K. Then (φ∗)−1(P(M)) =
P(φ−1(M)).

The following two Propositions are also contained in [1]. Proposition 3.4
is due to R. Haydon in [4]. We include their proves here for the convenience of
the reader.

Proposition 3.4. Let L,K be Hausdorff compact spaces and φ : L → K
a continuous map.

(1) Assume that φ is onto. Then the following are equivalent:

(a) φ admits a regular averaging operator.

(b) φ∗ admits a choice function, i.e. there exists an one to one continuous

map s : P(K) → P(L) such that φ∗s = idP(K) .

(c) There exists a continuous map v : K → P(L) such that φ∗v(k) = δk

for all k ∈ K.

(d) There exists a continuous map u : K → P(L) such that u(k) is sup-

ported by φ−1(k).

(2) Assume that φ is one to one. Then the following are equivalent:

(a) φ admits a regular extension operator.

(b) φ∗ is a choice function for some continuous s : P(K) → P(L), i.e.

sφ∗ = idP(L) .
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(c) There exists a continuous map v : K → P(L) such that vφ(ℓ) = δℓ for

all ℓ ∈ L.

P r o o f. 1. Lemma 3.3 yields that condition 1c is equivalent to 1d. For
the remaining conditions:

1a ⇒ 1b. Let u be the regular averaging operator for φ. Then uφo =
idC(K) and consequently (φo)∗u∗ = idM(K) . Therefore it suffices to show that for
all p ∈ P(K), u∗(p) ∈ P(L), since then the map s = u∗|P(K) would be the choice
function for φ∗. Observe that for f ∈ C(L), f ≥ 0, u∗(p)(f) = p(u(f)) ≥ 0 and
hence u∗(p) is a positive measure. Moreover u∗(p)(1L) = p(u(1L)) = p(1K) = 1
and therefore u∗(p) is a probability measure.

1b ⇒ 1c. Let s be the choice function for φ∗. Setting j : K ∋ k 7→ δk ∈
P(K), it is easy to see that v = sj is the required map.

1c ⇒ 1a. Set u : C(L) → C(K) by u(f)(k) = v(k)(f). It is easy to see
that u(f) is indeed a continuous function on K and that u is a linear bounded
operator such that u(f) ≥ 0 whenever f ≥ 0 and u(1L) = 1K . Moreover for
f ∈ C(K), uφo(f)(k) = v(k)(φo(f)) = φ∗v(k)(f) = δk(f) = f(k) for all k ∈ K,
so that uφo(f) = f and hence uφo = idC(K) .

2. 2a ⇒ 2b. Let u be the regular extension operator for φ. Then φou =
idC(L) and consequently u∗(φo)∗ = idM(L) . As before, if p ∈ P(K), then u∗(p) ∈
P(L) and hence s = u∗|P(K) is the required map.

2b ⇒ 2c. Let s : P(K) → P(L) such that sφ∗ = idP(L) . For j : K ∋ k 7→
δk ∈ P(K) simply set v = sj.

2c ⇒ 2a. Set u : C(L) → C(K) by u(f)(k) = v(k)(f). Then u is a regular
operator and for f ∈ C(L) and ℓ ∈ L, φou(f)(ℓ) = u(f)(φ(ℓ)) = vφ(ℓ)(f) =
δℓ(f) = f(ℓ), hence φou = idC(L) . �

Proposition 3.5. Assume that L,K are Hausdorff compact spaces, and

φ : L → K a continuous onto map which admits a regular averaging operator.

Moreover assume that M is a closed subset of K. Then the map φ|φ−1(M) :
φ−1(M) → M admits a regular averaging operator.

P r o o f. Since φ admits a regular averaging operator, there is a continuous
s : K → P(L) such that s(k) is supported by φ−1(k). Thus if k ∈ M, s(k) is
always supported by φ−1(M) and therefore s(M) ⊂ P(φ−1(M)). Hence s|M is
the required by Proposition 3.4, case 1d map. �

The next Lemma gives a concrete continuous map φ : {−1, 0, 1}N →
[−1, 1] that admits a regular averaging operator.

What we are planning to do here, is to fix a sequence {rn} of positive
real numbers that sum up to one, so that for any x ∈ {−1, 0, 1}N, |φ(x)| =
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∑

n∈N

|x(n)| · rn. This will be very useful in the sequel, since we are planning to

use this map in weak-* compact subsets of ℓ1(Γ) for some set Γ. By that point
of view, the above relation shows that modulo the sequence {rn}, the ℓ1-norm
remains the same between x and φ(x).

For appropriately chosen sequence {rn}, φ admits a regular averaging
operator. The only problem here is to find for a particular x whether it will be
mapped on

∑

n∈N

|x(n)|rn or on −
∑

n∈N

|x(n)|rn. This can be fixed by observing the

sign of x(n) for the least n such that x(n) 6= 0.

Lemma 3.6. The map φ : {−1, 0, 1}N → [−1, 1] defined by

φ(x) =























∑

n∈N

|x(n)|rn if x(min{n ∈ N : x(n) 6= 0}) = 1

−
∑

n∈N

|x(n)|rn if x({min{n ∈ N : x(n) 6= 0}) = −1

0 else

where rn =
1

3

(

2

3

)n−1

, is continuous onto and admits a regular averaging opera-

tor.

P r o o f. The fact that φ is continuous onto can be easily checked. For the
rest, let t ∈ {−1, 0, 1}k . Set

k0 = least n ≤ k such that t(n) 6= 0,

if there exists such a k0, and

Vt = {x ∈ {−1, 0, 1}N : x(1) = t(1), . . . , x(k) = t(k)}

the usual clopen subset of {−1, 0, 1}N. Since
∞
∑

n=k+1

rn =

(

2

3

)k

, an easy calcula-

tion shows that

φ(Vt) =











































[

k
∑

n=1
|t(n)|rn,

k
∑

n=1
|t(n)|rn +

(

2

3

)k
]

, if t(k0) = 1

[

−
k
∑

n=1
|t(n)|rn −

(

2

3

)k

, −
k
∑

n=1
|t(n)|rn

]

, if t(k0) = −1

[

−

(

2

3

)k

,

(

2

3

)k
]

, else, if k0 does not exist.
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and moreover

(φ(Vt))
o = (φ(Vt⌢(−1))

o ∪ (φ(Vt⌢0))o ∪ (φ(Vt⌢1))o.

Here, we denote by Xo the interior of a set X, and by t ⌢ i the element of
{−1, 0, 1}k+1 extending t by i.

Thus, assigning to each t, the open subset Ut = (φ(Vt))
o of K, the

conditions of Theorem 3.1 are fulfilled so that there exists a continuous map
s : [−1, 1] → P({−1, 0, 1}N) such that for any k, s(k) is supported by

{x ∈ {−1, 0, 1}N : k ∈ ∩n∈N(φ(Vx|n))o}.

Since now φ is continuous and {Vt}t form a basis for {−1, 0, 1}N, it follows that
for any such x, φ(x) = k, so that s(k) is also supported by φ−1(k). Thus by
Proposition 3.4, φ admits a regular averaging operator. �

In what follows, for any set Γ, we will denote by φΓ : {−1, 0, 1}Γ×N →
[−1, 1]Γ, the combined map (φ)γ∈Γ where φ is the map of the previous lemma. By
Theorem 3.2, φΓ admits also a regular averaging operator. Thus for any γ ∈ Γ,

φΓ(x)(γ) =























∑

n∈N

|x(γ, n)|rn if x(γ, min{n ∈ N : x(γ, n) 6= 0}) = 1

−
∑

n∈N

|x(γ, n)|rn if x(γ, min{n ∈ N : x(γ, n) 6= 0}) = −1

0 else.

In any case, denoting by ‖ · ‖ the ℓ1-norm we get that

‖φΓ(x)‖ =
∑

γ∈Γ

∑

n∈N

|x(γ, n)|rn.

For any closed subset K of [−1, 1]Γ, the restriction of φΓ to φ−1
Γ (K), also

admits a regular averaging operator, by Proposition 3.5. This restricted map will
be also denoted by φΓ, for the shake of simplicity in notation.

The next lemma is crucial:

Lemma 3.7. Let K be a compact space, Γ a set and F γ
−1, F

γ
0 , F γ

1 , γ ∈ Γ
a family of closed subsets of K, such that for each γ ∈ Γ

(F γ
−1)o ∪ (F γ

0 )o ∪ (F γ
1 )o = K.

Then there exists a continuous map s : K → P({−1, 0, 1}Γ), such that for each

k ∈ K, s(k) is supported by the set

x ∈ {−1, 0, 1}Γ : k ∈ ∩γ∈ΓKγ

x(γ)}.
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P r o o f. For each γ ∈ Γ, consider the compact space Lγ which is the
disjoint union of F γ

−1, F γ
0 and F γ

1 . We can visualize the space Lγ as the set

{(i, k) : i = −1, 0 or 1 and k ∈ Kγ
i },

equipped with the product topology.
Next we argue that the natural projection map φγ : Lγ ∋ (i, k) 7→

k ∈ K admits a regular averaging operator. (This is a result due to S. Di-
tor in [3].) Indeed, fixing a partition of unity {fγ

−1, f
γ
0 , fγ

1 } subordinated to
{(F γ

−1)o, (F γ
0 )o, (F γ

1 )o}, the map

sγ : K ∋ k 7→
∑

i∈{−1,0,1}

fγ
i (k)δ(i,k) ∈ P(Lγ),

where we denote by δx the Dirac measure supported by x, is continuous and
since φ−1

γ (k) = {(−1, k), (0, k), (1, k)} ∩ Lγ , it has the property that for every
k ∈ K, sγ(k) is supported by φ−1

γ (k). Then by Proposition 3.4, φγ admits a
regular averaging operator.

By Pe lczyński’s Theorem 3.2, the combined map

φ :
∏

γ∈Γ

Lγ ∋ (xγ)γ∈Γ 7→ (φγ(xγ))γ∈Γ ∈
∏

γ∈Γ

K

admits also a regular averaging operator. Identifying every k ∈ K with the
element (k)γ∈Γ of

∏

γ∈Γ K we can view K as a subset of
∏

γ∈Γ K and by Proposi-

tion 3.5, the restriction of φ to φ−1(K) admits also a regular averaging operator.
Now, again by Proposition 3.4, this means that there exists a continuous map
R : K → P(

∏

γ∈Γ Lγ) such that for each k ∈ K, R(k) is supported by φ−1(k)
which in this case is the set

{((x(γ), k))γ∈Γ : k ∈ F γ
x(γ) for all γ}.

Letting moreover

t :
∏

γ∈Γ

Lγ ∋ ((x(γ), kγ))γ∈Γ 7→ (x(γ))γ∈Γ ∈ {−1, 0, 1}Γ

we get that t is a continuous map and for every k ∈ K, t∗◦R(k) will be supported
by

{(x(γ))γ∈Γ : k ∈ F γ

x(γ), for all γ}.
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Therefore setting s = t∗ ◦ R we get what we want. �

4. C(BH) admits a Pe lczyński decomposition. The following
Theorem shows that if K is the closed unit ball of a Hilbert space (Bℓ2(Γ), w), we
can use Pe lczyński’ s decomposition method since C(K) = (

⊕

n∈N
C(K))0.

Theorem 4.1. Let K be the closed unit ball of an infinite dimensional

Hilbert space with its weak topology. Then C(K) admits a 0-Pe lczyński decompo-

sition.

P r o o f. Let C = {−1, 1}N be the Cantor space and I = [−1, 1]. We define
the following Banach spaces:

C00(I × K) = {f ∈ C(I × K) : f(1, k) = f(−1, k) = 0, for all k ∈ K}.

C00(C × K) = {f ∈ C(C × K) : f(t1, k) = f(t−1, k) = 0, for all k ∈ K},

where t1 and t−1 are the constant 1 and the constant −1 sequences in C.
We proceed by proving some facts about these spaces:
Fact 1. C(C × K) is isomorphic to (C(C × K) ⊕ C(C × K) ⊕ · · ·)0.
Set Vn = {t ∈ C : t(1) = · · · = t(n − 1) = −1 and t(n) = 1} and

t−1 = (−1,−1, . . .) ∈ C. Define now

T : C(C × C × K) → C({t−1} × C × K) ⊕ (
∞
⊕

n=1

C(Vn × C × K))0

where T (f) = (f0, (fn)n) and f0 = f ↾ {t−1} × C × K, fn(t, s, k) = f(t, s, k) −
f(t−1, s, k). Clearly every fn is a continuous function on Vn × C × K and it can
be easily checked that ‖fn‖ → 0. Moreover T is linear and ‖T (f)‖ ≤ 2‖f‖. We
define also

S : C({t−1} × C × K) ⊕

(

∞
⊕

n=1

C(Vn × C × K)

)

0

→ C(C × C × K)

with

S(f0, (fn)n)(t, s, k) =

{

f0(t−1, s, k), if t = t−1

fn(t, s, k) + f0(t−1, s, k) if t ∈ Vn.

We can easily check that S(f0, (fn)n) is a continuous function on C×C×K
and moreover S ◦ T = T ◦ S = id . Therefore T is an isomorphism.



538 Spiros A. Argyros, Alexander D. Arvanitakis

Since every one of {t−1} × C, Vn × C, C × C is homeomorphic to C, we
conclude that

C(C × K) ∼= (C(C × K) ⊕ C(C × K) ⊕ · · ·)0.

Fact 2. C00(C × K) is isomorphic to C(C × K).

Using Fact 1 and Pe lczyński’s decomposition method, it suffices to prove
that C00(C × K) →֒⊥ C(C × K) and C(C × K) →֒⊥ C00(C × K).

Since C00(C × K) is a closed subspace of C(C × K), it suffices to show
that it is also complemented. Set V(1) = {T ∈ C : t(1) = 1} and V(−1) = {t ∈ C :
t(1) = −1}. Define T : C(C × K) → C00(C × K) with

T (f)(t, k) =

{

f(t, k) − f(t1, k), if t ∈ V(1),

f(t, k) − f(t−1), if t ∈ V(−1).

Here t1 and t−1 are respectively the constant 1 and the constant −1 sequence.
Clearly T (f) ∈ C00(C × K), T is linear, ‖T‖ ≤ 2 and T (f) = f for every f ∈
C00(C×K). Therefore C00(C×K) is indeed a complemented subspace of C(C×K).

For the other direction, let V−1, V0, V1 be three pairwise disjoint clopen
subsets of C such that V−1 ∪ V0 ∪ V1 = C and let t−1 ∈ V−1, t1 ∈ V1. C(V0 × K)
can be naturally embedded in C00(C ×K) by extending every function to be zero
outside V0, i.e. let T : C(V0 × K) → C00(C × K) with

T (f)(t, k) =

{

f(t, k) if t ∈ V0,

0, otherwise.

We can also project C00(C × K) on C(V0 × K) by P : C00(C × K) →
C(V0 × K) where P (g) = g ↾ V0 × K. Since P ◦ T = id and they are both linear
and bounded, we get that C(V0 ×K) →֒⊥ C00(C ×K). Since V0 is homeomorhpic
to C, we obtain the desired result.

Fact 3. C00(I×K) is isomorphic to C00(C×K) and C(I×K) is isomorphic
to C(C × K).

We fix a θ : C → I which is continuous onto and admits a regular averaging
operator. Moreover we assume that θ−1(1) = t1 = (1, 1, . . .) and θ−1(−1) = t−1 =
(−1,−1, . . .). Such a map is for example

θ : {−1, 1}N ∋ x 7→
1

4

∞
∑

n=1

x(n)
(3

4

)n−1
∈ [−1, 1].
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Using Theorem 3.1 it can be easily checked as we have already done for φ in
Lemma 3.6, that θ admits a regular averaging operator.

We fix also an embedding π : C → I such that π(t1) = 1 and π(t−1) = −1.
Let

(θ, i) : C × K ∋ (t, k) 7→ (θ(t), k) ∈ I × K and

(π, i) : C × K ∋ (t, k) 7→ (π(t), k) ∈ I × K.

By Theorem 3.2, (θ, i) admits a regular averaging operator and (π, i) a
regular extension one. Using Fact 1 and Pe lczyński’s decomposition method, we
conclude that C(I ×K) ∼= C(C ×K). Next, since (θ, i)({t1}×K) = {1} ×K and
(θ, i)({t−1} × K) = {−1} × K we have that (θ, i)o(C00 × K)) ⊂ C00(C × K).

On the other hand, if u is a regular averaging operator for (θ, i), since

(θ, i)−1({1} × K) = {t1} × K and (θ, i)−1({−1} × K) = {t−1} × K

we get that u(C00(C×K)) ⊂ C00(I×K). Therefore C00(I×K) is a complemented
subspace of C00(C × K).

Using similar arguments we show that C00(C × K) is a complemented
subspace of C00(I × K).

By Facts 1 and 2 we gave that C00(C × K) ∼= (⊕n∈NC00(C × K))0 and
therefore by Pe lczyński’s decomposition method we conclude that C00(C ×K) ∼=
C00(I × K).

Since Γ is infinite, for an element δ not in Γ, we have that

K = (Bℓ2(Γ), w) ∼ (Bℓ1(Γ), w
∗) ∼ (Bℓ1({δ}∪Γ), w

∗).(1)

Therefore we may assume that K = (Bℓ1({δ}∪Γ), w
∗).

Let x1, x−1 be the unique elements of K such that x1(δ) = 1 and x−1(δ) =
−1 and set C00(K) = {f ∈ C(K) : f(x1) = f(x−1) = 0}. Then

Fact 4. C00(I × K) is isomorphic to C00(K).
According to (1), it is the same and more convenient in notation to prove

that C00(I × Bℓ1(Γ)) ∼= C00(Bℓ1({δ}∪Γ)). We define a function ρ : I × Bℓ1(Γ) →
Bℓ1({δ}∪Γ) with ρ(t, x) = (t, (1 − |t|)x) i.e.

ρ(t, x)(γ) =

{

t, if γ = δ
(1 − |t|) · x(γ) if γ 6= δ

.

ρ is continuous and we claim that ρo : C(Bℓ1({δ}∪Γ)) ∋ f 7→ f ◦ ρ ∈ C(I ×
Bℓ1(Γ)) restricted to C00(Bℓ1({δ}∪Γ)) is an isomorphism between C00(Bℓ1({δ}∪Γ))
and C00(I × Bℓ1(Γ)). First since ρ maps (1, x) to (1, 0) = x1 and (−1, x) to
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(−1, 0) = x−1 we get that ρo maps C00(Bℓ1({δ}∪Γ)) to C00(I × Bℓ1(Γ)). Next we
can easily check that for any (t, y) ∈ Bℓ1({δ}∪Γ)), ρ−1(t, y) is non empty. So ρo is
one-to-one. Moreover in the case where |t| 6= 1, ρ−1(t, y) is the single point set
{

(t,
1

1 − |t|
y)

}

. Therefore if g ∈ C00(I×Bℓ1(Γ)), we may define f : Bℓ1({δ}∪Γ) → R

by:

f(t, y) =

{

0, if |t| = 1

g(ρ−1(t, y)), if |t| < 1.

It is easy to check that since g ∈ C00(I × Bℓ1(Γ)), f is continuous and in fact in
C00(Bℓ1({δ}∪Γ)). Moreover

ρo(f)(t, x) = f(ρ(t, x)) =

{

0, if |t| = 1

g(t, x), if |t| < 1
= g(t, x).

Therefore ρo is indeed an isomorphism between C00(Bℓ1({δ}∪Γ)) and C00(I ×
Bℓ1(Γ)).

Fact 5. C00(K) is isomorphic to C(K).
Since K is Eberlein compact, we get that for some X complemented

subspace of C(K),

C(K) ∼= X ⊕ c0(N) ∼= X ⊕ c0(N \ {1, 2}) ∼= C(K)/R
2 ∼= C00(K).

So, by fact 5, C(K) ∼= C00(K), by Fact 4, C00(K) ∼= C00(I ×K), by Fact
3, C00(I × K) ∼= C00(C × K), by Fact 2, C00(C × K) ∼= C(C × K) and finally
by Fact 1, C(C × K) ∼= (C(C × K) ⊕ C(C × K) ⊕ · · ·)0 and this concludes the
proof. �

Remark 4.2. Notice that the proof implies that C(K) is isomorphic to
C(I × K) although it is not clear if the spaces K and I × K are homeomorphic.

Let us observe that all steps in proving the previous theorem, except
Fact 4 are valid for any Eberlein compact set. Fact 4 requires some additional
properties for K, namely if K is a closed subspace of (Bℓ1(Γ), w

∗) we moreover
need the following two properties:

• K is homeomorphic to the subspace of I ×K, K ′ = {(t, k) : t ∈ [−1, 1], k ∈
K and |t| +

∑

γ∈Γ |k(γ)| ≤ 1}.

• K must be starshaped, in order to ensure that ρ : I ×K ∋ (t, k) 7→ (t, (1 −
|t|k) takes values in K ′.
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So, the following proposition generalizes Theorem 4.1:

Proposition 4.3. Let K be a starshaped weak∗ compact subset of ℓ1(Γ)
for some set Γ, which is homeomorphic to the space K ′ = {(t, k) ∈ I × K :
|t| +

∑

γ∈Γ

|k(γ)| ≤ 1}.

Then C(K) admits a 0–Pe lczyński decomposition.

5. A starshaped weakly compact subset of BH.

Theorem 5.1. Let H be a Hilbert space, ǫ > 0. Then there exists a

symmetric, starshaped weakly compact set K and a totally disconnected compact

space L such that BH(1 − ǫ) ⊂ K ⊂ BH(1) and C(K) ∼= C(L).

Here, we denote by BH(δ) the closed δ–ball of H centered at 0.
P r o o f. Let H = ℓ2(Γ) for a set Γ. It is well known that the map

BH(δ) ∋ (x(γ))γ∈Γ 7→ ((x(γ))2 · sgn x(γ))γ∈Γ ∈ Bℓ1(Γ)(δ),

where sgn x(γ) is the sign of x(γ), is a weak-weak* homeomorphism of BH(δ)
and Bℓ1(Γ)(δ). Therefore, it suffices to prove the statement replacing H by ℓ1(Γ),
in which case the closed balls are endowed with the weak* topology.

The proof will follow by an inductive construction. Let us indicate the
first step of it.

For any set E, let us denote by φE : {−1, 0, 1}E×N → [−1, 1]E the map
defined by the rule

φE(x)(e) =























∑

n∈N

|x(e, n)|rn if x(e, min{n ∈ N : x(e, n) 6= 0}) = 1

−
∑

n∈N

|x(e, n)|rn if x(e, min{n ∈ N : x(e, n) 6= 0}) = −1

0 else

where {rn} is an appropriately chosen sequence of real numbers, so that φE is
onto and admits a regular averaging operator, according to the comments that
follow Lemma 3.6. Since obviously we can consider Bℓ1(Γ)(1) as a closed subset

of [−1, 1]Γ, the map

φΓ|φ
−1
Γ (Bℓ1(Γ)(1)) : φ−1

Γ (Bℓ1(Γ)(1)) → Bℓ1(Γ)(1),

which we will also denote by φΓ, does admit a regular averaging operator by
Proposition 3.5. Observe now that thanks to the appropriate choice of φΓ, if
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L1 = φ−1
Γ (Bℓ1(Γ)(1)) then

x ∈ L1 ⇐⇒ φΓ(x) ∈ Bℓ1(Γ)(1) ⇐⇒
∑

γ∈Γ

|φΓ(x)(γ)| ≤ 1

⇐⇒
∑

γ∈Γ

∑

n∈N

|x(γ, n)|rn ≤ 1.

The last equivalence indicates that we can consider φ−1
Γ (Bℓ1(Γ)(1)) as a closed

subset of Bℓ1(Γ×N)(1) by corresponding to each x ∈ φ−1
Γ (Bℓ1(Γ)(1)) the element x′

of Bℓ1(Γ×N)(1) with x′(γ, n) = x(γ, n) ·rn. The problem is that we can’t show that
this embedding admits a regular extension operator. (Observe that for infinite Γ,
Bℓ1(Γ)(1) and Bℓ1(Γ×N)(1) are the same as topological spaces.) We must restrict
ourselves to a slightly smaller part of Bℓ1(Γ×N), let us call it K1, in order to assure

that it does. But yet φ−1
Γ×N

(K1) will not be the same as L1. So, the purpose of
our construction is to find in the n-th step a totally disconnected space Ln+1 that
maps onto Kn by a map that admits a regular averaging operator and to alter
a bit Kn into Kn+1 such that Ln+1 can be embedded in Kn+1 by an embedding
that admits a regular extension operator. At the end, having done this infinitely
many times, we end up to L and K which have the desired properties.

In order to give the details of the construction, let us introduce some
notation.

We set Γ0 = Γ and for n ∈ N,

Γn = Γ ∪ (Γ × N) ∪ . . . ∪ (Γ × N
n),

∆n = (Γ × N) ∪ . . . ∪ (Γ × N
n).

Since we can view ∆n+1 as Γn × N, we can consider that φΓn
: {−1, 0, 1}∆n+1 →

[−1, 1]Γn . We will use the sequence {rn} defined earlier and also a decreasing

sequence {hn} of real numbers greater than 1 such that
∏

n∈N

hn =
1

1 − ǫ
where ǫ

is a given positive number.
Given x ∈ [−1, 1]Γn we define the corresponding element x in {−1, 0, 1}∆n

as follows: For any (γ, k1, k2, . . . , km) ∈ ∆n,

x(γ, k1, k2, . . . , km) =































1, if x(γ, k1, k2, . . . , km) >
rkm

hm

0, if −
rkm

hm
≤ x(γ, k1, k2, . . . , km) ≤

rkm

hm

−1, if x(γ, k1, k2, . . . , km) < −
rkm

hm

.
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It will be clear later on that x is a measure of whether or not x can be considered
as an element of Kn. The sets Kn and Ln will be defined as subsets of [−1, 1]Γn

and {−1, 0, 1}∆n respectively:
Let K0 = Bℓ1(Γ)(1) ⊂ [−1, 1]Γ0 .

Having defined Kn ⊂ [−1, 1]Γn and Ln ⊂ {−1, 0, 1}∆n , we define Ln+1 =
φ−1

Γn

(Kn) ⊂ {−1, 0, 1}∆n+1 so that φΓn
: Ln+1 → Kn is onto and admits a regular

averaging operator. Now, we define Kn+1,

Kn+1 = {x ∈ Bℓ1(Γn+1)(1) : x ∈ Ln+1}.

As mentioned earlier Ln+1 is always embeddable in Bℓ1(Γn+1)(1). The last condi-
tion will assure us that this embedding does admit a regular extension operator.

Next we prove some useful facts about Kn and Ln.

Fact 1. For every n, Kn is starshaped and symmetric and Ln is adequate
and symmetric.

Clearly K0 is starshaped and symmetric being the unit ball of ℓ1(Γ).
Admitting that this holds for Kn, the adequacy and symmetricity of Ln+1 follows
immediately from its definition, the starshapeness and symmetricity of Kn. Then
it can be easily proved that Kn+1 is also starshaped and symmetric.

Fact 2. For every n, Kn and Ln are compact.
K0 is definitely compact and the compactness of Kn yields the compact-

ness of Ln+1. To prove that Kn+1 is compact, let x ∈ [−1, 1]Γn+1 \ Kn+1. Since
Bℓ1(Γn+1)(1) is closed in [−1, 1]Γn+1 we can assume that x 6∈ Ln+1. Since Ln+1 is a

compact subset of {−1, 0, 1}∆n+1 there must exist a finite subset A of ∆n+1 such
that no element of Ln+1 agrees with x on A. Since moreover by Fact 1, Ln+1 is
adequate we can subtract from A all its coordinates a such that x(a) = 0, so that
we can assume that for every a ∈ A, x(a) 6= 0. Then the set

U =

{

y ∈ [−1, 1]Γn+1 : For all a = (γ, k1, . . . , km) in A

|y(γ, k1, . . . , km)| >
rkm

hm
⇐⇒ |x(γ, k1, . . . , km)| >

rkm

hm

}

is an open subset of [−1, 1]Γn+1 containing x and having the property that for
every y ∈ U, y 6∈ Ln+1, therefore U ∩ Kn+1 = ∅.

Fact 3. The map φΓn
: Ln+1 → Kn is onto and admits a regular averaging

operator.
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This follows immediately from the definition of Ln+1 and Proposition 3.5.

Fact 4. For every n, Kn+1|Γn = Kn and Ln+1|∆n = Ln.
Here, by Kn+1|Γn we mean the set

{x ∈ [−1, 1]Γn : There exists y in Kn+1, y|Γn = x}.

Clearly K1|Γ0 = K0 = Bℓ1(Γ) since L1 is a subset of {−1, 0, 1}Γ×N and therefore
it imposes no restriction on the coordinates of K1 coming from Γ. Assuming now
that Kn+1|Γn = Kn, we observe that for any γ in Γn and x ∈ {−1, 0, 1}∆n+2 ,
the value of φΓn+1

(x) in γ depends only on the coordinates of ∆n+2 that actually
come from ∆n+1, so that φΓn+1

(x)|Γn = φΓn
(x|∆n+1) and therefore

Ln+2|∆n+1 = φ−1
Γn+1

(Kn+1)|∆n+1 = φ−1
Γn

(Kn+1|Γn) = φ−1
Γn

(Kn) = Ln+1.

Now, using the same argument as before, since Ln+2|∆n+1 = Ln+1, Ln+2 im-
poses the same restrictions on the coordinates of Kn+2 coming from Γn+1, as
Ln+1imposes on the coordinates of Kn+1, therefore Kn+2|Γn+1 = Kn+1.

Fact 5. For every n, if x is an element of ℓ1(Γn) \ Kn, then ‖h1h2 · · ·hn ·
x‖ > 1.

If x is as above, define the following element x′ of ℓ1(Γn):

x′(γ, k1, . . . , km) = h1 · · ·hm · x(γ, k1, . . . , km).

Then obviously for every δ ∈ Γn, |x′(δ)| ≤ h1 · · ·hn|x(δ)| and the fact will fol-
low easily if we prove that ‖x′‖ > 1. The key observation here is that for any
(γ, k1, . . . , km) ∈ Γn,

rkm
· |x(γ, k1, . . . , km)| ≤ hm · |x(γ, k1, . . . , km)|(2)

and it follows easily from the definition of x.
We prove inductively on n that ‖x′‖ > 1.
For n = 1 either x 6∈ Bℓ1(Γ1) and therefore also ‖x′‖ > 1, or it must be

the case that x 6∈ L1. Thus φΓ0
(x) 6∈ Bℓ1(Γ)(1) and therefore, by the definition of

the map φΓ0
,

∑

γ∈Γ

|φΓ0
(x)(γ)| > 1 ⇒

∑

γ∈Γ

∑

k∈N

|x(γ, k)|rk > 1.

Using (2) we get that
∑

γ∈Γ

∑

k∈N

h1 · |x(γ, k)| > 1 and thus

∑

γ∈Γ

∑

k∈N

h1 · |x(γ, k)| +
∑

γ∈Γ

|x(γ)| > 1
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which shows that ‖x′‖ > 1.

Let now x ∈ ℓ1(Γn+1)\Kn+1. As before this means that either ‖x‖ > 1 in
which case also ‖x′‖ > 1, or φΓn

(x) 6∈ Kn and by the inductive hypothesis we infer
that ‖(φΓn

(x))′‖ > 1. Thus, setting for simplicity δ = (γ, k1, . . . , km) ∈ Γ × N
m,

1 < ‖(φΓn
(x))′‖ =

n
∑

m=0

∑

δ∈Γ×Nm

h1 · · ·hm|φΓn
(x)(δ)| =

=

n
∑

m=0

∑

δ∈Γ×Nm

h1 · · ·hm ·
∑

l∈N

rl · |x(δ, l)|

Using again (2) we get

1 <
n
∑

m=0

∑

(δ,l)∈Γ×Nm+1

h1 · · ·hmhm+1|x(δ, l)| ≤ ‖x′‖.

Fact 6. For every n, there is an embedding in : Ln → Kn that admits a
regular extension operator.

We define in : Ln → Kn by the following rule:

in(x)(δ) =

{

0 if δ ∈ Γ
rkm

· x(δ) if δ = (γ, k1, . . . , km) ∈ Γ × N
m .

Clearly in is continuous and 1–1. Also it is easy to see that ‖in(x)‖ = ‖φΓn−1
(x)‖

and therefore in(x) ∈ Bℓ1(Γn)(1). Moreover in(x) = x ∈ Ln and thus in(x) ∈ Kn.

We will make use of Lemma 3.7 and Proposition 3.4 in order to show that
in admits a regular extension operator.

For any δ = (γ, k1, . . . , km) ∈ Γn \ Γ we find two real numbers ω0(δ) and
ω1(δ) such that

rkm

hm
< ω1(δ) < ω0(δ) < rkm

.(3)

Denoting by pδ the projection of Kn onto the δ-coordinate, we define

F δ
−1 = p−1

δ ([−1,−ω1(δ)]), F δ
0 = p−1

δ ([−ω0(δ), ω0(δ)]), F δ
1 = p−1

δ ([ω1(δ), 1]).

Then clearly by (3),

(F δ
−1)o ∪ (F δ

0 )o ∪ (F δ
1 )o = Kn
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so that the hypothesis of Lemma 3.7 are fulfilled. Thus there exists a continuous
sn : Kn → P({−1, 0, 1}∆n ) such that for every k ∈ Kn, sn(k) is supported by

{x ∈ {−1, 0, 1}∆n : k ∈ ∩δ∈∆n
F δ

x(δ)}.

Let x be in the support of sn(k) for some k ∈ Kn. Then for any δ = (γ, k1, . . . , km)

in ∆n if |x(δ)| = 1, then |k(δ)| ≥ ω1(δ) >
rkm

hm
and hence |k(δ)| = 1. Thus

|x(δ)| ≤ |k(δ)| for all δ ∈ ∆n and since k ∈ Ln, it follows by Fact 1 that x ∈ Ln.
Therefore actually sn : Kn → P(Ln). Now by Proposition 3.4 it suffices to show
that sn ◦ in(x) = δx, where δx is as usual the Dirac measure supported by x, for
every x ∈ Ln. So let x′ be in the support of sn ◦ in(x). Then in(x) ∈ ∩δ∈∆n

Fx′(δ)

and since for any δ ∈ ∆n, in(x)(δ) can only take the values −rkm
, 0 and rkm

if
x(δ) = −1, 0 or 1 respectively it follows that for any such δ, x(δ) = x′(δ) and
hence x = x′.

We set ∆∞ = ∪
n∈N

∆n and Γ∞ = ∪
n∈N

Γn and we define K ⊂ [−1, 1]Γ∞ , L ⊂

{−1, 0, 1}∆∞ by the rules

x ∈ K ⇐⇒ for all n ∈ N, x|Γn ∈ Kn

x ∈ L ⇐⇒ for all n ∈ N, x|∆n ∈ Ln.

It follows by Fact 4 that K and L are well defined compact subspaces of [−1, 1]Γ∞

and {−1, 0, 1}∆∞ respectively.
Since Γ∞ × N = ∆∞, we can consider the map φΓ∞

: {−1, 0, 1}∆∞ →
[−1, 1]Γ∞ . For any x ∈ {−1, 0, 1}∆∞ and for any δ ∈ Γn, φΓ∞

(x)(δ) =
φΓn

(x|∆n+1)(δ) and thus φΓ∞
(x)|Γn = φΓn

(x|∆n+1). It follows that

x ∈ L ⇐⇒ For all n, x|∆n+1 ∈ Ln+1 ⇐⇒ For all n, φΓn
(x|∆n+1) ∈ Kn

⇐⇒ For all n, φΓ∞
(x)|Γn ∈ Kn ⇐⇒ φΓ∞

(x) ∈ K.

Therefore φ−1
Γ∞

(K) = L and thus φΓ∞
: L → K is onto and admits a regular

averaging operator.
Consider now the map i : L → K defined by:

i(x)(δ) =

{

0 if δ ∈ Γ

rkm
· x(δ) if δ = (γ, k1, . . . , km) ∈ Γ × N

m

Then exactly as in Fact 6, it turns out that i is one to one and admits a regular
extension operator.
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Thus C(K) is a complemented subspace of C(L) and C(L) is a comple-
mented subspace of C(K).

It remains to prove that Bℓ1(Γ∞)(1 − ǫ) ⊂ K ⊂ Bℓ1(Γ∞)(1). Since for
every x ∈ K and n ∈ N, x|Γn ∈ Kn, it follows that

∑

δ∈Γn

|x(δ)| ≤ 1. Thus also
∑

δ∈Γ∞

|x(δ)| ≤ 1 and this settles that K ⊂ Bℓ1(Γ∞)(1).

For the other inclusion, if x is an element of ℓ1(Γ∞) and not of K, then
for some n, x|Γn ∈ ℓ1(Γn)\Kn. By Fact 5 then ‖h1h2 · · · hn ·x‖ > 1 and thus also

‖x‖ >
1

∏

n∈N
hn

= 1 − ǫ,

by the choice of the sequence {hn}.
It is easy to verify that the space K satisfies the two properies of Proposi-

tion 4.3 and therefore C(K) ∼= (C(K)⊕C(K)⊕· · ·)0. By applying now Pe lczyński’s
decomposition method we conclude that C(K) ∼= C(L). �

Remark 5.2. We would like to mention here that the construction can
be carried out in the case where instead of a Hilbert space H, we have a reflexive
Banach space X with an one symmetric and one unconditional basis.

We conclude this section with two questions which, for us, are open:

Problem 1. If H is as in the above theorem is C(BH) isomorphic to

C(L) for some L totally disconnected?

Problem 2. More generally, does there exist K weakly compact, convex,

non-metrizable subset of a Banach space X with C(K) ∼= C(L) for some L totally

disconnected?
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