Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

A NOTE ON ELEMENTARY DERIVATIONS

Joseph Khoury
Communicated by V. Drensky

Abstract

Let R be a UFD containing a field of characteristic 0 , and $B_{m}=R\left[Y_{1}, \ldots, Y_{m}\right]$ be a polynomial ring over R. It was conjectured in [5] that if D is an R-elementary monomial derivation of B_{3} such that ker D is a finitely generated R-algebra then the generators of $\operatorname{ker} D$ can be chosen to be linear in the Y_{i} 's. In this paper, we prove that this does not hold for B_{4}. We also investigate R-elementary derivations D of B_{m} satisfying one or the other of the following conditions:

(i) D is standard.
(ii) $\operatorname{ker} D$ is generated over R by linear constants.
(iii) D is fix-point-free.
(iv) $\operatorname{ker} D$ is finitely generated as an R-algebra.
(v) D is surjective.
(vi) The rank of D is strictely less than m.

[^0]1. Introduction. In this paper, unless otherwise noted, k is a field of characteristic $0, R$ is a UFD containing k and B is an R-algebra which is a polynomial ring in a finite number of variables over R. If m is a positive integer, then $R^{[m]}$ means the polynomial ring in m variables over R. If $B \cong R^{[m]}$, then a coordinate system of B over R is an element $\left(Y_{1}, \ldots, Y_{m}\right) \in B^{m}$ satisfying $B=R\left[Y_{1}, \ldots, Y_{m}\right]$. Recall that a derivation $D: B \rightarrow B$ is an additive map satisying $D(x y)=D(x) y+x D(y)$ for all $x, y \in B$. If $D(R)=\{0\}$, then we say that D is an R-derivation of $B . D$ is called locally nilpotent if for every $x \in B$, there exists $n \geq 0$ such that $D^{n}(x)=0$.

Definition 1.1. If $B=R^{[m]}$, then an R-derivation $D: B \rightarrow B$ is called R-elementary if there exists a coordinate system $\left(Y_{1}, \ldots, Y_{m}\right)$ of B over R such that $D Y_{i} \in R$ for all i.

In this case we have:

$$
D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}} \quad\left(\text { where } a_{i} \in R\right)
$$

Definition 1.2. Let $C=k^{[N]}$. A derivation $D: C \rightarrow C$ is elementary if, for some integers $m, n \geq 0$ such that $m+n=N$, there exists a coordinate system $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ of C satisfying:

$$
k\left[X_{1}, \ldots, X_{n}\right] \subseteq \operatorname{ker} D \quad \text { and } \quad \forall i, \quad D Y_{i} \in k\left[X_{1}, \ldots, X_{n}\right]
$$

In this case, D is $k\left[X_{1}, \ldots, X_{n}\right]$-elementary:

$$
D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}} \quad\left(\text { where } a_{i} \in k\left[X_{1}, \ldots, X_{n}\right]\right)
$$

An immediate consequence of the above definition is that all elementary derivations are locally nilpotent.

Definition 1.3. A derivation $D: B \longrightarrow B$ is called irreducible if the only principal ideal of B containing $D(B)$ is B itself. A locally nilpotent derivation D is called fix-point-free if the ideal of B generated by the image of D is equal to B. A slice of D is an element $s \in B$ such that $D(s)=1$.

It is clear that any surjective locally nilpotent derivation of B admits a slice. The converse is also true: if s is a slice of a locally nilpotent derivation D
of B and $y \in B$, let

$$
x=\sum_{k=0}^{\infty}(-1)^{k} \frac{s^{k+1}}{(k+1)!} D^{k}(y)
$$

then $x \in B$ since D is locally nilpotent and it is easy to verify that $D(x)=y$.
Knowing that a locally nilpotent derivation of a polynomial algebra admits a slice helps to understand the kernel of the derivation. More precisely, the following is a well known fact (see [8]).

Proposition 1.1. If $D: C \rightarrow C$ is a locally nilpotent R-derivation of an R-algebra C with a slice s, then

1. $C=A[s]=A^{[1]}$, where $A=\operatorname{ker} D$.
2. The map

$$
\begin{aligned}
\zeta: C & \longrightarrow C \\
x & \mapsto \sum_{i \geq 0} \frac{1}{i!}(-s)^{i} D^{i}(x)
\end{aligned}
$$

is a homomorphism of R-algebras with image equal to ker D. In particular, if $C=R\left[Y_{1}, \ldots, Y_{m}\right]$ then

$$
\operatorname{ker} D=R\left[\zeta\left(Y_{1}\right), \ldots, \zeta\left(Y_{m}\right)\right]
$$

R-derivations of B can be classified according to their rank:
Definition 1.4. The rank of an R-derivation D of B is defined to the least integer $s(0 \leq s \leq n)$ for which there exists a coordinate system $\left(X_{1}, \ldots, X_{n}\right)$ of B over R satisfying $R\left[X_{1}, \ldots, X_{n-s}\right] \subseteq \operatorname{ker} D$. In other words, rank D is the least number of partial derivatives of B needed to express D.

Clearly, the rank of D is zero if and only if D is the zero derivation.
Definition 1.5. Let $B=R\left[Y_{1}, \ldots, Y_{m}\right]$ and consider an R-elementary derivation

$$
D=\sum_{i=1}^{m} a_{i} \partial_{i} \quad: \quad B \longrightarrow B
$$

where $a_{i} \in R$ and $\partial_{i}=\partial / \partial Y_{i}$ for all i.

1. Any element of $\operatorname{ker} D$ of the form

$$
r_{1} Y_{1}+\cdots+r_{m} Y_{m} \quad\left(\text { where } r_{i} \in R\right)
$$

is said to be a linear constant of D.
2. Given $i, j \in\{1, \ldots, m\}$, define $L_{i j}=\frac{a_{i}}{g_{i j}} Y_{j}-\frac{a_{j}}{g_{i j}} Y_{i}$ where:

$$
g_{i j}= \begin{cases}\operatorname{gcd}\left(a_{i}, a_{j}\right) & \text { if } a_{i} \neq 0 \text { or } a_{j} \neq 0 \\ 1 & \text { if } a_{i}=0=a_{j}\end{cases}
$$

It is clear that $L_{i j} \in \operatorname{ker} D, L_{i i}=0$ and $L_{j i}=-L_{i j}$ (for all i, j). We call the elements $L_{i j}$ the standard linear constants of D.
3. If ker D is generated as an R-algebra by the standard linear constants, we say that D is a standard derivation.

This paper investigates R-elementary derivations $D: R^{[m]} \rightarrow R^{[m]}$ satisfying one or the other of the following conditions:
(i) D is standard.
(ii) $\operatorname{ker} D$ is generated over R by linear constants.
(iii) D is fix-point-free.
(iv) ker D is finitely generated as an R-algebra.
(v) D is surjective.
(vi) Rank $D<m$.

Studying the finite generation of the kernel of derivations of polynomial rings is closely related to the famous fourteenth's problem of Hilbert, that can be stated as follows

If L is a subfield of $k\left(X_{1}, \ldots, X_{n}\right)$ (the quotient field of $\left.k^{[n]}\right)$, is $L \cap$ $k\left[X_{1}, \ldots, X_{n}\right]$ a finitely generated k-algebra?

Deveney and Finston ([3]) used a couterexample to Hilbert's fourteenth problem found by Roberts in 1990 ([6]) to prove that the kernel of the elementary derivation

$$
D=X_{1}^{t+1} \frac{\partial}{\partial Y_{1}}+X_{2}^{t+1} \frac{\partial}{\partial Y_{2}}+X_{3}^{t+1} \frac{\partial}{\partial Y_{3}}+\left(X_{1} X_{2} X_{3}\right)^{t} \frac{\partial}{\partial Y_{4}}
$$

of $k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]$ is not finitely generated as a k-algebra for any $t \geq 2$.
To prove that the invariant subalgebras of some derivations in this paper are finitely generated we will use the following tool we proved in [5].

Proposition 1.2 ([5, Lemma 2.2]). Let $E \subseteq A_{0} \subseteq A \subseteq C$ be integral domains, where E is a UFD. Suppose that some element d of $E \backslash\{0\}$ satisfies:

- $\left(A_{0}\right)_{d}=A_{d}$
- $p C \cap A_{0}=p A_{0}$ for each prime divisor p of d, (in E)
then $A_{0}=A$.
Using our notations, E plays the role of R, A plays the role of $\operatorname{ker} D, A_{0}$ is a subalgebra of ker D (which is a candidate for $\operatorname{ker} D$) and C plays the role of B.

2. Unimodular rows and variables. Recall that an element $F \in$ $B \cong R^{[m]}$ is called a variable of B over R if there exists a coordinate system $\left(F, F_{2}, \ldots, F_{m}\right)$ of B over R.

Given an element F of B, it is desirable to know if F is a variable over R. That question seems to be hard in general. In this section, we give a necessary and sufficient condition for a linear form to be a variable.

Definition 2.1. Let A be a ring and n a positive integer. An element $\left(a_{1}, \ldots, a_{n}\right)$ of A^{n} is called a unimodular row of length n over A if $a_{1} b_{1}+\ldots+$ $a_{n} b_{n}=1$ for some $b_{1}, \ldots, b_{n} \in A$. A unimodular row over A is called extendible if it is the first row of an invertible matrix over A. The ring A is called Hermite if every unimodular row over A is extendible.

It is well known that Hermite rings include:

1. polynomial rings over a field
2. Formal power series over a field
3. Laurent polynomials over a field
4. Any PID
5. Any complex Banach Algebra with a contractible maximal ideal space.

A well-known example of a non Hermite ring is the following.
Example 2.1. (M. Hochster, [4]) Let $R=\mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}-\right.$ $1)=\mathbb{R}[x, y, z](x, y, z$ are the images of X, Y, Z in R respectively), then (x, y, z) is a unimodular row over R which is not extendible. So R is not Hermite.

Clearly any extendible unimodular row is unimodular. The converse holds in case of length 2 by the following (obvious) proposition.

Proposition 2.1. $f A$ is an arbitrary ring (commutative with identity), then any unimodular row of length ≤ 2 over A is extendible.

We relate now the notion of a "linear variable" with that of "extendible unimodular row". First, a lemma.

Lemma 2.1. Let E be a domain, and $V=E\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring in n variables over E. If $\gamma=\left(F_{1}, \ldots, F_{n}\right)$ is a coordinate system of V over E, then the determinant of the matrix

$$
A=\left(\frac{\partial F_{i}}{\partial X_{j}}\right)_{1 \leq i, j \leq n}
$$

is a unit of E.
Proposition 2.2. Let A be a domain, $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ and $B=$ $A\left[Y_{1}, \ldots, Y_{n}\right]=A^{[n]}$. Then the following conditions are equivalent:

1. The linear form $a_{1} Y_{1}+\cdots+a_{n} Y_{n}$ is a variable of B over A
2. $\left(a_{1}, \ldots, a_{n}\right)$ is an extendible unimodular row of B over A.

Proof. Assume first that $F=a_{1} Y_{1}+\cdots+a_{n} Y_{n}$ is a variable of B over A, then $B=A\left[F, F_{2}, \ldots, F_{n}\right]$ for some elements F_{2}, \ldots, F_{n} of B. By Lemma ??,

$$
\begin{equation*}
\operatorname{det}(\mathcal{M}) \in R^{*} \tag{1}
\end{equation*}
$$

where

$$
\mathcal{M}=\left(\frac{\partial F_{i}}{\partial Y_{j}}\right)_{1 \leq i, j \leq n}
$$

(with $F=F_{1}$). Sending all the variables to 0 in \mathcal{M} gives a matrix with entries in R and first row equal to $\left(a_{1}, \ldots, a_{n}\right)$. Relation (1) shows that the determinant of this matrix is a unit in A and hence $\left(a_{1}, \ldots, a_{n}\right)$ is an extendible unimodular row of B over A.

For the converse, suppose that \mathcal{M} is an invertible matrix with entries in A and first row equal to $\left(a_{1}, \ldots, a_{n}\right)$. Let $\left(F_{2}, \ldots, F_{n}\right) \in B^{n-1}$ be such that

$$
\mathcal{M}^{-1}\left[\begin{array}{c}
F \\
F_{2} \\
\vdots \\
F_{n}
\end{array}\right]=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

This implies that $A\left[F, F_{2}, \ldots, F_{n}\right] \supseteq A\left[Y_{1}, \ldots, Y_{n}\right]$. Since the other inclusion is clear, $B=A\left[F, F_{2}, \ldots, F_{n}\right]$ and F is then a variable of B over A

3. Homogeneous derivations.

Definition 3.1. Let $C=\bigoplus_{i} C_{i}$ be a \mathbb{Z}-graded or an \mathbb{N}-graded ring. A derivation $D: C \rightarrow C$ is called homogeneous of degree n if there exists an integer n such that $D\left(C_{i}\right) \subseteq C_{i+n}$ for all i.

Consider the natural \mathbb{N}-grading on $B=R\left[Y_{1}, \ldots, Y_{m}\right]$ where the degree of each element of R is zero and the degree of each of the variables in one. Every R-elementary derivation on B is then homogeneous of degree -1 .

The following proposition will be used later in this paper.
Proposition 3.1. Let $B=R\left[Y_{1}, \ldots, Y_{m}\right]$ equipped with the natural \mathbb{N} grading. If D is a homogeneous derivation of B that annihilates a variable of B over R, then D annihilates a variable of B over R which is a linear form in the Y_{i} 's (over R).

Proof. Suppose that $F \in \operatorname{ker} D$ is a variable of B over R. Without loss of generality, one can assume that the homogeneous part of degree 0 of F is zero. Write

$$
F=F_{(1)}+F_{(2)}+\ldots+F_{(d)}
$$

where d is the degree of F and $F_{(i)}$ is the homogeneous part of F of degree i. Choose $F_{2}, \ldots, F_{m} \in B$ such that $B=R\left[F, F_{2}, \ldots, F_{m}\right]$ and let

$$
\mathcal{M}=\left(\frac{\partial F_{i}}{\partial Y_{j}}\right)_{1 \leq i, j \leq n}
$$

(with $F=F_{1}$). Then \mathcal{M} is invertible by Lemma 2.1. Setting all the Y_{i} 's equal to zero in \mathcal{M} gives an element of $\mathrm{GL}_{m}(R)$ whose first row is $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ where

$$
F_{(1)}=\alpha_{1} Y_{1}+\alpha_{2} Y_{2}+\cdots+\alpha_{m} Y_{m}
$$

Proposition 2.2 shows that $F_{(1)}$ is a variable of B over R. On the other hand, the fact that D is homogeneous implies that each of the homogeneous components of F are in ker D. In particular $F_{(1)} \in \operatorname{ker} D$.
4. Standard derivations. We consider first the simple case of R elementary derivations in dimension $2(R$ is a UFD containing a field $k)$.

Proposition 4.1. Every R-elementary derivation of $R^{[2]}$ is standard.

Proof. Let $B=R\left[Y_{1}, Y_{2}\right]=R^{[2]}$, and $D=a_{1} \frac{\partial}{\partial Y_{1}}+a_{2} \frac{\partial}{\partial Y_{2}}$ an R elementary derivation of B. We may clearly assume that D is irreducible; i.e., a_{1} and a_{2} are relatively prime in R. Using Proposition 1.2 , we will show that ker $D=R\left[a_{1} Y_{1}-a_{2} Y_{2}\right]$.

Let $F=a_{1} Y_{2}-a_{2} Y_{1}$ and $R_{0}=R[F]$. Then, $R_{0} \subseteq \operatorname{ker} D$ and $\left(R_{0}\right)_{a_{1}}=$ $(\operatorname{ker} D)_{a_{1}}$.
Let p be a prime divisor of a_{1}, and let $x \in p B \cap R_{0}$; we show that $x \in p R_{0}$, the inclusion $p R_{0} \subseteq p B \cap R_{0}$ being clear. For this, write $x=\Phi(F)$ for some $\Phi \in R[T]=R^{[1]}$ then the image $\bar{\Phi} \in \bar{R}[T]$ of Φ (where $\bar{R}=R / p R$) is in the kernel of the epimorphism

$$
\alpha: \bar{R}[T] \longrightarrow \bar{R}[\bar{F}]
$$

sending T to \bar{F}. Since \bar{F} is transcendental over \bar{R}, α is an isomorphism. Consequentely, $\bar{\Phi}=0$ and $x \in p R_{0}$.

The implications $(i) \Longrightarrow(i i)$ and $(i) \Longrightarrow(i v)$ above (see the introduction) are true by the definition of standard derivations. By proposition 4.1, the $k\left[X_{1}, X_{2}\right]$-elementary derivation

$$
\begin{equation*}
X_{1} \frac{\partial}{\partial Y_{1}}+X_{2} \frac{\partial}{\partial Y_{2}} \tag{2}
\end{equation*}
$$

of $k\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]$ is standard. Clearly, this derivation is not fix-point-free and consequently not surjective. This shows that $(i) \Longrightarrow(i i i)$ and $(i) \Longrightarrow(v)$ are false in general. For the implication $(i) \Longrightarrow(v i)$, note that the derivation (2) above does not annihilate a variable of $k\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]$ over $k\left[X_{1}, X_{2}\right]$. Indeed, if $F \in k\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]$ is a variable of $k\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]$ over $k\left[X_{1}, X_{2}\right]$ such that $D(F)=0$, then we may assume that $F=\alpha_{1} Y_{1}+\alpha_{2} Y_{2}$ for some unimodular row $\left(\alpha_{1}, \alpha_{2}\right)$ over $k\left[X_{1}, X_{2}\right]$ (Proposition 3.1). But the fact that $D(F)=0$ implies that

$$
X_{1} \alpha_{1}+X_{2} \alpha_{2}=0
$$

and hence the ideal generated by α_{1} and α_{2} in $k\left[X_{1}, X_{2}\right]$ is included in the ideal generated by X_{1} and X_{2}. This contradicts the fact that $\left(\alpha_{1}, \alpha_{2}\right)$ is a unimodular row. We conclude that the rank of D is 2 and that the implication $(i) \Longrightarrow(v i)$ is false.

5. The case where ker D is generated by linear constants.

 The following theorem gives a counterexample "of rank m " to the implication (ii) \Rightarrow (i) above.Theorem 5.1. The kernel of the elementary derivation

$$
D=\left(X_{1}^{2}-X_{2} X_{3}\right) \frac{\partial}{\partial Y_{1}}+\left(X_{2}^{2}-X_{1} X_{3}\right) \frac{\partial}{\partial Y_{2}}+\left(X_{3}^{2}-X_{1} X_{2}\right) \frac{\partial}{\partial Y_{3}}
$$

of $B=k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]$ is generated by two linear constants (in fact it is a polynomial ring in two variables over $k\left[X_{1}, X_{2}, X_{3}\right]$) but D is not standard. Moreover the rank of D over $k\left[X_{1}, X_{2}, X_{3}\right]$ is 3 .

Proof. Let $a_{1}=X_{1}^{2}-X_{2} X_{3}, a_{2}=X_{2}^{2}-X_{1} X_{3}, a_{3}=X_{3}^{2}-X_{1} X_{2}$, and let $R=k\left[X_{1}, X_{2}, X_{3}\right]$. Then a_{1}, a_{2}, a_{3} are pairwise relatively prime elements of R. Consider the two elements of B

$$
f=X_{3} Y_{1}+X_{1} Y_{2}+X_{2} Y_{3}, \quad g=X_{2} Y_{1}+X_{3} Y_{2}+X_{1} Y_{3}
$$

and the usual standard linear constants

$$
\begin{aligned}
& L_{1}=a_{3} Y_{2}-a_{2} Y_{3}=X_{3}^{2} Y_{2}-X_{1} X_{2} Y_{2}-X_{2}^{2} Y_{3}+X_{1} X_{3} Y_{3} \\
& L_{2}=-a_{3} Y_{1}+a_{1} Y_{3}=-X_{3}^{2} Y_{1}+X_{1} X_{2} Y_{1}+X_{1}^{2} Y_{3}-X_{2} X_{3} Y_{3} \\
& L_{3}=a_{2} Y_{1}-a_{1} Y_{2}=X_{2}^{2} Y_{1}-X_{1} X_{3} Y_{1}-X_{1}^{2} Y_{2}+X_{2} X_{3} Y_{2} .
\end{aligned}
$$

It is immediate that $D(f)=D(g)=0$ and that the following relations are true

$$
L_{1}=-X_{2} f+X_{3} g, \quad L_{2}=-X_{2} f+X_{1} g, \quad L_{3}=-X_{1} f+X_{2} g
$$

Let $R_{0}:=R[f, g]$, then $R\left[L_{1}, L_{2}, L_{3}\right] \subseteq R_{0}$. It is easy to see that $\left(R\left[L_{1}, L_{2}, L_{3}\right]\right)_{a_{3}}=$ $(\operatorname{ker} D)_{a_{3}}$, so $\left(R_{0}\right)_{a_{3}}=(\operatorname{ker} D)_{a_{3}}$. We will show that $\operatorname{ker} D=R[f, g]$; so, it is enough (Proposition 1.2) to show that $a_{3} B \cap R_{0} \subseteq a_{3} R_{0}$. Let $\bar{R}=R / a_{3} R$ and consider the ring homomorphism

$$
\phi: \bar{R}\left[T_{1}, T_{2}\right] \quad \longrightarrow \bar{R}[\bar{f}, \bar{g}]
$$

sending T_{1} to \bar{f} and T_{2} to \bar{g}. We claim that ϕ is an isomorphism. Indeed, since the elements \bar{f} and \bar{g} are not algebraic over \bar{R}, the transcendence degree of $\bar{R}[\bar{f}, \bar{g}]$ over \bar{R} is either one or two. If it is one, then \bar{f}, \bar{g} are linearly dependent over $K:=\mathrm{qt}(\bar{R})$ and so there exists an $\bar{\alpha} \in \mathrm{qt}(\bar{R})^{*}$ such that $x_{3}=\bar{\alpha} x_{2}, x_{1}=\bar{\alpha} x_{3}$, $x_{2}=\bar{\alpha} x_{1}$ (where x_{i} is the image of X_{i} in \bar{R}); in particular, $x_{2}^{2}=x_{1} x_{3}$ in \bar{R} and so

$$
X_{2}^{2}=X_{1} X_{3}+\left(X_{3}^{2}-X_{1} X_{2}\right) \Upsilon
$$

for some $\Upsilon \in R$. This is absurd. Thus, $\operatorname{trdeg} \overline{\bar{R}} \bar{R}[\bar{f}, \bar{g}]=2$, and so the height of $\operatorname{ker} \phi$ is zero. This shows that ϕ is injective, and hence an isomorphism. To finish the proof, consider an element $x=\Phi(f, g)=a_{3} b$ of $a_{3} B \cap R_{0}\left(\Phi \in R\left[T_{1}, T_{2}\right]\right.$ and
$b \in B$). Then the image $\bar{\Phi}$ of Φ in $\bar{R}\left[T_{1}, T_{2}\right]$ is in the kernel of ϕ, and consequently it is zero, so $\Phi=a_{3} h$ for some $h \in R\left[T_{1}, T_{2}\right]$, and hence $x=\Phi(f, g) \in a_{3} R_{0}$ as desired. We conclude that ker $D=R[f, g]$.

Next we prove that D is not standard. To see this, it is enough to notice that f is homogeneous of degree 2 in the X_{i} 's and the Y_{j} 's while each standard linear constant is homogeneous of degree 3 . In other words, $f \in \operatorname{ker} D \backslash R\left[L_{1}, L_{2}, L_{3}\right]$ where L_{1}, L_{2}, L_{3} are the standard linear constants of D.

We finish by proving that the rank of D over $k\left[X_{1}, X_{2}, X_{3}\right]$ is 3 . Suppose on the contrary that $\operatorname{rank} D<3$, then D annihilates a variable F of $k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]$ over $k\left[X_{1}, X_{2}, X_{3}\right]$. By Propostion 3.1, we may assume that $F=\alpha_{1} Y_{1}+\alpha_{2} Y_{2}+\alpha_{3} Y_{3}$ for some unimodular row $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ of $k\left[X_{1}, X_{2}, X_{3}\right]$. Since $D(F)=0$, we have

$$
\begin{equation*}
\left(X_{1}^{2}-X_{2} X_{3}\right) \alpha_{1}+\left(X_{2}^{2}-X_{1} X_{3}\right) \alpha_{2}+\left(X_{3}^{2}-X_{1} X_{2}\right) \alpha_{3}=0 \tag{3}
\end{equation*}
$$

Sending the variables X_{2}, X_{3} to 0 in (3) simultaneously shows that $\alpha_{1}\left(X_{1}, 0,0\right)=$ 0 , so $\alpha_{1} \in\left(X_{1}, X_{2}, X_{3}\right) k\left[X_{1}, X_{2}, X_{3}\right]$; similarly, $\alpha_{2}, \alpha_{3} \in\left(X_{1}, X_{2}, X_{3}\right) k\left[X_{1}, X_{2}, X_{3}\right]$ and this contradicts the fact that $1 \in\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) k\left[X_{1}, X_{2}, X_{3}\right]$.

Remark 5.1. The main result in [5] treats the case of elementary derivations $D=\sum_{i=1}^{3} a_{i} \frac{\partial}{\partial Y_{i}}$ of $R\left[Y_{1}, Y_{2}, Y_{3}\right]$ where for some $i \in\{1,2,3\}, R / p R$ is a UFD for every prime divisor p of a_{i}. With the notation of Theorem 5.1, each a_{i} is prime and $R / a_{i} R$ is not a UFD.

Remark 5.2. The above theorem shows that the condition "fix-pointfree" of Theorem 6.1 below is not superfluous. The Theorem also gives an example of a derivation satisfying condition (ii) above but neither of the conditions (iii), (v) and ($v i)$ (clearly, D is not fix-point-free and hence not surjective).

The above theorem can be used to construct counterexamples to the implication $(i i) \Longrightarrow(i)$ of derivations D satisfying "rank $D<n$ ". First some notations. Let m and n be two positive integers such that $m<n, B_{n}=R\left[Y_{1}, \ldots, Y_{n}\right]$, $B_{m}=R\left[Y_{1}, \ldots, Y_{m}\right]$. Let $D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}}$ be an R-elementary derivation of B_{m}.

Proposition 5.1. D is standard as an R-elementary derivation of B_{m} if and only if it is standard as an R-elementary derivation of B_{n}.

Proof. Consider D as a derivation of B_{n}. The following two facts finish the proof:

- The standard linear constants of D are the $L_{i j}$'s (as defined above) with $1 \leq i<j \leq m$ and Y_{m+1}, \ldots, Y_{n}.
- $\operatorname{ker} D=C\left[Y_{m+1}, \ldots, Y_{n}\right]$ where C is the kernel of D as a derivation of B_{m}.

We prove next that the implication $(i i) \Longrightarrow(i v)$ is true in the case of a noetherian ring. Namely, we have the following proposition.

Proposition 5.2. Let R be a noetherian domain of characteristic zero, $B=R\left[Y_{1}, \ldots, Y_{m}\right]$ and $D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}}$ an R-elementary derivation of B. If $\operatorname{ker} D$ is generated over R by linear forms, then it is a finitely generated R-algebra.

Proof. Let M be the set of all linear constants of D, then clearly M is an R-module. If $D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}}$ where $a_{i} \in R$, then it is clear that M is isomorphic as an R-module to the submodule

$$
N=\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in R^{m} ;\left(\begin{array}{lll}
a_{1} & \ldots & a_{m}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right)=0\right\}
$$

of R^{m}. Since R is noetherian, R^{m} is noetherian and N is finitely generated R-module.
6. Fix-point-free \boldsymbol{R}-elementary derivations. Let C be an integral domain containing \mathbb{Q}, and let $D: C \longrightarrow C$ be a locally nilpotent derivation. It is well-known that there is an associated \mathbf{G}_{a}-action, $\alpha: \mathbf{G}_{a} \times \operatorname{Spec} C \rightarrow \operatorname{Spec} C$, and it turns out that the set of fixed points of α is the closed subset $V(I)$ of Spec C, where I denotes the ideal $(D C)$ of C generated by $D C$ (the image of $D)$. In particular, α is fix-point-free if and only if $(D C)=C$. This motivates the definition of fix-point-free derivation given in Definition 1.3.

Obviously, if a derivation of B admits a slice then it is fix-point-free. It is well-known that the converse is not true in general. The following proposition proves, among other things, that the converse holds for elementary derivations.

Proposition 6.1. Let R be a domain containing \mathbb{Q}. If $B=R\left[Y_{1}, \ldots, Y_{m}\right]=$ $R^{[m]}$, and $D: B \rightarrow B$ an R-elementary derivation, then:

1. If D is fix-point-free, then it admits a slice. Moreover, ker D can be generated by m linear constants.
2. If D is fix-point-free and R is Hermite, then there exists a coordinate system $\left(Z_{1}, \ldots, Z_{m}\right)$ of B over R related to $\left(Y_{1}, \ldots, Y_{m}\right)$ by a linear change of variables, such that $D=\partial / \partial Z_{m}$.

Proof. Write $D=\sum_{i=1}^{m} a_{i} \partial_{i}$ where $a_{i} \in R$ and $\partial_{i}=\partial / \partial Y_{i}$. If D is fix-point-free then $1 \in\left(D Y_{1}, \ldots, D Y_{m}\right)$ so $\sum_{i=1}^{m} a_{i} r_{i}=1$ for some $\left(r_{1}, \ldots, r_{m}\right) \in R^{m}$. Consequently, $s=\sum_{i=1}^{m} r_{i} Y_{i}$ is a slice of D and by Proposition 1.1, $B=A[s]=A^{[1]}$ where $A=\operatorname{ker} D$. Also, Proposition 1.1 shows that $\operatorname{ker} D=R\left[\zeta\left(Y_{1}\right), \ldots, \zeta\left(Y_{m}\right)\right]$ where ζ is the homomorphism of R-algebras:

$$
\begin{array}{rlll}
\zeta: & B & \longrightarrow & B \\
& x & \mapsto & \sum_{i \geq 0} \frac{1}{i!}(-s)^{i} D^{i}(x)
\end{array} .
$$

In particular, each $\zeta\left(Y_{i}\right)$ is a linear constant.
If R is a Hermite ring, then $\left(r_{1} \ldots r_{m}\right)$ is extendible, i.e., it is the first row of a matrix $U \in \mathrm{Gl}_{m}(R)$ and it follows that s is a variable of B over R by Proposition 2.2. A closer look at the proof of Proposition 2.2 shows that we can write $B=R\left[s_{1}, \ldots, s_{m-1}, s\right]$ for some linear forms s_{1}, \ldots, s_{m-1} of B. For $1 \leq i \leq m-1$, take $Z_{i}=\zeta\left(s_{i}\right)$ then Z_{i} is a linear form in the Y_{i} 's and by Propostion 1.1 (using $\zeta(s)=0$) we get that $A=R\left[Z_{1}, \ldots, Z_{m-1}\right]$. Let $Z_{m}=s$, then by Proposition 2.2 again $B=A\left[Z_{m}\right]=R\left[Z_{1}, \ldots, Z_{m}\right]$, and $D=\partial / \partial Z_{m}$. Note that $\left(Z_{1}, \ldots, Z_{m}\right)$ is a coordinate system of B over R related to $\left(Y_{1}, \ldots, Y_{m}\right)$ by a linear change of variables.

Remark 6.1. Proposition 6.1 shows in particular that if $D: B \rightarrow B$ is fix-point-free elementary derivation of B, then D is surjective (since it has a slice) and ker D is finitely generated over R by m linear constants.

Remark 6.2. In the above proposition, R needs not to be a UFD. It suffices that R is any domain containing the rationals.

We prove next that "fix-point-free" implies "standard" in the easy case where the image under D of one of the Y_{i} 's is a unit. Namely:

Proposition 6.2. Let $R \supseteq \mathbb{Q}$ be a UFD, $B=R\left[Y_{1}, \ldots, Y_{m}\right]=R^{[m]}$ and $D: B \rightarrow B$ an R-elementary derivation. If $D Y_{i} \in R^{*}$ for some i, then $\operatorname{ker} D$ is generated by $m-1$ standard linear constants.

Proof. We may assume that $D Y_{1} \in R^{*}$. Define $s=\left(D Y_{1}\right)^{-1} Y_{1}$, then s is a slice of D and consequently the map $B \vec{\zeta} B$ defined by $\xi(x)=$ $\sum_{j \geq 0} \frac{1}{j!}(-s)^{j} D^{j}(x)$ is a homomorphism of R-algebras with image equal to ker D. Thus ker $D=R\left[\zeta\left(Y_{1}\right), \ldots, \zeta\left(Y_{m}\right)\right]$ and we are done since $\zeta\left(Y_{j}\right)=Y_{j}-\left(D Y_{j}\right) s=$ $L_{1, j}$ for each j.

We prove now the main result of this section.
Theorem 6.1. Let $R \supseteq \mathbb{Q}$ be a UFD, $B=R\left[Y_{1}, \ldots, Y_{m}\right]=R^{[m]}$ and $D: B \rightarrow B$ an R-elementary derivation. If D is fix-point-free, then it is standard.

Proof. By Proposition 6.1,

$$
\operatorname{ker} D=R\left[\xi\left(Y_{1}\right), \ldots, \xi\left(Y_{m}\right)\right]
$$

where each $\xi\left(Y_{i}\right)=Y_{i}-a_{i} s$ is a linear constant. We obtain:
ker D is generated as an R-algebra by m linear constants.
So it suffices to show that each linear constant is a linear combination (over R) of the standard linear constants. In other words, we have to show that the R-module $T(D)$ is trivial, where:
$\operatorname{LC}(D)=$ set of linear constants of $D($ an R-submodule of $\operatorname{ker} D)$,
$\operatorname{SLC}(D)=R$-submodule of $\operatorname{LC}(D)$ generated by the standard linear constants,
$T(D)=\mathrm{LC}(D) / \operatorname{sLC}(D)$.
Let \mathfrak{m} be a maximal ideal of R and consider the derivation $D_{\mathfrak{m}}: B_{\mathfrak{m}} \rightarrow B_{\mathfrak{m}}$ obtained by localization at the set $R \backslash \mathfrak{m}$. Now $R_{\mathfrak{m}}$ is a UFD, $B_{\mathfrak{m}}=R_{\mathfrak{m}}\left[Y_{1}, \ldots, Y_{m}\right]=$ $R_{\mathfrak{m}}^{[m]}$ and $D_{\mathfrak{m}}=\sum_{i=1}^{m} a_{i} \partial_{i}$ is an $R_{\mathfrak{m}}$-elementary derivation. Since D is fix-point-free, we have $\left(a_{1}, \ldots, a_{m}\right) R \nsubseteq \mathfrak{m}$ so, for some i, a_{i} is a unit of $R_{\mathfrak{m}}$. By Proposition $6.2, D_{\mathfrak{m}}$ is standard, so $T\left(D_{\mathfrak{m}}\right)=0$. It is immediate that $\operatorname{LC}\left(D_{\mathfrak{m}}\right)=\operatorname{LC}(D)_{\mathfrak{m}}$ and $\operatorname{SLC}\left(D_{\mathfrak{m}}\right)=\operatorname{SLC}(D)_{\mathfrak{m}}$, so $T\left(D_{\mathfrak{m}}\right)=T(D)_{\mathfrak{m}}$ and we have shown:

$$
T(D)_{\mathfrak{m}}=0 \quad \text { for all maximal ideals } \mathfrak{m} \text { of } R
$$

We conclude that $T(D)=0$ and the result follows.
So far we have shown that the implications $($ iii $) \Longrightarrow(i),(i i i) \Longrightarrow(i i)$, $(i i i) \Longrightarrow(i v)$ and $(i i i) \Longrightarrow(v)$ are all true. By Proposition 6.1, we also know that $(i i i) \Longrightarrow(v i)$ is true in the case of Hermite rings. In this case, we can actually say a lot more: the rank of the derivation is one and hence it is "conjugate to a partial derivative".

If R is not Hermite, we don't know if $(i i i) \Longrightarrow(v i)$ is true or not. However, the following gives an example of a fix-point-free elementary derivation which is not "conjugate to a partial derivative" of B.

Proposition 6.3. Let $R=\mathbb{R}[x, y, z]$ be as in Example 2.1 above, and let $B=R\left[Y_{1}, Y_{2}, Y_{3}\right] \cong R^{[3]}$. Let $D=x \frac{\partial}{Y_{1}}+y \frac{\partial}{Y_{2}}+z \frac{\partial}{Y_{3}}$. Then D is fix-point-free R-elementary derivation of B satisfying $\operatorname{rank} D \geq 2$.

Proof. Let $s=x Y_{1}+y Y_{2}+z Y_{3} \in B$, then $D(s)=x^{2}+y^{2}+z^{2}=1$ in R, and s is then a slice of D. In particular D is fix-point-free, and $B=A[s] \cong A^{[1]}$ where $A=\operatorname{ker} D$. We prove next that $\operatorname{rank} D \geq 2$. Clearly $\operatorname{rank} D \neq 0$, so it suffices to show that $\operatorname{rank} D \neq 1$. Assume that $\operatorname{rank} D=1$, then one can find a coordinate system (F, G, H) of B over R such that $D=\Phi(F, G, H) \frac{\partial}{\partial H}$ for some $\Phi \in R^{[3]}$. Clearly, $A=R[F, G]$ and so $B=A[s]=\mathbb{R}[F, G, s]$. Thus, s is a variable of B over R. By Prosition 2.2, (x, y, z) is an extendible unimodular row. This is a contradiction (see Example 2.1)
7. The case where ker D is finitely generated as an \boldsymbol{R}-algebra. It was conjectured in [5] that if D is an R-elementary monomial derivation of $R\left[Y_{1}, Y_{2}, Y_{3}\right]$ such that ker D is a finitely generated R-algebra then the generators of ker D can be chosen to be linear in the Y_{i} 's. In this section we prove that this is not always the case. Theorem 7.1 gives a counterexample to the implications $(i v) \Longrightarrow(i),(i v) \Longrightarrow(i i),(i v) \Longrightarrow(i i i)$.

Theorem 7.1. The kernel of the derivation

$$
D=X_{1}^{2} \frac{\partial}{\partial Y_{1}}+X_{2}^{2} \frac{\partial}{\partial Y_{2}}+X_{3}^{2} \frac{\partial}{\partial Y_{3}}+X_{2} X_{3} \frac{\partial}{\partial Y_{4}}
$$

of $k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right] \cong k^{[7]}$ is a finitely generated $k\left[X_{1}, X_{2}, X_{3}\right]$-algebra which cannot be generated over $k\left[X_{1}, X_{2}, X_{3}\right]$ by linear forms in the Y_{i} 's.

To that end we will use Proposition 1.2 and the elimination theory of Groebner bases. Regarding Groebner bases, S-polynomials and Buchberger's criteria, the reader may refer to ([1]).

Consider the following elements of ker D

$$
\begin{array}{ll}
L_{12}=X_{1}^{2} Y_{2}-X_{2}^{2} Y_{1} & L_{13}=X_{1}^{2} Y_{3}-X_{3}^{2} Y_{1} \\
L_{14}=X_{1}^{2} Y_{4}-X_{2} X_{3} Y_{1} & L_{24}=X_{2} Y_{4}-X_{3} Y_{2} \\
L_{34}=X_{3} Y_{4}-X_{2} Y_{3} & \\
f=X_{1}^{2} Y_{4}^{2}-X_{1}^{2} Y_{2} Y_{3}+X_{3}^{2} Y_{1} Y_{2}+X_{2}^{2} Y_{1} Y_{3}-2 X_{2} X_{3} Y_{1} Y_{4} . &
\end{array}
$$

We will prove that ker $D=k\left[X_{1}, X_{2}, X_{3}, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right]$. For this, let $k[X, Y, T]$ denote the polynomial ring

$$
k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, T_{1}, T_{2}, T_{3}, T_{4}, T_{12}, T_{13}, T_{14}, T_{24}, T_{34}\right]
$$

in 16 variables and let I be the ideal of $k[X, Y, T]$ generated by the elements

$$
\begin{array}{r}
T_{1}-X_{1}, T_{2}-X_{2}, T_{3}-X_{3}, T_{4}-f, T_{12}-L_{12}, T_{13}-L_{13} \\
T_{14}-L_{14}, T_{24}-L_{24}, T_{34}-L_{34}, X_{1}
\end{array}
$$

The next lemma gives a Groebner basis for the ideal I. The elements of this basis will be used in computing the generators of ker D. The proof of the lemma is left to the reader.

Lemma 7.1. A Groebner basis for I with respect to the lexicographic order on $k[X, Y, T]$ with

$$
X_{1}>X_{2}>X_{3}>Y_{1}>\ldots>Y_{4}>T_{1}>\ldots>T_{4}>T_{12}>T_{13}>T_{14}>T_{24}>T_{34}
$$

is given by the elements
$g_{1}=-T_{2}+X_{2}$
$g_{2}=-T_{3}+X_{3}$
$g_{3}=X_{1}$
$g_{4}=Y_{1} T_{2}^{2}+T_{12}$
$g_{5}=Y_{1} T_{3}^{2}+T_{13}$
$g_{6}=Y_{1} T_{2} T_{3}+T_{14}$
$g_{7}=T_{1}$
$g_{8}=-Y_{4} T_{2}+T_{24}+T_{3} Y_{2}$
$g_{9}=Y_{3} T_{2}-Y_{4} T_{3}+T_{34}$
$g_{10}=Y_{2} T_{13}+Y_{3} T_{12}-2 Y_{4} T_{14}+T_{4}$
$g_{11}=-T_{3} T_{12}+T_{14} T_{2}$
$g_{12}=T_{2} T_{13}-T_{3} T_{14}$
$g_{13}=T_{4}+Y_{1} T_{3} T_{24}+Y_{3} T_{12}-Y_{4} T_{14}$
$g_{14}=-Y_{2} T_{14}+Y_{1} T_{2} T_{24}+Y_{4} T_{12}$
$g_{15}=Y_{1} T_{2} T_{34}-Y_{3} T_{12}+Y_{4} T_{14}$
$g_{16}=-Y_{3} T_{14}+Y_{1} T_{3} T_{34}+Y_{4} T_{13}$
$g_{17}=T_{3} Y_{3} T_{12}-T_{3} Y_{4} T_{14}+T_{14} T_{34}$
$g_{18}=Y_{3} T_{12} T_{34}+Y_{3} T_{14} T_{24}-Y_{4} T_{13} T_{24}-Y_{4} T_{14} T_{34}+T_{4} T_{34}$
$g_{19}=-T_{14}^{2}+T_{12} T_{13}$
$g_{20}=-T_{14} T_{34}+T_{3} T_{4}-T_{13} T_{24}$
$g_{21}=T_{2} T_{4}-T_{14} T_{24}-T_{12} T_{34}$
$g_{22}=-T_{13} Y_{4} T_{3}+T_{13} T_{34}+Y_{3} T_{3} T_{14}$
$g_{23}=Y_{1} T_{24}^{2}-Y_{2} Y_{3} T_{12}-Y_{2} T_{4}+Y_{4}^{2} T_{12}$
$g_{24}=Y_{1} T_{24} T_{34}+Y_{3} Y_{2} T_{14}+Y_{4} T_{4}-Y_{4}^{2} T_{14}$
$g_{25}=T_{14}^{2} Y_{2}-2 Y_{4} T_{14} T_{12}+T_{4} T_{12}+Y_{3} T_{12}^{2}$

$$
\begin{aligned}
& g_{26}=Y_{1} T_{34}^{2}+Y_{3}^{2} T_{12}-2 Y_{3} Y_{4} T_{14}+Y_{4}^{2} T_{13} \\
& g_{27}=T_{34} Y_{2} T_{14}-T_{34} Y_{4} T_{12}-T_{24} Y_{3} T_{12}+T_{24} Y_{4} T_{14} \\
& g_{28}=T_{13} Y_{3} T_{14} T_{24}+Y_{3} T_{34} T_{14}^{2}-Y_{4} T_{13}^{2} T_{24}-T_{13} Y_{4} T_{14} T_{34}+T_{13} T_{4} T_{34}
\end{aligned}
$$

We prove next that ker $D=k\left[X_{1}, X_{2}, X_{3}, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right]$.
Let $k[T]$ and $k[X, Y]$ denote respectively the polynomial rings $k\left[T_{1}, T_{2}, T_{3}, T_{4}, T_{12}, T_{13}, T_{14}, T_{24}, T_{34}\right]$ and $k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]$. Let $A_{0}=$ $k\left[X_{1}, X_{2}, X_{3}, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right]$, then $A_{0} \subseteq \operatorname{ker} D$ and $\left(A_{0}\right)_{X_{i}}=(\operatorname{ker} D)_{X_{i}}$ for $i=1,2,3$. By Proposition 1.2, it is enough to show that $X_{1} k[X, Y] \cap A_{0} \subseteq$ $X_{1} A_{0}$ (the other inclusion being obvious). So let $x \in X_{1} k[X, Y] \cap A_{0}$ and choose $z \in k[X, Y], \Phi \in k[T]$ such that $x=\Phi\left(X_{1}, X_{2}, X_{3}, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right)=$ $X_{1} z$. This means that Φ is in the kernel of the homomorphism

$$
\theta: k[T] \xrightarrow{\psi} A_{0} \hookrightarrow k[X, Y] \xrightarrow{\pi} k[X, Y] /\left(X_{1}\right)
$$

where π is the canonical epimorphism and ψ sends T_{i} to $X_{i}, i=1,2,3, T_{4}$ to f and $T_{j k}$ to $L_{j k}$. Also, consider the homomorphism

$$
\kappa: k[X, Y, T] \xrightarrow{\sigma} k[X, Y] \xrightarrow{\pi} k[X, Y] /\left(X_{1}\right)
$$

where σ is the homomorphism sending X_{i} to X_{i}, Y_{i} to $Y_{i}(i=1,2,3,4), T_{i}$ to X_{i} $(i=1,2,3), T_{4}$ to f, and $T_{i j}$ to $L_{i j}$. It is clear that θ is the restriction of κ to $k[T]$ and hence

$$
\begin{equation*}
\operatorname{ker} \theta=\operatorname{ker} \kappa \cap k[T] \tag{5}
\end{equation*}
$$

We claim that ker κ is the ideal I (considered above) of $k[X, Y, T]$ generated by the elements

$$
\begin{array}{r}
X_{1}, T_{1}-X_{1}, T_{2}-X_{2}, T_{3}-X_{3}, T_{4}-f, T_{12}-L_{12}, T_{13}-L_{13} \\
T_{14}-L_{14}, T_{24}-L_{24}, T_{34}-L_{34}
\end{array}
$$

Indeed, let $\Gamma=\left(\gamma_{1}, \ldots, \gamma_{16}\right)$ be the 16 -tuple

$$
\begin{array}{r}
\left(X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, T_{1}-X_{1}, T_{2}-X_{2}, T_{3}-X_{3}, T_{4}-f\right. \\
\left.T_{12}-L_{12}, T_{13}-L_{13}, T_{14}-L_{14}, T_{24}-L_{24}, T_{34}-L_{34}\right)
\end{array}
$$

Clearly, Γ is a coordinate system of $k[X, Y, T]$, that is

$$
k[X, Y, T]=k\left[\gamma_{1}, \ldots, \gamma_{16}\right]
$$

The domain and codomain of κ are respectively $k[\Gamma]$ and $k\left[\gamma_{1}, \ldots, \gamma_{7}\right] /\left(\gamma_{1}\right)$ and κ is defined by

$$
\kappa\left(\gamma_{i}\right)=\left\{\begin{array}{cc}
0, & \text { if } i=1 \text { or } i>7 \\
\gamma_{i}+\left(\gamma_{i}\right), & \text { if } 2 \leq i \leq 7
\end{array}\right.
$$

So we have

$$
\operatorname{ker} \kappa=\left\langle\gamma_{1}, \gamma_{8}, \gamma_{9}, \ldots, \gamma_{16}\right\rangle=I
$$

and the claim is proved.
Using the elimination theory, we know that the set $\Sigma=\left\{g_{7}, g_{11}, g_{12}, g_{19}, g_{20}, g_{21}\right\}$ generates the ideal $I \cap k[T]$ of $k[T]$. Hence,

$$
\begin{equation*}
\Phi=\sum \xi_{i} h_{i}(T) \tag{6}
\end{equation*}
$$

where $\xi_{i} \in k[T]$ and $h_{i} \in\left\{g_{7}, g_{11}, g_{12}, g_{19}, g_{20}, g_{21}\right\}$. On the other hand, one can easily verify the following identities:

$$
\begin{array}{rlrl}
\psi\left(g_{7}\right) & =X_{1} & & \\
\psi\left(g_{11}\right) & =-X_{3} L_{12}+X_{2} L_{14} & =X_{1}^{2} L_{24} \\
\psi\left(g_{12}\right) & =-X_{3} L_{14}+X_{2} L_{13} & =-X_{1}^{2} L_{34} \\
\psi\left(g_{19}\right) & =-L_{14}^{2}+L_{12} L_{13} & =X_{1}^{2} f \\
\psi\left(g_{20}\right) & =-L_{14} L_{34}+X_{3} f-L_{13} L_{24} & =0 \\
\psi\left(g_{21}\right) & =X_{2} f-L_{14} L_{24}-L_{12} L_{34} & =0 .
\end{array}
$$

This means that $x=\Phi\left(X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}, f\right) \in X_{1} A_{0}$, and consequentely

$$
\operatorname{ker} D=k\left[X_{1}, X_{2}, X_{3}, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right]
$$

The next two lemmas show that ker D cannot be generated over $k\left[X_{1}, X_{2}, X_{3}\right]$ by linear forms in the Y_{i} 's.

Lemma 7.2. With the above notation, if L is an element of $\operatorname{ker} D$ of the form

$$
L=\alpha_{1} Y_{1}+\cdots+\alpha_{4} Y_{4}
$$

for some $\alpha_{1}, \ldots, \alpha_{4} \in k\left[X_{1}, X_{2}, X_{3}\right]$, then

$$
L \in k\left[X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right] .
$$

Proof. If L is a linear form in the Y_{i} 's over $k[X 1, X 2, X 3]$ in ker D, then L has the form

$$
L=\alpha_{1} Y_{1}+\alpha_{2} Y_{2}+\alpha_{3} Y_{3}+\alpha_{4} Y_{4}
$$

where $\alpha_{i} \in k\left[X_{1}, X_{2}, X_{3}\right] i \in\{1,2,3,4\}$. Since $L \in \operatorname{ker} D$, we have

$$
\begin{equation*}
\alpha_{1} X_{1}^{2}+\alpha_{2} X_{2}^{2}+\alpha_{3} X_{3}^{2}+\alpha_{4} X_{2} X_{3}=0 \tag{7}
\end{equation*}
$$

Let $\phi=\alpha_{1} X_{1}^{2}+\alpha_{2} X_{2}^{2}+\alpha_{3} X_{3}^{2}$, then equation (7) shows that both X_{2} and X_{3} are divisors of ϕ. Taking equation (7) modulo X_{2} gives that

$$
\begin{equation*}
X_{1}^{2} \alpha_{12}+X_{3}^{2} \alpha_{32}=0 \tag{8}
\end{equation*}
$$

where $\alpha_{12}=\left.\alpha_{1}\right|_{X_{2}=0}$ and $\alpha_{32}=\left.\alpha_{3}\right|_{X_{2}=0}$. Since X_{1} and X_{3} are relatively prime, equation (8) implies that $\alpha_{1}=-X_{3}^{2} \beta_{32}+X_{2} \beta_{1}$ and $\alpha_{3}=X_{1}^{2} \beta_{32}+X_{2} \beta_{3}$ for some $\beta_{1}, \beta_{3} \in k\left[X_{1}, X_{2}, X_{3}\right]$ and β_{32} in $k\left[X_{1}, X_{3}\right]$. After simplification we find

$$
\begin{equation*}
\phi=X_{1}^{2} X_{2} \beta_{1}+X_{2} X_{3}^{2} \beta_{3}+\alpha_{2} X_{2}^{2} \tag{9}
\end{equation*}
$$

Since X_{3} is a divisor of ϕ, equation (9) implies that

$$
\left.X_{1}^{2} X_{2} \beta_{1}\right|_{X_{3}=0}+\left.X_{2}^{2} \alpha_{2}\right|_{X_{3}=0}=0
$$

Consequently, $\alpha_{2}=X_{1}^{2} u+X_{3} v$ and $\beta_{1}=-X_{2} u+X_{3} w$ for some $u \in k\left[X_{1}, X_{2}\right]$ and $v, w \in k\left[X_{1}, X_{2}, X_{3}\right]$. Replacing these values of α_{2} and β_{1} in the expression (9) of ϕ, we get

$$
\phi=X_{2} X_{3}\left(X_{1}^{2} w+X_{3} \beta_{3}+X_{2} v\right)
$$

and consequently $\alpha_{4}=-\phi /\left(X_{2} X_{3}\right)=-\left(X_{1}^{2} w+X_{3} \beta_{3}+X_{2} v\right)$. Hence,

$$
\begin{aligned}
& \alpha_{1}=-X_{2}^{2} u-X_{3}^{2} \beta_{32}+X_{2} X_{3} w \\
& \alpha_{2}=X_{1}^{2} u+X_{3} v \\
& \alpha_{3}=X_{1}^{2} \beta_{32}+X_{2} \beta_{3} \\
& \alpha_{4}=-\left(X_{1}^{2} w+X_{3} \beta_{3}+X_{2} v\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
L & =\alpha_{1} Y_{1}+\alpha_{2} Y_{2}+\alpha_{3} Y_{3}+\alpha_{4} Y_{4} \\
& =u\left(X_{1}^{2} Y_{2}-X_{2}^{2} Y_{1}\right)+\beta_{32}\left(X_{1}^{2} Y_{3}-X_{3}^{2} Y_{1}\right) \\
& +v\left(X_{3} Y_{2}-X_{2} Y_{3}\right)-w\left(X_{1}^{2} Y_{4}-X_{2} X_{3} Y_{1}\right) \\
& +\beta_{3}\left(X_{2} Y_{3}-X_{3} Y_{2}\right) \\
& \in k\left[X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right] .
\end{aligned}
$$

Lemma 7.3. With the above notation,

$$
f \notin k\left[X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right] .
$$

Proof. If $f \in k\left[X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right]$, we can choose a polynomial Φ in

$$
E:=k\left[X_{1}, X_{2}, X_{3}, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\right]
$$

such that

$$
\begin{equation*}
f=\Phi\left(X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right) \tag{10}
\end{equation*}
$$

Consider the \mathbb{N}^{2}-grading on $k[X, Y]$ defined by declaring $k \subseteq k[X, Y]_{(0,0)}$ and $\operatorname{deg}\left(X_{i}\right)=(1,0), \operatorname{deg}\left(Y_{j}\right)=(0,1)$ for $i \in\{1,2,3\}$ and $j \in\{1,2,3,4\}$. Also define a similar \mathbb{N}^{2}-grading on E by $k \subseteq E_{(0,0)}$ and $\operatorname{deg}\left(X_{i}\right)=(1,0), \operatorname{deg}\left(U_{j}\right)=(2,1)$ for $j \in\{1,2,3\}$, and $\operatorname{deg}\left(U_{4}\right)=\operatorname{deg}\left(U_{5}\right)=(1,1)$. Write

$$
\Phi=\Phi_{d_{1}}+\Phi_{d_{2}}+\cdots \Phi_{d_{r}}
$$

where $\Phi_{d_{i}}$ is the homogeneous component of Φ of degree $d_{i} \in \mathbb{N}^{2}$. Since the elements $L_{12}, L_{13}, L_{14}, L_{24}, L_{34}$ are all homogeneous with respect to the \mathbb{N}^{2}-grading on $k[X, Y]$ defined above, it is easy to check that

$$
\Phi_{d_{i}}\left(X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right)
$$

is either zero or homogeneous of degree d_{i}, for all $i \in\{1, \ldots, r\}$. Also, since f is a homogeneous element of degree $(2,2)$ of $k[X, Y]$, equation (10) implies that

$$
f=\Phi_{(2,2)}\left(X_{1}, X_{2}, X_{3}, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}\right)
$$

and this can only happen if

$$
\begin{equation*}
f=a L_{24}^{2}+b L_{34}^{2}+c L_{24} L_{34} \tag{11}
\end{equation*}
$$

for some $a, b, c \in k$. Indeed, a homogeneous element of degree $(2,2)$ of E can only be a linear combination of U_{4}^{2}, U_{5}^{2} and $U_{4} U_{5}$ because of the degrees of the X_{i} 's and the U_{i} 's defined above.

Now equation (11) implies that $f \in k\left[X_{2}, X_{3}, Y_{2}, Y_{3}, Y_{4}\right]$, which is absurd.

Theorem 7.1 is now a direct consequence of the above two lemmas.
8. The property of being elementary. Let $B=R^{[m]}$, where R is a UFD containing the rationals; given an irreducible locally nilpotent derivation D of B, can we determine whether D is R-elementary? (That is, can we decide whether there exists a coordinate system $\left(Y_{1}, \ldots, Y_{m}\right)$ of B over R satisfying $D Y_{i} \in R$ for all $i ?$)

An answer in general seems to be hard. The present section answers the question in the case where R is a PID and $m=2$.

We start with two well known facts:
Proposition 8.1 ([2]). Let R be a UFD containing \mathbb{Q} and let $D \neq 0$ be a locally nilpotent R-derivation of $B=R\left[Y_{1}, Y_{2}\right] \cong R^{[2]}$. Then there exists $P \in B$ and $\alpha \in \operatorname{ker} D$ such that $\operatorname{ker} D=R[P]$ and $D=\alpha\left(P_{Y_{2}} \frac{\partial}{\partial Y_{1}}-P_{Y_{1}} \frac{\partial}{\partial Y_{2}}\right)$.

Proposition 8.2 ([7]). Let R be a \mathbb{Q}-algebra, let $P \in B=R\left[Y_{1}, Y_{2}\right] \cong$ $R^{[2]}$ and define $\Delta_{P}=P_{Y_{2}} \frac{\partial}{\partial Y_{1}}-P_{Y_{1}} \frac{\partial}{\partial Y_{2}}: B \rightarrow B$. Then the following are equivalent.

1. P is a variable of B over R
2. D is locally nilpotent, has a slice and ker $D=R[P]$.

Lemma 8.1. Let R be PID containing $\mathbb{Q}, B=R^{[m]}$ and $D: B \rightarrow B$ an irreducible R-derivation. The following are equivalent:

1. D is R-elementary
2. $D=\partial / \partial Z_{1}$ for some coordinate system $\left(Z_{1}, \ldots, Z_{m}\right)$ of B over R.

Proof. If D is R-elementary, then there exists a coordinate system $\left(Y_{1}, \ldots, Y_{m}\right)$ of B over R satisfying $D Y_{i} \in R$ for all i. Let $a_{i}=D Y_{i}$ for each i. Since R is a PID,$\left(a_{1}, \ldots, a_{m}\right) B$ is a principal ideal of B and it follows that $\left(a_{1}, \ldots, a_{m}\right) B=B$ by the irreducibility of D; so D is fix-point-free. As R is Hermite (every PID is Hermite), Proposition 6.1 implies that condition (2) holds. The converse is clear.

Proposition 8.3. Let R be PID containing $\mathbb{Q}, B=R^{[2]}$ and $D: B \rightarrow B$ an irreducible R-derivation. The following are equivalent:

1. D is R-elementary
2. D is locally nilpotent and fix-point-free.

Proof. By Lemma 8.1, it is clear that (1) implies (2). If (2) holds, let $\left(Y_{1}, Y_{2}\right)$ be any coordinate system of B over R; then Propositions 8.1 and 8.2 imply that, for some variable P of B over R, we have ker $D=R[P]$ and $D=P_{Y_{2}} \frac{\partial}{\partial Y_{1}}-P_{Y_{1}} \frac{\partial}{\partial Y_{2}}$. Choose Q such that $B=R[P, Q]$, then $D(Q) \in R^{*}$ and $D(P)=0 \in R$, so D is R-elementary.

Example 8.1. Choose $f(X) \in k[X]$ and $g(X, Y) \in k[X, Y]$ such that

$$
\operatorname{gcd}(f(X), g(X, Y))=1
$$

and let D be the k-derivation of $k[X, Y, Z]$ defined by

$$
D(X)=0, \quad D(Y)=f(X), \quad D(Z)=g(X, Y)
$$

Then D is an irreducible locally nilpotent $k[X]$-derivation of $k[X, Y, Z]$. By Propsition $8.3, D$ is $k[X]$-elementary if and only if

$$
(f(X), g(X, Y)) k[X, Y]=k[X, Y]
$$

We conclude with the following:
Proposition 8.4. If R is a PID containing \mathbb{Q}, then any nonzero R elementary derivation of $B=R\left[Y_{1}, \ldots, Y_{m}\right]$ is standard.

Proof. Let $D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}}$ be such a derivation of $B\left(a_{i} \in R\right.$ for all $\left.i\right)$. Write $D=\alpha D^{\prime}$ where $\alpha \in B$ and $D^{\prime}: B \rightarrow B$ is an irreducible derivation. Note that $\alpha D^{\prime}\left(Y_{i}\right) \in R$ for all i; it follows that $\alpha \in R$ and that D^{\prime} is R-elementary. By Lemma 8.1, D^{\prime} is standard and hence D is also standard.

REFERENCES

[1] D. Cox, J. Little, D. O'Shea. Ideals, Varieties, and Algorithms. Springer-Verlag, New York, 1992.
[2] D. Daigle, G. Freudenburg. Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k\left[X_{1}, \ldots, X_{n}\right] . J$. Algebra, 204 (1998), 353-371.
[3] J. Deveney, D. Finston. G_{a} actions on \mathbf{C}^{3} and \mathbf{C}^{7}. Comm. Algebra 22, 15 (1994), 6295-6302.
[4] M. Hochster. Nonuniqueness of coefficient rings in a polynomial ring. Proc. Amer. Math. Soc. 34, 1 (1972), 81-82.
[5] J. Khoury. On some properties of locally nilpotent derivations in dimension six. J. Pure Appl. Algebra 156/1 (2001), 69-79.
[6] P. Roberts. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth Problem. J. Algebra 132 (1990) 461-473.
[7] Arno van den Essen, Peter van Rossum. Coordinates in two variables over a \mathbb{Q}-algebra. Trans. Amer. Math. Soc. 356 (2004), 1691-1703.
[8] D. Wright. On the jacobian conjecture. Illinois J. Mathematics 25 (1981), 423-440.

Department of Mathematics and Statistics
University of Ottawa
585 King Edward Ave.
Ottawa, ON K1N 6N5
Canada
email: jkhoury@matrix.cc.uottawa.ca
Received June 18, 2004
Revised July 26, 2004

[^0]: 2000 Mathematics Subject Classification: Primary: 14R10. Secondary: 14R20, 13N15.
 Key words: Derivations, Hilbert fourteenth problem.

