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Abstract. The main purpose of this survey is to introduce the inexperi-
enced reader to additive prime number theory and some related branches
of analytic number theory. We state the main problems in the field, sketch
their history and the basic machinery used to study them, and try to give a
representative sample of the directions of current research.

1. Introduction. Additive number theory is the branch of number the-

ory that studies the representations of natural numbers as sums of integers subject

to various arithmetic restrictions. For example, given a sequence of integers

A = {a1 < a2 < a3 < · · · }
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one often asks what natural numbers can be represented as sums of a fixed number

of elements of A; that is, for any fixed s ∈ N, one wants to find the natural

numbers n such that the diophantine equation

(1.1) x1 + · · · + xs = n

has a solution in x1, . . . , xs ∈ A. The sequence A may be described in some

generality (say, one may assume that A contains “many” integers), or it may be

a particular sequence of some arithmetic interest (say, A may be the sequence

of kth powers, the sequence of prime numbers, the values taken by a polynomial

F (X) ∈ Z[X] at the positive integers or at the primes, etc.). In this survey,

we discuss almost exclusively problems of the latter kind. The main focus will

be on two questions, known as Goldbach’s problem and the Waring–Goldbach

problem, which are concerned with representations as sums of primes and powers

of primes, respectively.

1.1. Goldbach’s problem. Goldbach’s problem appeared for the first

time in 1742 in the correspondence between Goldbach and Euler. In modern

language, it can be stated as follows.

Goldbach Conjecture. Every even integer n ≥ 4 is the sum of two

primes, and every odd integer n ≥ 7 is the sum of three primes.

The two parts of this conjecture are known as the binary Goldbach prob-

lem and the ternary Goldbach problem, respectively. Clearly, the binary conjec-

ture is the stronger one. It is also much more difficult.

The first theoretical evidence in support of Goldbach’s conjecture was

obtained by Brun [27], who showed that every large even integer is the sum of

two integers having at most nine prime factors. Brun also obtained an upper

bound of the correct order for the number of representations of a large even

integer as the sum of two primes.

During the early 1920s Hardy and Littlewood [67]–[72] developed the ideas

in an earlier paper by Hardy and Ramanujan [73] into a new analytic method in

additive number theory. Their method is known as the circle method. In 1923

Hardy and Littlewood [69, 71] applied the circle method to Goldbach’s problem.

Assuming the Generalized Riemann Hypothesis1 (GRH), they proved that all but

finitely many odd integers are sums of three primes and that all but O
(

x1/2+ε
)

even integers n ≤ x are sums of two primes. (Henceforth, ε denotes a positive

number which can be chosen arbitrarily small if the implied constant is allowed

to depend on ε.)

1An important conjecture about certain Dirichlet series; see §2.2 for details.
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During the 1930s Schnirelmann [201] developed a probabilistic approach

towards problems in additive number theory. Using his method and Brun’s re-

sults, he was able to prove unconditionally that there exists a positive integer

s such that every sufficiently large integer is the sum of at most s primes. Al-

though the value of s arising from this approach is much larger than the conjec-

tured s = 3, Schnirelmann’s result represented a significant achievement, as it

defeated the popular belief at the time that the solution of Goldbach’s problem

must depend on GRH. (Since its first appearance, Schnirelmann’s method has

been polished significantly. In particular, the best result to date obtained in this

fashion by Ramare [193] states that one can take s = 7.)

In 1937 I. M. Vinogradov [236] found an ingenious new method for esti-

mating sums over primes, which he applied to the exponential sum

(1.2) f(α) =
∑

p≤n

e(αp),

where α is real, p denotes a prime, and e(α) = exp (2πiα). Using his estimate

for f(α), Vinogradov was able to give a new, unconditional proof of the result of

Hardy and Littlewood on the ternary Goldbach problem. His result is known as

Vinogradov’s three prime theorem.

Theorem 1 (Vinogradov, 1937). For a positive integer n, let R(n) denote

the number of representations of n as the sum of three primes. Then

(1.3) R(n) =
n2

2(log n)3
S(n) + O

(

n2(log n)−4
)

,

where

(1.4) S(n) =
∏

p|n

(

1 − 1

(p − 1)2

)

∏

p∤n

(

1 +
1

(p − 1)3

)

.

In particular, every sufficiently large odd integer is the sum of three primes.

The products in (1.4) are over the primes dividing n and over those not

dividing n, respectively. In particular, when n is even, we have S(n) = 0, making

(1.3) trivial. On the other hand, when n is odd, we have S(n) ≥ 1. We describe

the proof of Theorem 1 in §3.1.
It should be noted that the independence of GRH in Theorem 1 comes

at the price of a mind-boggling implied constant. If one avoids O-notation and

makes all the constants explicit, one finds that the original (GRH-dependent)

work of Hardy and Littlewood establishes the ternary Goldbach conjecture for
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n ≥ 1050, whereas Vinogradov’s method requires n ≥ 106 800 000 and even its most

refined version available today (see Liu and Wang [163]) requires n ≥ 101 346. To

put these numbers in perspective, we remark that even the bound 1050 is beyond

hope of “checking the remaining cases by a computer”. In fact, only recently

have Deshouillers et al. [51] proved that if GRH is true, the ternary Goldbach

conjecture holds for all odd n ≥ 7.

In 1938, using Vinogradov’s method, Chudakov [42], van der Corput [43],

and Estermann [54] each showed that almost all even integers n ≤ x are sums of

two primes. More precisely, they proved that for any A > 0 we have

(1.5) E(x) = O
(

x(log x)−A
)

,

where E(x) denotes the number of even integers n ≤ x that cannot be repre-

sented as the sum of two primes. The first improvement on (1.5) was obtained

by Vaughan [220]. It was followed by a celebrated work by Montgomery and

Vaughan [173] from 1975, in which they established the existence of an absolute

constant δ > 0 such that

(1.6) E(x) = O
(

x1−δ
)

.

The first to compute an explicit numerical value for δ were Chen and Pan [36].

They showed that the method of Montgomery and Vaughan yields (1.6) with

δ = 0.01. Subsequently, this result has been sharpened by several authors and

currently (1.6) is known to hold with δ = 0.086 (see Li [136]). In June 2004, Pintz

[186] announced a further improvement on (1.6). He has established the above

bound with δ = 1
3 and can also show that for all but O(x3/5+ε) even integers

n ≤ x either n or n − 2 is the sum of two primes.

One may also think of the binary Goldbach conjecture as a claim about

the primes in the sequence

(1.7) A = A(n) = {n − p : p prime number, 2 < p < n} ,

namely, that such primes exist for all even n ≥ 6. Denote by Pr an integer

having at most r prime factors, counted with their multiplicities, and refer to

such a number as an almost prime of order r (thus, Brun’s result mentioned above

asserts that every large even n can be represented in the form n = P9 + P ′
9). In

1947 Rényi [195] proved that there is a fixed integer r such that the sequence

A contains a Pr-number when n is sufficiently large. Subsequent work by many

mathematicians reduced the value of r in Rényi’s result almost to the possible
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limit and fell just short of proving the binary Goldbach conjecture. The best

result to date was obtained by Chen [35].

Theorem 2 (Chen, 1973). For an even integer n, let r(n) denote the

number of representations of n in the form n = p + P2, where p is a prime and

P2 is an almost prime of order 2. There exists an absolute constant n0 such that

if n ≥ n0, then

r(n) > 0.67
∏

p>2

(

1 − 1

(p − 1)2

)

∏

p>2
p|n

(

p − 1

p − 2

)

n

(log n)2
.

In particular, every sufficiently large even integer n can be represented in the

form n = p + P2.

1.2. Waring’s problem. Before proceeding with the Waring–Goldbach

problem, we will make a detour to present the most important results in War-

ing’s problem, as those results and the work on Goldbach’s problem have been

the main motivation behind the Waring–Golbach problem. It was probably the

ancient Greeks who first observed that every positive integer is the sum of four

integer squares, but it was not until 1770 that a complete proof of this remarkable

fact was given by Lagrange. Also in 1770, Waring proposed a generalization of

the four square theorem that became known as Waring’s problem and arguably

led to the emergence of additive number theory. In modern terminology, Waring’s

conjecture states that for every integer k ≥ 2 there exists an integer s = s(k) such

that every natural number n is the sum of at most s kth powers of natural num-

bers. Several special cases of this conjecture were settled during the 19th century,

but the complete solution eluded mathematicians until 1909, when Hilbert [95]

proved the existence of such an s for all k by means of a difficult combinatorial

argument.

Let g(k) denote the least possible s as above. Hilbert’s method produced

a very poor bound for g(k). Using the circle method, Hardy and Littlewood were

able to improve greatly on Hilbert’s bound for g(k). In fact, through the efforts

of many mathematicians, the circle method in conjunction with elementary and

computational arguments has led to a nearly complete evaluation of g(k). In

particular, we know that g(k) is determined by certain special integers n < 4k

that can only be represented as sums of a large number of kth powers of 1, 2 and

3 (see [228, §1.1] for further details on g(k)).

A much more difficult question, and one that leads to a much deeper

understanding of the additive properties of kth powers, is that of estimating the
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function G(k), defined as the least s such that every sufficiently large positive

integer n is the sum of s kth powers. This function was introduced by Hardy and

Littlewood [70], who obtained the bound

(1.8) G(k) ≤ (k − 2)2k−1 + 5.

In fact, they proved more than that. Let Ik,s(n) denote the number of solutions

of the diophantine equation

(1.9) xk
1 + xk

2 + · · · + xk
s = n

in x1, . . . , xs ∈ N. Hardy and Littlewood showed that if s ≥ (k−2)2k−1 +5, then

(1.10) Ik,s(n) ∼ Γs
(

1 + 1
k

)

Γ
(

s
k

) Sk,s(n)ns/k−1 as n → ∞,

where Γ stands for Euler’s gamma-function and Sk,s(n) is an absolutely conver-

gent infinite series, called the singular series, such that

Sk,s(n) ≥ c1(k, s) > 0.

While the upper bound (1.8) represents a tremendous improvement over

Hilbert’s result, it is still quite larger than the trivial lower bound G(k) ≥ k +1.2

During the mid-1930s I. M. Vinogradov introduced several refinements of the

circle method that allowed him to obtain a series of improvements on (1.8) for

large k. In their most elaborate version, Vinogradov’s methods yield a bound of

the form3

G(k) ≤ 2k(log k + O(log log k)).

First published by Vinogradov [240] in 1959, this bound withstood any significant

improvement until 1992, when Wooley [245] proved that

G(k) ≤ k(log k + log log k + O(1)).

The latter is the sharpest bound to date for G(k) when k is large. For smaller

k, one can obtain better results by using more specialized techniques (usually

refinements of the circle method). The best known bounds for G(k), 3 ≤ k ≤ 20,

are of the form G(k) ≤ F (k), with F (k) given by Table 1 below.

2Let X be large. If n ≤ X, any solution of (1.9) must satisfy 1 ≤ x1, . . . , xs ≤ X1/k. There
at most Xs/k such s-tuples, which yield at most (1/s! + o(1))Xs/k distinct sums xk

1 + · · · + xk
s .

Thus, when s ≤ k, there are not enough sums of s kth powers to represent all the integers.
3In this and similar results appearing later, one can obtain an explicit expressions in place

of the O-terms, but those are too complicated to state here.
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k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F (k) 7 16 17 24 33 42 50 59 67 76 84 92 100 109 117 125 134 142

Table 1. Bounds for G(k), 3 ≤ k ≤ 20.

With the exception of the bound G(3) ≤ 7, all of these results have been ob-

tained by an iterative version of the circle method that originated in the work

of Davenport [46, 48] and Davenport and Erdös [50]. The bound for G(3) was

established first by Linnik [141] and until recently lay beyond the reach of the

circle method. The result on G(4) is due to Davenport [47], and in fact states

that G(4) = 16. This is because 16 biquadrates are needed to represent integers

of the form n = 31 ·16r, r ∈ N. Other than Lagrange’s four squares theorem, this

is the only instance in which the exact value of G(k) is known. However, Daven-

port [47] also proved that if s ≥ 14, all sufficiently large integers n ≡ r (mod 16),

1 ≤ r ≤ s, can be written as the sum of s biquadrates; Kawada and Wooley [120]

obtained a similar result for as few as 11 biquadrates. The remaining bounds in

Table 1 appear in a series of recent papers by Vaughan and Wooley [229]–[232].

A great deal of effort has also been dedicated to estimating the function

G̃(k), which represents the least s for which the asymptotic formula (1.10) holds.

For large k, Ford [57] showed that

(1.11) G̃(k) ≤ k2(log k + log log k + O(1)),

thus improving on earlier work by Vinogradov [238], Hua [101], and Wooley [246].

Furthermore, Vaughan [226, 227] and Boklan [18] obtained the bounds

G̃(k) ≤ 2k (k ≥ 3) and G̃(k) ≤ 7
8 · 2k (k ≥ 6),

which supersede (1.11) when k ≤ 8.

The work on Waring’s problem has inspired research on several other

questions concerned with the additive properties of kth powers (and of more

general polynomial sequences). Such matters, however, are beyond the scope

of this survey. The reader interested in a more comprehensive introduction to

Waring’s problem should refer to the monographs [4, 228] or to a recent survey

article by Vaughan and Wooley [233] (the latter also provides an excellent account

of the history of Waring’s problem).

1.3. The Waring–Goldbach problem. Vinogradov’s proof of the three

prime theorem provided a blueprint for subsequent applications of the Hardy–

Littlewood circle method to additive problems involving primes. Shortly after the
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publication of Theorem 3, Vinogradov himself [237] and Hua [100] began studying

Waring’s problem with prime variables, known nowadays as the Waring–Goldbach

problem. They were able to generalize the asymptotic formula (1.3) to kth powers

for all k ≥ 1 and ultimately their efforts led to the proof of Theorem 3 below.

In order to describe the current knowledge about the Waring–Goldbach

problem, we first need to introduce some notation. Let k be a positive integer

and p a prime. We denote by θ = θ(k, p) the (unique) integer such that pθ | k

and pθ+1 ∤ k, and then define

(1.12) γ = γ(k, p) =

{

θ + 2, if p = 2, 2 | k,

θ + 1, otherwise,
K(k) =

∏

(p−1)|k

pγ .

In particular, we have K(1) = 2. It is not difficult to show that if an integer n

is the sum of s kth powers of primes greater than k + 1, then n must satisfy the

congruence condition n ≡ s (mod K(k)). Furthermore, define

(1.13) S(q, a) =

q
∑

h=1
(h,q)=1

e

(

ahk

q

)

, S∗
k,s(n) =

∞
∑

q=1

q
∑

a=1
(a,q)=1

S(q, a)s

φ(q)s
e

(−an

q

)

,

where (a, q) stands for the greatest common divisor of a and q, and φ(q) is Euler’s

totient function, that is, the number of positive integers n ≤ q which are relatively

prime to q. The following result will be established in §3.3 and §3.4.
Theorem 3. Let k, s and n be positive integers, and let R∗

k,s(n) denote

the number of solutions of the diophantine equation

(1.14) pk
1 + pk

2 + · · · + pk
s = n

in primes p1, . . . , ps. Suppose that

s ≥











2k + 1, if 1 ≤ k ≤ 5,
7
8 · 2k + 1, if 6 ≤ k ≤ 8,

k2(log k + log log k + O(1)), if k > 8.

Then

(1.15) R∗
k,s(n) ∼ Γs

(

1 + 1
k

)

Γ
(

s
k

) S∗
k,s(n)

ns/k−1

(log n)s
as n → ∞,
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where S∗
k,s(n) is defined by (1.13). Furthermore, the singular series S∗

k,s(n) is

absolutely convergent, and if n ≡ s (mod K(k)), then S∗
k,s(n) ≥ c2(k, s) > 0.

In particular, we have the following corollaries to Theorem 3.

Corollary 3.1. Every sufficiently large integer n ≡ 5 (mod 24) can be

represented as the sum of five squares of primes.

Corollary 3.2. Every sufficiently large odd integer can be represented as

the sum of nine cubes of primes.

Hua introduced a function H(k) similar to the function G(k) in Waring’s

problem. H(k) is defined as the least integer s such that equation (1.14) has a

solution in primes p1, . . . , ps for all sufficiently large n ≡ s (mod K(k)). It is

conjectured that H(k) = k + 1 for all k ≥ 1, but this conjecture has not been

proved for any value of k yet. When k ≤ 3, the sharpest known upper bounds

for H(k) are those given by Theorem 3, that is,

H(1) ≤ 3, H(2) ≤ 5, H(3) ≤ 9.

When k ≥ 4, the best results in the literature are as follows.

Theorem 4. Let k ≥ 4 be an integer, and let H(k) be as above. Then

H(k) ≤
{

F (k), if 4 ≤ k ≤ 10,

k(4 log k + 2 log log k + O(1)), if k > 10,

where F (k) is given by the following table.

k 4 5 6 7 8 9 10

F (k) 14 21 33 46 63 83 107

Table 2. Bounds for H(k), 4 ≤ k ≤ 10.

The cases k = 6 and 8 ≤ k ≤ 10 of Theorem 4 are due to Thani-

gasalam [211], and the cases k = 4, 5 and 7 are recent results of Kawada and

Wooley [121] and Kumchev [127], respectively. The bound for k > 10 is an old

result of Hua, whose proof can be found in Hua’s book [102]. To the best of our

knowledge, this is the strongest published result for large k, although it is well-

known to experts in the field that better results are within the reach of Wooley’s

refinement of Vinogradov’s methods. In particular, by inserting Theorem 1 in

Wooley [247] into the machinery developed in Hua’s monograph, one obtains

H(k) ≤ k(3
2 log k + O(log log k)) for k → ∞.
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1.4. Other additive problems involving primes. There are several

variants and generalizations of the Waring–Goldbach problem that have attracted

a lot of attention over the years. For example, one may consider the diophantine

equation

(1.16) a1p
k
1 + a2p

k
2 + · · · + asp

k
s = n,

where n, a1, . . . , as are fixed, not necessarily positive, integers. There are several

questions that we can ask about equations of this form. The main question, of

course, is that of solubility. Furthermore, in cases where we do know that (1.16)

is soluble, we may want to count the solutions with p1, . . . , ps ≤ X, where X is

a large parameter. A famous problem of this type is the twin-prime conjecture:

there exist infinitely many primes p such that p + 2 is also prime, that is, the

equation

p1 − p2 = 2

has infinitely many solutions. It is believed that this conjecture is of the same

difficulty as the binary Goldbach problem, and in fact, the two problems share

a lot of common history. In particular, while the twin-prime conjecture is still

open, Chen’s proof of Theorem 2 can be easily modified to establish that there

exist infinitely many primes p such that p + 2 = P2.

Other variants of the Waring–Goldbach problem consider more general

diophantine equations of the form

f(p1) + f(p2) + · · · + f(ps) = n,

where f(X) ∈ Z[X], or systems of equations of the types (1.1) or (1.16). For

example, Chapters 10 and 11 in Hua’s monograph [102] deal with the system

pj
1 + pj

2 + · · · + pj
s = nj (1 ≤ j ≤ k).

The number of solutions of this system satisfies an asymptotic formula similar to

(1.15), but the main term in that asymptotic formula is less understood than the

main term in (1.15) (see [3, 41, 102, 170] for further details).

Another classical problem in which a system of diophantine equations

arises naturally concerns the existence of non-trivial arithmetic progressions con-

sisting of r primes. It has been conjectured that for every integer r ≥ 3 there are

infinitely many such arithmetic progressions. In other words, the linear system

pi − 2pi+1 + pi+2 = 0 (1 ≤ i ≤ r − 2)
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has infinitely many solutions in distinct primes p1, . . . , pr. In the case r = 3

this can be established by a variant of Vinogardov’s proof of the three primes

theorem, but when r > 3 the above system lies beyond the reach of the circle

method. In fact, until recently the most significant insight into progressions of

more than three primes were the following two results:

• Heath-Brown [83] succeeded to prove that there exist infinitely many arith-

metic progressions of three primes and a P2-number.

• Balog [11] proved that for any r there are r distinct primes p1, . . . , pr such

that all the averages 1
2(pi + pj) are prime.

Thus, the specialists in the field were stunned when Green and Tao [64] announced

their amazing proof of the full conjecture. The reader will find a brief description

of their ideas and of some related recent work in the last section.

Finally, instead of (1.1), one may study the inequality

|x1 + · · · + xs − α| < ε,

where α is a real number, ε is a small positive number and x1, . . . , xs are real

variables taking values from a given sequence (or sequences). For example, by

setting xj = pc
j where c > 1 in not an integer, we can generalize the Waring–

Goldbach problem to fractional powers of primes. We will mention several results

of this form in §5.7.

2. The distribution of primes. In this section we discuss briefly

some classical results about primes, which play an important role in additive

prime number theory.

2.1. The Prime Number Theorem. The first result on the distribu-

tion of primes is Euclid’s theorem that there are infinitely many prime numbers.

In 1798 Legendre conjectured that the prime counting function π(x) (i.e., the

number of primes p ≤ x) satisfies the asymptotic relation

(2.1) lim
x→∞

π(x)

x/(log x)
= 1;

this is the classical statement of the Prime Number Theorem. Later Gauss ob-

served that the logarithmic integral

lix =

∫ x

2

dt

log t
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seemed to provide a better approximation to π(x) than the function x/(log x)

appearing in (2.1), and this is indeed the case. Thus, in anticipation of versions

of the Prime Number Theorem that are more precise than (2.1), we define the

error term

(2.2) ∆(x) = π(x) − lix.

The first step toward a proof of the Prime Number Theorem was made by

Chebyshev. In the early 1850s he proved that (2.1) predicts correctly the order

of π(x), that is, he established the existence of absolute constants c2 > c1 > 0

such that
c1x

log x
≤ π(x) ≤ c2x

log x
.

Chebyshev also showed that if the limit on the left side of (2.1) exists, then it

must be equal to 1.

In 1859 Riemann published his famous memoir [197], in which he demon-

strated the intimate relation between π(x) and the function which now bears his

name, that is, the Riemann zeta-function defined by

(2.3) ζ(s) =
∞

∑

n=1

n−s =
∏

p

(

1 − p−s
)−1

(Re(s) > 1).

This and similar series had been used earlier by Euler4 and Dirichlet, but only

as functions of a real variable. Riemann observed that ζ(s) is holomorphic in the

half-plane Re(s) > 1 and that it can be continued analytically to a meromorphic

function, whose only singularity is a simple pole at s = 1. It is not difficult to

deduce from (2.3) that ζ(s) 6= 0 in the half-plane Re(s) > 1. Riemann observed

that ζ(s) has infinitely many zeros in the strip 0 ≤ Re(s) ≤ 1 and proposed

several conjectures concerning those zeros and the relation between them and

the Prime Number Theorem. The most famous among those conjecture—and

the only one that is still open—is known as the Riemann Hypothesis.

Riemann Hypothesis (RH). All the zeros of ζ(s) with 0 ≤ Re(s) ≤ 1

lie on the line Re(s) =
1

2
.

The remaining conjectures in Riemann’s paper were proved by the end

of the 19th century. In particular, it was proved that the Prime Number Theorem

4In particular, Euler established the equality between ζ(s) and the infinite product in (2.3),
which is known as the Euler product of ζ(s).
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follows from the nonvanishing of ζ(s) on the line Re(s) = 1. Thus, when in 1896

Hadamard and de la Vallée Poussin proved (independently) that ζ(1+ it) 6= 0 for

all real t, the Prime Number Theorem was finally proved. In 1899 de la Vallée

Poussin obtained the following quantitative result5 . (Henceforth, we often use

Vinogradov’s notation A ≪ B, which means that A = O(B).)

Theorem 5 (de la Vallée Poussin, 1899). Let ∆(x) be defined by (2.2).

There exists an absolute constant c > 0 such that

∆(x) ≪ x exp
(

− c
√

log x
)

.

De la Vallée Poussin’s theorem has been improved somewhat, but not

nearly as much as one would hope. The best result to date is due to I. M.

Vinogradov [239] and Korobov [123], who obtained (independently) the following

estimate for ∆(x).

Theorem 6 (Vinogradov, Korobov, 1958). Let ∆(x) be defined by (2.2).

There exists an absolute constant c > 0 such that

∆(x) ≪ x exp
(

− c(log x)3/5(log log x)−1/5
)

.

In comparison, if the Riemann Hypothesis is assumed, one has

(2.4) ∆(x) ≪ x1/2 log x,

which, apart from the power of the logarithm, is best possible. The reader can

find further information about the Prime Number Theorem and the Riemann

zeta-function in the standard texts on the subject (e.g., [49, 103, 117, 191, 212]).

2.2. Primes in arithmetic progressions. In a couple of memoirs

published in 1837 and 1840, Dirichlet proved that if a and q are natural numbers

with (a, q) = 1, then the arithmetic progression a mod q contains infinitely many

primes. In fact, Dirichlet’s argument can be refined as to establish the asymptotic

formula

(2.5)
∑

p≤x
p≡a (mod q)

log p

p
∼ 1

φ(q)

∑

p≤x

log p

p
as x → ∞,

5Functions of the type f(x) = exp
�
(log x)λ

�
, where λ is a constant, are quite common in

analytic number theory. To help the reader appreciate results such as Theorems 5 and 6, we
remark that as x → ∞ such a function with 0 < λ < 1 grows more rapidly than any fixed power
of log x, but less rapidly than xε for any fixed ε > 0.
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valid for all a and q with (a, q) = 1. Fix q and consider the various arithmetic

progressions a mod q (here φ(q) is Euler’s totient function). Since all but finitely

many primes lie in progressions with (a, q) = 1 and there are φ(q) such progres-

sions, (2.5) suggests that each arithmetic progression a mod q, with (a, q) = 1,

“captures its fair share” of prime numbers, i.e., that the primes are uniformly

distributed among the (appropriate) arithmetic progressions to a given modulus

q. Thus, one may expect that if (a, q) = 1, then

(2.6) π(x; q, a) =
∑

p≤x
p≡a (mod q)

1 ∼ li x

φ(q)
as x → ∞.

This is the prime number theorem for arithmetic progressions. One may consider

(2.6) from two different view points. First, one may fix a and q and ask whether

(2.6) holds (allowing the convergence to depend on q and a). Posed in this form,

the problem is a minor generalization of the Prime Number Theorem. In fact,

shortly after proving Theorem 5, de la Vallée Poussin established that

∆(x; q, a) = π(x; q, a) − li x

φ(q)
≪ x exp

(

− c
√

log x
)

,

where c = c(q, a) > 0 and the implied constant depends on q and a. The problem

becomes much more difficult if one requires an estimate that is explicit in q and

uniform in a. The first result of this kind was obtained by Page [176], who proved

the existence of a (small) positive number δ such that

(2.7) ∆(x; q, a) ≪ x exp
(

−(log x)δ
)

,

whenever 1 ≤ q ≤ (log x)2−δ and (a, q) = 1. In 1935 Siegel [208] (essentially)

proved the following result known as the Siegel–Walfisz theorem.

Theorem 7 (Siegel, 1935). For any fixed A > 0, there exists a constant

c = c(A) > 0 such that

π(x; q, a) =
li x

φ(q)
+ O

(

x exp
(

− c
√

log x
))

whenever q ≤ (log x)A and (a, q) = 1.

Remark. While this result is clearly sharper than Page’s, it does have

one significant drawback: it is ineffective, that is, given a particular value of
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A, the proof does not allow the constant c(A) or the O-implied constant to be

computed.

The above results have been proved using the analytic properties of a class

of generalizations of the Riemann zeta-function known as Dirichlet L-functions.

For each positive integer q there are φ(q) functions χ : Z → C, called Dirichlet

characters mod q, with the following properties:

• χ is totally multiplicative: χ(mn) = χ(m)χ(n);

• χ is q-periodic;

• |χ(n)| = 1 if (n, q) = 1 and χ(n) = 0 if (n, q) > 1;

• if (n, q) = 1, then

∑

χ mod q

χ(n) =

{

φ(q) if n ≡ 1 (mod q),

0 otherwise.

For more information about the construction and properties of the Dirichlet char-

acters we refer the reader to [49, 108, 116, 191].

Given a character χ mod q, we define the Dirichlet L-function

L(s, χ) =
∞
∑

n=1

χ(n)n−s =
∏

p

(

1 − χ(p)p−s
)−1

(Re(s) > 1).

Similarly to ζ(s), L(s, χ) is holomorphic in the half-plane Re(s) > 1 and can

be continued analytically to a meromorphic function on C that has at most one

pole, which (if present) must be a simple pole at s = 1. Furthermore, just as

ζ(s), the continued L(s, χ) has infinitely many zeros in the strip 0 ≤ Re(s) ≤ 1,

and the horizontal distribution of those zeros has important implications on the

distribution of primes in arithmetic progressions. For example, the results of de

la Vallée Poussin, Page and Siegel mentioned above were proved by showing that

no L-function can have a zero “close” to the line Re(s) = 1. We also have the

following generalization of the Riemann Hypothesis.

Generalized Riemannian Hypothesis (GRH). Let L(s, χ) be a Dirich-

let L-function. Then all the zeros of L(s, χ) with 0 ≤ Re(s) ≤ 1 lie on the line

Re(s) = 1
2 .

Assuming GRH, we can deduce easily that if (a, q) = 1, then

(2.8) π(x; q, a) =
li x

φ(q)
+ O

(

x1/2 log x
)

,
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which is nontrivial when 1 ≤ q ≤ x1/2(log x)−2−ε.

In many applications one only needs (2.8) to hold “on average” over the

moduli q. During the 1950s and 1960s several authors obtained estimates for av-

erages of ∆(x; q, a). In particular, the following quantity was studied extensively:

E(x,Q) =
∑

q≤Q

max
(a,q)=1

max
y≤x

|∆(y; q, a)|.

The trivial bound for this quantity is E(x,Q) ≪ x log x. One usually focuses on

finding the largest value of Q for which one can improve on this trivial bound,

even if the improvement is fairly modest. The sharpest result in this direction

was established (independently) by Bombieri [19] and A. I. Vinogradov [234] in

1965. Their result is known as the Bombieri–Vinogradov theorem and (in the

slightly stronger form given by Bombieri) can be stated as follows.

Theorem 8 (Bombieri, Vinogradov, 1965). For any fixed A > 0, there

exists a B = B(A) > 0 such that

(2.9) E(x,Q) ≪ x(log x)−A,

provided that Q ≤ x1/2(log x)−B.

We should note that other than the value of B(A) the range for Q in

this result is as long as the range we can deduce from GRH. Indeed, GRH yields

B = A + 1, whereas Bombieri obtained Theorem 8 with B = 3A + 22 and more

recently Vaughan [223] gave B = A + 5/2.

2.3. Primes in short intervals. Throughout this section, we write

pn for the nth prime number. We are interested in estimates for the difference

pn+1 − pn between two consecutive primes. Cramér was the first to study this

question systematically. He proved [44] that the Riemann Hypothesis implies

pn+1 − pn ≪ p1/2
n log pn.

Cramér also proposed a probabilistic model of the prime numbers that leads

to very precise (and very bold) predictions of the asymptotic properties of the

primes. In particular, he conjectured [45] that

(2.10) lim sup
n→∞

pn+1 − pn

log2 pn

= 1.
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A non-trivial upper bound for pn+1−pn can be obtained as a consequence

of the Prime Number Theorem, but Hoheisel [96] found a much sharper result.

He proved unconditionaly the asymptotic formula

(2.11) π(x + h) − π(x) ∼ h(log x)−1 as x → ∞,

with h = x1−(3300)−1

. There have been several improvements on Hoheisel’s result

and it is now known that (2.11) holds with h = x7/12 (see Heath-Brown [86]).

Furthermore, several mathematicians have shown that even shorter intervals must

contain primes (without establishing an asymptotic formula for the number of

primes in such intervals). The best result in this directions is due to Baker,

Harman, and Pintz [9], who proved that for each n one has

pn+1 − pn ≪ p0.525
n .

A related problem seeks small gaps between consecutive primes. In par-

ticular, the twin-prime conjecture can be stated in the form

lim inf
n→∞

(pn+1 − pn) = 2.

It is an exercise to show that the Prime Number Theorem implies the inequality

lim inf
n→∞

pn+1 − pn

log pn
≤ 1.

Improvements on this trivial bound, on the other hand, have proved notoriously

difficult and, so far, the best result, due to Maier [165], is

lim inf
n→∞

pn+1 − pn

log pn
≤ 0.2486 . . . .

2.4. Primes in sparse sequences. We say that an infinite sequence of

primes S is sparse if

π(S;x) := #
{

p ∈ S : p ≤ x
}

= o(π(x)) as x → ∞.

A classical example that has attracted a great deal of attention but has proved

notoriously difficult is that of primes represented by polynomials. To this day,

there is not a single example of a polynomial f(X) ∈ Z[X] of degree at least 2

which is known to take on infinitely many prime values. The closest approxi-

mation is a result of Iwaniec [104], who showed that if a, b, c are integers such
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that a > 0, (c, 2) = 1, and the polynomial f(X) = aX2 + bX + c is irreducible,

then f(X) takes on infinitely many P2-numbers. On the other hand, in recent

years there has been some exciting progress in the direction of finding polynomi-

als in two variables that represent infinitely many primes. In 1998 Friedlander

and Iwaniec [58] proved that the polynomial X2 + Y 4 represents infinitely many

primes. We note that this polynomial takes on O(x3/4) values up to x. In 2001

Heath-Brown [89] obtained an analogous result for the polynomial X3 + 2Y 3

whose values are even sparser: it takes on O(x2/3) values up to x. Furthermore,

Heath-Brown and Moroz [92] extended the latter result to general irreducible

binary cubic forms in Z[X,Y ] (subject to some mild necessary conditions).

Another class of sparse sequences of prime numbers arises in the context

of diophantine approximation. The two best known examples of this kind are the

sequences

(2.12) Sλ =
{

p : p is prime with {√p} < p−λ
}

and

(2.13) Pc = {p : p = [nc] for some integer n} .

Here, λ ∈ (0, 1) and c > 1 are fixed real numbers, {x} denotes the fractional part

of the real number x, and [x] = x − {x}. The sequence Sλ was introduced by

I. M. Vinogradov, who proved (see [241, Chapter 4]) that if 0 < λ < 1/10, then

π(Sλ;x) ∼ x1−λ

(1 − λ) log x
as x → ∞.

The admissible range for λ has been subsequently extended to 0 < λ < 1/4 by

Balog [10] and Harman [76], while Harman and Lewis [81] showed that Sλ is

infinite for 0 < λ < 0.262.

The first to study the sequence (2.13) was Piatetski-Shapiro [185], who

considered Pc as a sequence of primes represented by a “polynomial of degree

c”. Piatetski-Shapiro proved that Pc is infinite when 1 < c < 12/11. The range

for c has been extended several times and it is currently known (see Rivat and

Wu [199]) that Pc is infinite when 1 < c < 243/205. Furthermore, it is known

(see Rivat and Sargos [198]) that when 1 < c < 1.16117 . . . , we have

π(Pc;x) ∼ x1/c

log x
as x → ∞.
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3. The Hardy–Littlewood circle method. Most of the results

mentioned in the Introduction have been proved by means of the Hardy–Littlewood

circle method. In this section, we describe the general philosophy of the circle

method, using its applications to the Goldbach and Waring–Goldbach problems

to illustrate the main points.

3.1. Vinogradov’s three prime theorem.

3.1.1. Preliminaries. Using the orthogonality relation

(3.1)

∫ 1

0
e(αm) dα =

{

1, if m = 0,

0, if m 6= 0,

we can express R(n) as a Fourier integral. We have

R(n) =
∑

p1,p2,p3≤n

∫ 1

0
e (α (p1 + p2 + p3 − n)) dα(3.2)

=

∫ 1

0
f(α)3e(−αn) dα,

where f(α) is the exponential sum (1.2).

The circle method uses (3.2) to derive an asymptotic formula for R(n)

from estimates for f(α). The analysis of the right side of (3.2) rests on the

observation that the behavior of f(α) depends on the distance from α to the set

of fractions with “small” denominators. When α is “near” such a fraction, we

expect f(α) to be “large” and to have certain asymptotic behavior. Otherwise,

we can argue that the numbers e(αp) are uniformly distributed on the unit circle

and hence f(α) is “small”. In order to make these observations rigorous, we need

to introduce some notation. Let B be a positive constant to be chosen later and

set

(3.3) P = (log n)B.

If a and q are integers with 1 ≤ a ≤ q ≤ P and (a, q) = 1, we define the major

arc6

(3.4) M(q, a) =

[

a

q
− P

qn
,

a

q
+

P

qn

]

.

6This term may seem a little peculiar at first, given that M(q, a) is in fact an interval. The
explanation is that, in the original version of the circle method, Hardy and Littlewood used
power series and Cauchy’s integral formula instead of exponential sums and (3.1) (see [228,
§1.2]). In that setting, the role of M(q, a) is played by a small circular arc near the root of unity
e(a/q).
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The integration in (3.2) can be taken over any interval of length one and, in

particular, over
[

Pn−1, 1 + Pn−1
]

. We partition this interval into two subsets:

(3.5) M =
⋃

q≤P

⋃

1≤a≤q
(a,q)=1

M(q, a) and m =
[

Pn−1, 1 + Pn−1
]

\ M,

called respectively the set of major arcs and the set of minor arcs. Then from

(3.2) and (3.5) it follows that

(3.6) R(n) = R(n,M) + R(n,m),

where we have denoted

R(n,B) =

∫

B

f(α)3e(−αn) dα.

In the next section we explain how, using Theorem 7 and standard results from

elementary number theory, one can obtain an asymptotic formula for R(n,M)

(see (3.13) below). Then in §3.1.3 and §3.1.4 we discuss how one can show that

R(n,m) is of a smaller order of magnitude than the main term in that asymptotic

formula (see (3.14)).

3.1.2. The major arcs. In this section we sketch the estimation of the

contribution from the major arcs. The interested reader will find the missing

details in [116, Chapter 10] or [228, Chapter 2].

It is easy to see that the major arcs M(q, a) are mutually disjoint. Thus,

using (3.4) and (3.5), we can write

(3.7) R(n,M) =
∑

q≤P

∑

1≤a≤q
(a,q)=1

∫ P/(qn)

−P/(qn)
f(a/q + β)3e

(

− (a/q + β)n
)

dβ.

We now proceed to approximate f
(

a/q + β
)

by a simpler expression. To

motivate our choice of the approximation, we first consider the case β = 0. We

split the sum f
(

a/q
)

into subsums according to the residue of p modulo q and

take into account the definition (2.6). We get

f

(

a

q

)

=

q
∑

h=1

∑

p≤n
p≡h (mod q)

e

(

ap

q

)

=

q
∑

h=1

e

(

ah

q

)

π(n; q, h).
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The contribution of the terms with (h, q) > 1 is negligible (at most q). If (h, q) =

1, our choice (3.3) of the parameter P ensures that we can appeal to Theorem 7

to approximate π(n; q, h) by φ(q)−1 li n. We deduce that

(3.8) f

(

a

q

)

=
li n

φ(q)

q
∑

h=1
(h,q)=1

e

(

ah

q

)

+ O
(

qnP−4
)

.

The exponential sum on the right side of (3.8) is known as the Ramanujan sum

and is usually denoted by cq(a). Its value is known for every pair of integers a and

q (see [74, Theorem 271]). In particular, when (a, q) = 1 we have cq(a) = µ(q),

where µ is the Möbius function

(3.9) µ(n) =











1, if n = 1,

(−1)k, if n = p1 · · · pk is the product of k distinct primes,

0, otherwise.

The situation does not change much if instead of α = a/q we consider α =

a/q + β ∈ M(q, a). In this case we find that

(3.10) f

(

a

q
+ β

)

=
µ(q)

φ(q)
· v(β) + O

(

nP−3
)

,

where

v(β) =

∫ n

2

e(βu)

log u
du.

Raising (3.10) to the third power and inserting the result into the right

side of (3.7), we obtain

(3.11) R(n,M) =
∑

q≤P

µ(q)cq(−n)

φ(q)3

∫ P/(qn)

−P/(qn)
v(β)3e(−βn) dβ + O

(

n2P−1
)

.

At this point, we extend the integration over β to the whole real line, and then

the summation over q to all positive integers. The arising error terms can be

controlled easily by means of well-known bounds for the functions v(β) and φ(q),

and we find that

(3.12) R(n,M) = S(n)J(n) + O
(

n2P−1
)

,
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where S(n) and J(n) are the singular series and the singular integral defined by

S(n) =
∞

∑

q=1

µ(q)cq(−n)

φ(q)3
, J(n) =

∫ ∞

−∞
v(β)3e(−βn) dβ.

The series S(n) actually satisfies (1.4). Indeed, the function

g(q) = µ(q)cq(−n)φ(q)−3

is multiplicative in q, that is, g(q1q2) = g(q1)g(q2) whenever (q1, q2) = 1. Hence,

using the absolute convergence of S(n) and the elementary properties of the arith-

metic functions involved in the definition of g(q), we can represent the singular

series as an Euler product:

S(n) =

∞
∑

q=1

g(q) =
∏

p

(

1 + g(p) + g(p2) + · · ·
)

=
∏

p|n

(

1 − 1

(p − 1)2

)

∏

p∤n

(

1 +
1

(p − 1)3

)

.

Also, an application of Fourier’s inversion formula and some calculus reveal that

J(n) =
n2

2(log n)3
+ O

(

n2(log n)−4
)

.

Therefore, if B ≥ 4 we can conclude that

(3.13) R(n,M) =
n2

2(log n)3
S(n) + O

(

n2(log n)−4
)

.

3.1.3. The minor arcs. In view of (3.6) and (3.13), it suffices to prove

that (for some B ≥ 4)

(3.14) R(n,m) ≪ n2(log n)−4.

We have

(3.15) |R(n,m)| ≤
∫

m

|f(α)|3 dα ≤
(

sup
m

|f(α)|
)

∫ 1

0
|f(α)|2 dα.

By Parseval’s identity and the Prime Number Theorem,

(3.16)

∫ 1

0
|f(α)|2 dα =

∑

p≤n

1 ≪ n(log n)−1.
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Thus, (3.14) will follow from (3.15), if we show that

(3.17) sup
m

|f(α)| ≪ n(log n)−3.

We note that the trivial estimate for f(α) is

f(α) ≪
∑

p≤n

1 ≪ n(log n)−1,

so in order to establish (3.17), we have to save a power of log n over this trivial

estimate (uniformly with respect to α ∈ m). We can do this using the following

lemma, which provides such a saving under the assumption that α can be ap-

proximated by a reduced fraction whose denominator q is “neither too small, nor

too large.”

Lemma 3.1. Let α be real and let a and q be integers satisfying

1 ≤ q ≤ n, (a, q) = 1, |qα − a| ≤ q−1.

Then

f(α) ≪ (log n)3
(

nq−1/2 + n4/5 + n1/2q1/2
)

.

This is the sharpest known version of the estimate for f(α) established

by I. M. Vinogradov [236] in 1937. As we mentioned in the Introduction, that

result was the main innovation in Vinogradov’s proof of Theorem 1. The above

version is due to Vaughan [225].

We shall explain the proof of Lemma 3.1 in the next section and now we

shall use it to establish (3.17). To this end we need also the following lemma,

known as Dirichlet’s theorem on diophantine approximation; its proof is elemen-

tary and can be found in [228, Lemma 2.1].

Lemma 3.2 (Dirichlet). Let α and Q be real and Q ≥ 1. There exist

integers a and q such that

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < Q−1.

Let α ∈ m. By (3.5) and Lemma 3.2 with Q = nP−1, there are integers

a and q such that

P < q ≤ nP−1, (a, q) = 1, |qα − a| < Pn−1 ≤ q−1.
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Hence, an appeal to (3.3) and Lemma 3.1 gives

(3.18) f(α) ≪ (log n)3
(

nP−1/2 + n4/5
)

≪ n(log n)3−B/2.

and (3.17) follows on choosing B ≥ 12. This completes the proof of Theorem 1.

The above proof of Vinogradov’s theorem employs the Siegel–Walfisz the-

orem and, therefore, is ineffective (recall the remark following the statement of

Theorem 7). The interested reader can find an effective proof (with a slightly

weaker error term) in [116, Chapter 10].

3.1.4. The estimation of f(α). The main tool in the proof of Lemma

3.1 are estimates for bilinear sums of the form

(3.19) S =
∑

X<x≤2X

∑

Y <y≤2Y
xy≤n

ξxηye(αxy).

We need to control two kinds of such sums, known as type I sums and type II

sums. For simplicity, we describe these two types of sums in the simplest cases,

noting that the more general sums arising in the actual proof of Lemma 3.1 can

be reduced to these special cases using standard trickery:

• type I sums: sums (3.19) with |ξx| ≤ 1, ηy = 1 for all y, and X is “not too

large”;

• type II sums: sums (3.19) with |ξx| ≤ 1, |ηy| ≤ 1, and X,Y are “neither

large, nor small”.

Vinogradov reduced the estimation of f(α) to the estimation of type I

and type II sums by means of an intricate combinatorial argument. Nowadays

we can achieve the same result almost instantaneously by referring to the com-

binatorial identities of Vaughan [223, 225] or Heath-Brown [84]. Let Λ(k) denote

von Mangoldt’s function, whose value is log p or 0 according as k is a power of

a prime p or not. Vaughan’s identity states that if U and V are real parameters

exceeding 1, then

(3.20) Λ(k) =
∑

dm=k
1≤d≤V

µ(d) log m −
∑

dlm=k
1≤d≤V
1≤m≤U

µ(d)Λ(m) −
∑

dlm=k
1≤d≤V

m>U,dl>V

µ(d)Λ(m).
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Heath-Brown’s identity states that if k ≤ x and J is a positive integer, then

Λ(k) =
J

∑

j=1

(

J

j

)

(−1)j−1
∑

m1···m2j=k

m1,...,mj≤x1/J

µ(m1) · · · µ(mj) log m2j,

where µ(m) is the Möbius function.

Both identities can be used to reduce f(α) to type I and type II sums

with equal success. Here, we apply Vaughan’s identity with U = V = n2/5. We

obtain

(3.21)
∑

k≤n

Λ(k)e(αk) = W1 − W2 − W3,

with

Wj =
∑

k≤n

aj(k)e(αk) (1 ≤ j ≤ 3)

where aj(k) denotes the jth sum on the right side of (3.20). The estimation of

the sum on the left side of (3.21) is essentially equivalent to that of f(α). The

sums W1 and W2 on the right side of (3.21) can be reduced to type I sums with

X ≪ n4/5; W3 can be reduced to type II sums with n2/5 ≪ X,Y ≪ n3/5. The

reader can find all the details in the proof of [228, Theorem 3.1]. Here we will be

content with a brief description of the estimation of the type I and type II sums.

Consider a type I sum S1. We have

(3.22) |S1| ≤
∑

X<x≤2X

∣

∣

∣

∑

Y <y≤Y ′

e(αxy)
∣

∣

∣
,

where Y ′ = min(2Y, n/x). We can estimate the inner sum in (3.22) by means of

the elementary bound

(3.23)
∣

∣

∣

∑

a<y≤b

e(αy)
∣

∣

∣ ≤ min
(

b − a + 1, ‖α‖−1
)

,

where ‖α‖ denotes the distance from α to the nearest integer. This inequality

follows on noting that the sum on the left is the sum of a geometric progression.

We obtain

(3.24) |S1| ≤
∑

x≤2X

min
(

Y, ‖αx‖−1
)

= T (α), say.
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Obviously, the trivial estimate for T (α) is

T (α) ≪ XY.

However, under the hypotheses of Lemma 3.1, one can establish by elementary

methods that (see [228, Lemma 2.2])

(3.25) T (α) ≪ XY

(

1

q
+

1

Y
+

q

XY

)

log(2XY q).

Inserting this bound into the right side of (3.24), we obtain a satisfactory bound

for S1.

To estimate a type II sum S2, we first apply Cauchy’s inequality and get

|S2|2 ≪ Y
∑

Y <y≤2Y

∣

∣

∣

∑

X<x≤X′

ξxe(αxy)
∣

∣

∣

2
,

where X ′ = min(2X,n/y). Squaring out and interchanging the order of summa-

tion, we deduce

|S2|2 ≪ Y
∑

Y <y≤2Y

∑

X<x1,x2≤X′

ξx1
ξx2

e(α(x1 − x2)y)

≪ Y
∑

X<x1,x2≤2X

∣

∣

∣

∑

Y <y≤Y ′

e(α(x1 − x2)y)
∣

∣

∣

≪ Y
∑

X<x≤2X

∑

|h|<X

∣

∣

∣

∑

Y <y≤Y ′

e(αhy)
∣

∣

∣
,

where Y < Y ′ ≤ 2Y . We remark that the innermost sum is now free of “un-

known” weights and can be estimated by means of (3.23). We get

(3.26) |S2|2 ≪ XY 2 + XY T (α),

and (3.25) again leads to a satisfactory bound for S2.

3.2. The exceptional set in Goldbach’s problem. We now sketch

the proof of (1.5). We will not discuss the proof of the more sophisticated results

of Montgomery and Vaughan [173] and Pintz [186], since they require knowledge

of the properties of Dirichlet L-functions far beyond the scope of this survey. The

reader can find excellent expositions of the Montgomery–Vaughan result in their

original paper and also in the monograph [177].



An invitation to additive prime number theory 27

For an even integer n, let r(n) denote the number of representations of n

as the sum of two primes, let Z(N) denote the set of even integers n ∈ (N, 2N ]

with r(n) = 0, and write Z(N) = |Z(N)|. Since

E(x) =
∞
∑

j=1

Z(x2−j),

it suffices to bound Z(N) for large N .

Define f(α), M, and m as before, with N in place of n. When n is an

even integer in (N, 2N ], a variant of the method in §3.1.2 gives

∫

M

f(α)2e(−αn) dα = S2(n)
n

(log n)2
+ O

(

N

(log N)3

)

,

where

S2(n) =
∏

p∤n

(

1 − 1

(p − 1)2

)

∏

p|n

(

p

p − 1

)

is the singular series. In particular, we have S2(n) ≥ 1 for even n. Thus, for

n ∈ Z(N), we have

(3.27)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

M

f(α)2e(−αn) dα

∣

∣

∣

∣

≫ N(log N)−2,

whence

(3.28) Z(N) ≪ N−2(log N)4
∑

n∈Z(N)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

2

.

On the other hand, by Bessel’s inequality,

(3.29)
∑

n∈Z(N)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

2

≤
∫

m

|f(α)|4 dα,

and (3.16) and (3.18) yield

(3.30)

∫

m

|f(α)|4 dα ≤
(

sup
α∈m

|f(α)|
)2

∫ 1

0
|f(α)|2 dα ≪ N3P−1(log N)5.

Combining (3.28)–(3.30), we conclude that

Z(N) ≪ NP−1(log N)9 ≪ N(log N)−A,
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on choosing, say, P = (log N)A+9. This completes the proof of (1.5).

3.3. The circle method in the Waring–Goldbach problem. We

now turn our attention to Theorems 3 and 4. Much of the discussion in §3.1 can

be generalized to kth powers (k ≥ 2). Using (3.1), we can write R∗
k,s(n) as

R∗
k,s(n) =

∫ 1

0
f(α)se(−αn) dα,

where now

f(α) =
∑

p≤N

e
(

αpk
)

, N = n1/k.

Define the sets of major and minor arcs as before (that is, by (3.4) and (3.5),

with P = (log N)B and B = B(k, s) to be chosen later). The machinery in §3.1.2
generalizes to kth powers with little extra effort. The argument leading to (3.10)

gives

(3.31) f

(

a

q
+ β

)

= φ(q)−1S(q, a) v(β) + error term,

where S(q, a) is defined by (1.13) and

v(β) =

∫ N

2

e
(

βuk
)

log u
du.

We now raise (3.31) to the sth power and integrate the resulting approximation

for f(α)s over M. Using known estimates for v(β) and S(q, a), we find that when

s ≥ k + 1,

(3.32)

∫

M

f(α)se(−αn) dα = S∗
k,s(n)J∗

k,s(n) + O
(

N s−kP−1/k+ε
)

,

where S∗
k,s(n) is defined by (1.13) and J∗

k,s(n) is the singular integral

J∗
k,s(n) =

∫ ∞

−∞
v(β)se(−βn) dβ

=
Γs

(

1 + 1
k

)

Γ
(

s
k

)

ns/k−1

(log n)s
+ O

(

ns/k−1(log n)−s−1
)

.
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This reduces the proof of Theorem 3 to the estimate

(3.33)

∫

m

f(α)se(−αn) dα ≪ N s−k(log N)−s−1.

Notice that when k = 1 and s = 3, (3.33) turns into (3.14). Thus, it is

natural to try to obtain variants of (3.16) and (3.17) for f(α) when k ≥ 2. To

estimate the maximum of f(α) on the minor arcs, we use the same tools as in

§3.1.4, that is:

• Heath-Brown’s or Vaughan’s identity to reduce the estimation of f(α) to

the estimation of bilinear sums

∑

X<x≤2X

∑

Y <y≤2Y
xy≤N

ξxηye
(

α(xy)k
)

;

• Cauchy’s inequality to bound those bilinear sums in terms of the quantity

T (α) appearing in (3.24).

The following result due to Harman [75] is the analogue of Lemma 3.1 for k ≥ 2.

Lemma 3.3. Let k ≥ 2, let α ∈ R, and suppose that a and q are integers

satisfying

1 ≤ q ≤ Nk, (a, q) = 1, |qα − a| < q−1.

There is a constant c = c(k) > 0 such that

f(α) ≪ N(log N)c
(

q−1 + N−1/2 + qN−k
)41−k

.

On choosing the constant B (in the definition of m) sufficiently large, one

can use Lemmas 3.2 and 3.3 to show that, for any fixed A > 0,

sup
α∈m

|f(α)| ≪ N(log N)−A.

Hence, if s = 2r + 1, one has

∫

m

|f(α)|s dα ≤ sup
α∈m

|f(α)|
∫ 1

0
|f(α)|2r dα ≪ N(log N)−A

∫ 1

0
|f(α)|2r dα,
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and it suffices to establish the estimate

(3.34) Ir(N) :=

∫ 1

0
|f(α)|2rdα ≪ N2r−k(log N)c,

with c = c(k, r).

3.4. Mean-value estimates for exponential sums. We now turn to

the proof of (3.34). By (3.1), Ir(N) represents the number of solutions of the

diophantine equation

(3.35)

{

xk
1 + · · · + xk

r = xk
r+1 + · · · + xk

2r,

1 ≤ x1, . . . , x2r ≤ N

in primes x1, . . . , x2r, and therefore, Ir(N) does not exceed the number of solu-

tions of (3.35) in integers x1, . . . , x2r. Using (3.1) to write the latter quantity as

a Fourier integral, we conclude that

(3.36) Ir(N) ≤
∫ 1

0
|g(α)|2rdα, g(α) =

∑

x≤N

e
(

αxk
)

.

This reduces the estimation of the even moments of f(α) to the estimation of the

respective moments of the exponential sum g(α), whose analysis is much easier.

In particular, we have the following two results.

Lemma 3.4 (Hua’s lemma). Suppose that k ≥ 1, and let g(α) be defined

by (3.36). There exists a constant c = c(k) ≥ 0 such that

(3.37)

∫ 1

0
|g(α)|2k

dα ≪ N2k−k(log N)c.

Lemma 3.5. Suppose that k ≥ 11 and g(α) is defined by (3.36). There

exists a constant c = c(k) > 0 such that for r >
1

2
k2(log k + log log k + c),

(3.38)

∫ 1

0
|g(α)|2rdα ≪ N2r−k.

These lemmas are, in fact, rather deep and important results in the theory

of Waring’s problem. Unfortunately, their proofs are too complicated to include
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in this survey in any meaningful way. The reader will find a proof of a somewhat

weaker version of Hua’s lemma (with a factor of N ε in place of (log N)c) in [228,

Lemma 2.5] and a complete proof in [102, Theorem 4]. Results somewhat weaker

than Lemma 3.5 are classical and go back to Vinogradov’s work on Waring’s

problem (see [102, Lemma 7.13] or [228, Theorem 7.4]). Lemma 3.5 itself follows

from the results in Ford [57] (in particular, see [57, (5.4)]).

Combining (3.36) and Lemmas 3.4 and 3.5, we get (3.34) with

r =

{

2k−1, if k ≤ 10,
[

1
2k2(log k + log log k + c)

]

+ 1, if k ≥ 11.

Clearly, this completes the proof of Theorem 3, except for the case 6 ≤ k ≤ 8,

which we will skip in order to avoid the discussion of certain technical details.

3.5. Diminishing ranges. In this section, we describe the main new

idea that leads to the bounds for H(k) in Theorem 4. This idea, known as the

method of diminishing ranges, appeared for the first time in the work of Hardy

and Littlewood on Waring’s problem and later was developed into a powerfull

technique by Davenport.

The limit of the method employed in §3.3 is set by the mean-value esti-

mates in Lemmas 3.4 and 3.5. The key observation in the method of diminishing

ranges is that it can be much easier to count the solutions of the equation in (3.35)

if the unknowns x1, . . . , x2r are restricted to proper subsets of [1, N ]. For exam-

ple, the simplest version of the method that goes back to Hardy and Littlewood

uses that when N2, . . . , Nr are defined recursively by

Nj = k−1N
1−1/k
j−1 (2 ≤ j ≤ r),

the equation

(3.35*)

{

xk
1 + · · · + xk

r = xk
r+1 + · · · + xk

2r,

Nj < xj, xr+j ≤ 2Nj (1 ≤ j ≤ r),

has only “diagonal” solutions with xr+j = xj, j = 1, . . . , r. Thus, the number of

solutions of (3.35*) is bounded above by

N1 · · ·Nr ≪ N2−λ
1 (N2 · · ·Nr)

2

where

λ = 1 +
(

1 − 1
k

)

+ · · · +
(

1 − 1
k

)r−1 ≥ k − ke−r/k.
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That is, we have the bound

(3.39)

∫ 1

0

∣

∣g1(α)g2(α) · · · gr(α)
∣

∣

2
dα ≪ N2−λ

1 (N2 · · ·Nr)
2,

where

gj(α) =
∑

Nj<x≤2Nj

e
(

αxk
)

(1 ≤ j ≤ r).

We can use (3.39) as a replacement for the mean-value estimates in §3.4.
Let Tk,s(n) denote the number of solutions of

pk
1 + pk

2 + · · · + pk
s = n

in primes p1, . . . , ps subject to

Nj < pj , pr+j ≤ 2Nj (1 ≤ j ≤ r), N1 < p2r+1, . . . , ps ≤ 2N1.

Then

(3.40) Tk,r(n) =

∫ 1

0
f1(α)s−2r+2f2(α)2 · · · fr(α)2e(−αn) dα,

where

fj(α) =
∑

Nj<p≤2Nj

e
(

αpk
)

(1 ≤ j ≤ r).

When r ∼ ck log k, we can use (3.39) to derive a bound of the form

∫ 1

0

∣

∣f1(α)2f2(α) · · · fr(α)
∣

∣

2
dα ≪ N4−k

1 (N2 · · ·Nr)
2.

Furthermore, assuming that s is just slightly larger than 2r (it suffices to assume

that s ≥ 2r + 3, for example), we can then obtain an asymptotic formula for

the right side of (3.40) by the methods sketched in §3.3. This is (essentially)

how one proves Theorem 4 for k ≥ 11. The proof for k ≤ 10 follows the same

general approach, except that we use more elaborate choices of the parameters

N1, . . . , Nr in (3.35*).

3.6. Kloosterman’s refinement of the circle method. Consider

again equation (1.9) with k = 2. The Hardy–Littlewood method in its original
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form establishes the asymptotic formula (1.10) for s > 4, but it fails to prove

Lagrange’s four squares theorem. In 1926 Kloosterman [122] proposed a variant

of the circle method, known today as Kloosterman’s refinement, which he used

to prove an asymptotic formula for the number of solutions of the equation

(3.41) a1x
2
1 + · · · + a4x

2
4 = n,

where ai are fixed positive integers.

Denote by I(n) the number of solutions of (3.41) in positive integers xi.

By (3.1),

(3.42) I(n) =

∫ 1

0
H(α)e(−αn) dα,

where

H(α) = h(a1α) · · · h(a4α), h(α) =
∑

x≤N

e
(

αx2
)

, N = n1/2.

A “classical” Hardy–Littlewood decomposition of the right side of (3.42) into

integrals over major and minor arcs is of little use here, since we cannot prove

that the contribution from the minor arcs is smaller than the expected main term.

Kloosterman’s idea is to eliminate the minor arcs altogether.

The elimination of the minor arcs requires greater care in the handling of

the major arcs. Let X be the integer with X − 1 < N ≤ X. It is clear that the

integration in (3.42) can be taken over the interval
(

X−1, 1 + X−1
]

, which can

be represented as a union of disjoint intervals

(3.43)
(

X−1, 1 + X−1
]

=
⋃

q≤N

⋃

1≤a≤q
(a,q)=1

(

a

q
− 1

qq1
,
a

q
+

1

qq2

]

,

where for each pair q, a in the union, the positive integers q1 = q1(q, a) and

q2 = q2(q, a) are uniquely determined and satisfy the conditions

(3.44) N < q1, q2 ≤ 2N, aq1 ≡ 1 (mod q), aq2 ≡ −1 (mod q).

The decomposition (3.43) is known as the Farey decomposition and provides a

natural way of partitioning of the unit interval into non-overlapping major arcs

(see Hardy and Wright [74, Section 3.8]). Let M(q, a) denote the interval in the

Farey decomposition “centered” at a/q. We have

(3.45) I(n) =
∑

q≤N

∑

1≤a≤q
(a,q)=1

e
(−an

q

)

∫

B(q,a)
H

(a

q
+ β

)

e(−βn) dβ,
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where B(q, a) is defined by

(3.46) B(q, a) = {β ∈ R : a/q + β ∈ M(q, a)} .

We can find an asymptotic formula for the integrand on the right side of

(3.45). The contribution of the main term in that asymptotic formula produces

the expected main term in the asymptotic formula for I(n). However, in order

to obtain a satisfactory bound for the contribution of the error term, we have to

take into account the cancellation among terms corresponding to different Farey

fractions a/q with the same denominator. To this end, we want to interchange

the order of integration and summation over a in (3.45). Since the endpoints of

B(q, a) depend on a, the total contribution of the error terms can be expressed

as

(3.47)
∑

q≤N

∫ 1/(qN)

−1/(qN)

{

∑(β)

1≤a≤q
(a,q)=1

E

(

a

q
+ β

)

e

(−an

q

)}

e(−βn) dβ,

where E(a/q+β) is the error term in the major arc approximation to H(a/q+β)

and the superscript in
∑(β) indicates that the summation is restricted to those

a for which B(q, a) ∋ β. Using (3.44) and (3.46), we can transform the latter

constraint on a into a condition about the multiplicative inverse of a modulo q,

that is, the unique residue class a modulo q with aa ≡ 1 (mod q). Thus, a special

kind of exponential sums enter the scene: the Kloosterman sums

K(q;m,n) =

q
∑

x=1
(x,q)=1

e
(mx + nx

q

)

.

There also other (in fact, more substantial) reasons for the Kloosterman sums to

appear, but those are too technical to include here.

The success of Kloosterman’s method hinges on the existence of suffi-

ciently sharp estimates for K(q;m,n). The first such estimate was found by

Kloosterman himself and later his result has been improved. Today it is known

that

(3.48) |K(q;m,n)| ≤ τ(q) q1/2 (m,n, q)1/2,

where (m,n, q) is the greatest common divisor of m,n, q and τ(q) is the number of

positive divisors of q. In 1948 A. Weil [243] proved (3.48) in the most important
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case: when q is a prime. In the general case (3.48) was established by Ester-

mann [55]. This estimate plays an important role not only in the Kloosterman

refinement of the circle method, but in many other problems in number theory.

Kloosterman’s method has been applied to several additive problems, and

in particular, to problems with primes and almost primes. We refer the reader,

for example, to Estermann [56], Hooley [99], Heath-Brown [85, 87, 88], Brüdern

and Fouvry [24], Heath-Brown and Tolev [94].

4. Sieve methods. In this section we describe the so-called sieve meth-

ods, which are an important tool in analytic number theory and, in particular,

in the proof of Chen’s theorem (Theorem 2 in the Introduction). We start with

a brief account of the main idea of the method (§4.1 and §4.2). This allows us in

§4.3 to present a proof of a slightly weaker (but much simpler) version of Chen’s

result, in which P2-numbers are replaced by P4-numbers. We conclude the sec-

tion by sketching some of the new ideas needed to obtain Chen’s theorem in its

full strength (§4.4) and of some further work on sieve methods (§4.5).
4.1. The sieve of Eratosthenes. Let A be a finite integer sequence.

We will be concerned with the existence of elements of A that are primes or, more

generally, almost primes Pr, with r bounded. In general, sieve methods reduce

such a question to counting the elements a ∈ A not divisible by small primes p

from some suitably chosen set of primes P. To be more explicit, we consider a set

of prime numbers P and a real parameter z ≥ 2 and define the sifting function

(4.1) S(A,P, z) = |{a ∈ A : (a, P (z)) = 1}| , P (z) =
∏

p<z
p∈P

p,

where |A| denotes the number of elements of a sequence A (not the cardinality

of the underlying set). In applications, the set P is usually taken to be the set of

possible prime divisors of the elements of A, so the sifting function (4.1) counts

the elements of A free of prime divisors p < z.

In order to bound S(A,P, z), we recall the following fundamental prop-

erty of the Möbius function (see [74, Theorem 263]):

(4.2)
∑

d|k

µ(d) =

{

1, if k = 1,

0, if k > 1.

Using this identity, we can express the sifting function in the form

(4.3) S(A,P, z) =
∑

a∈A

∑

d|(a,P (z))

µ(d).
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We can now interchange the order of summation to get

(4.4) S(A,P, z) =
∑

d|P (z)

µ(d)|Ad|,

where

Ad = {a ∈ A : a ≡ 0 (mod d)}.
To this end, we suppose that there exist a (large) parameter X and a multiplica-

tive function ω(d) such that |Ad| can be approximated by Xω(d)/d. We write

r(X, d) for the error term in this approximation, that is,

(4.5) |Ad| = X
ω(d)

d
+ r(X, d).

We expect r(X, d) to be ‘small’, at least in some average sense over d. Substituting

(4.5) into the right side of (4.4), we find that

(4.6) S(A,P, z) = XV (z) + R(X, z),

where

(4.7) V (z) =
∑

d|P (z)

µ(d)
ω(d)

d
, R(X, z) =

∑

d|P (z)

µ(d)r(X, d).

We would like to believe that, under ‘ideal circumstances’, (4.6) is an asymptotic

formula for the sifting function S(A,P, z), XV (z) being the main term and

R(X, z) the error term. However, such expectations turn out to be unrealistic,

as we are about to demonstrate.

Let us try to apply (4.6) to bound above the number of primes ≤ x. We

choose

(4.8) A = {n ∈ N : n ≤ x}, P = {p : p is a prime}.

Then

|Ad| =
[x

d

]

=
x

d
+ r(x, d), |r(x, d)| ≤ 1,

that is, X = x and ω(d) = 1 for all d. Using an elementary property of multi-

plicative functions (see [74, Theorem 286]), we can write V (z) as

(4.9) V (z) =
∏

p<z

(

1 − ω(p)

p

)

.
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When ω(p) = 1, this identity and an asymptotic formula due to Mertens (see [74,

Theorem 429]) reveal that the main term in (4.6) is

(4.10) XV (z) = X
∏

p<z

(

1 − 1

p

)

∼ X
e−γ

log z
as z → ∞;

here γ = 0.5772 . . . is Euler’s constant. Thus, if A and P are as in (4.8) and

z = x1/2, the projected ‘main term’ in (4.6) is ∼ 2e−γx(log x)−1 as x → ∞,

whereas the true size of the sifting function on the left side is

S(A,P,
√

x) = π(x) − π(
√

x) + 1 ∼ x

log x
as x → ∞,

by the Prime Number Theorem. Since 2e−γ = 1.122 . . . , we conclude that the

‘error term’ R(x,
√

x) is in this case of the same order of magnitude as the ‘main

term’.

Identity (4.6) is known as the sieve of Eratosthenes–Legendre. The basic

idea goes back to the ancient Greeks (usually attributed to Eratosthenes), while

the formal exposition above is essentially due to Legendre, who used the above

argument to show that

π(x) ≪ x

log log x
.

The sieve of Eratosthenes–Legendre can be extremely powerful in certain situa-

tions7 , but in most cases the sum R(X, z) contains ‘too many’ terms for (4.6)

to be of any practical use (e.g., in the above example, R(X, z) contains 2π(z)

terms). Modern sieve methods use various clever approximations to the left side

of (4.2) to overcome this problem. In the following sections, we describe one of the

variants of one the existing approaches. The reader can find other constructions,

comparisons of the various approaches, and proofs in the monographs on sieve

methods [63, 66, 174] or in [90] (see also the remarks in §4.5 for other references).

4.2. The linear sieve. Let y > 0 be a parameter to be chosen later in

terms of X and suppose that λ+(d) and λ−(d) are real-valued functions supported

on the squarefree integers d (i.e., λ±(d) = 0 if d is divisible by the square of a

prime). Furthermore, suppose that

(4.11) |λ±(d)| ≤ 1 and λ±(d) = 0 for d ≥ y,

7For example, I. M. Vinogradov’s combinatorial argument for converting sums over primes
into linear combinations of type I and type II sums is based on a variant of (4.6). See Harman [79]
for other applications and further discussion.
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and that

(4.12)
∑

d|n

λ−(d) ≤
∑

d|n

µ(d) ≤
∑

d|n

λ+(d) for all n = 1, 2, . . . .

Using (4.3) and the left inequality in (4.12), we obtain

S(A,P, z) ≥
∑

a∈A

∑

d|(a,P (z))

λ−(d).

We can interchange the order of summation in the right side of this inequality

and apply (4.5) and (4.11) to get the bound

S(A,P, z) ≥
∑

d|P (z)

λ−(d)|Ad| =
∑

d|P (z)

λ−(d)

(

X
ω(d)

d
+ r(X, d)

)

= X
∑

d|P (z)

λ−(d)
ω(d)

d
+

∑

d|P (z)

λ−(d)r(X, d) ≥ XM− −R,

where

(4.13) M± =
∑

d|P (z)

λ±(d)
ω(d)

d
, R =

∑

d|P (z)
d<y

|r(X, d)|.

In a similar fashion, we can use the right inequality in (4.12) to estimate the

sifting function from above. That is, we have

(4.14) XM− −R ≤ S(A,P, z) ≤ XM+ + R.

We are now in a position to overcome the difficulty caused by the “error

term” in the Eratosthenes–Legendre sieve. The sum R is similar to the error

term R(X, z) defined in (4.7), but unlike R(X, z) we can use the parameter y to

control the number of terms in R. Thus, our general strategy will be to construct

functions λ±(d) which satisfy (4.11) and (4.12) and for which the sums M± are of

the same order as the sum V (z) defined in (4.7). There are various constructions

of such functions λ±(d). However, since it is not our goal to give a detailed

treatment of sieve theory here, we will simply state one of the modern sieves in

a form suitable for an application to the binary Goldbach problem.

The sieve method we will use is known as the Rosser–Iwaniec sieve. Its

idea appeared for the first time in an unpublished manuscript by Rosser. The full-

fledged version of this sieve was developed independently by Iwaniec [105, 106].
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Suppose that the multiplicative function ω in (4.5) satisfies the condition

(4.15)
∏

w1≤p<w2

(

1 − ω(p)

p

)−1

≤
(

log w2

log w1

)κ (

1 +
K

log w1

)

(2 ≤ w1 < w2),

where κ > 0 is an absolute constant known as the sieve dimension and K > 0 is

independent of w1 and w2. This inequality is usually interpreted as an average

bound for the values taken by ω(p) when p is prime, since it is consistent with the

inequality ω(p) ≤ κ. In our application of the sieve to Goldbach’s problem, we

will have to deal with a sequence A (given by (1.7)) for which (4.15) holds with

κ = 1, so we will state the Rosser–Iwaniec sieve in this special case, in which it

is known as the linear sieve.

Suppose that ω(p) satisfies (4.15) with κ = 1 and that

(4.16) 0 < ω(p) < p when p ∈ P and ω(p) = 0 when p 6∈ P.

We put λ±(1) = 1 and λ±(d) = 0 if d is not squarefree. If d > 1 is squarefree and

has prime decomposition d = p1 · · · pr, p1 > p2 > · · · > pr, we define

λ+(d) =

{

(−1)r if p1 · · · p2lp
3
2l+1 < y whenever 0 ≤ l ≤ (r − 1)/2,

0 otherwise,
(4.17)

λ−(d) =

{

(−1)r if p1 · · · p2l−1p
3
2l < y whenever 1 ≤ l ≤ r/2,

0 otherwise.
(4.18)

It can be shown (see [63, 105]) that these two functions satisfy conditions (4.11)

and (4.12). Furthermore, if the quantities M± are defined by (4.13) with λ±(d)

given by (4.17) and (4.18), we have

V (z) ≤ M+ ≤ V (z)
(

F (s) + O
(

e−s(log y)−1/3
)

)

for s ≥ 1,(4.19)

V (z) ≥ M− ≥ V (z)
(

f(s) + O
(

e−s(log y)−1/3
)

)

for s ≥ 2,(4.20)

where s = log y/ log z and the functions f(s) and F (s) are the continuous solu-

tions of a system of differential delay equations (see [63, 105]). The analysis of

that system reveals that the function F (s) is strictly decreasing for s > 0, that

the function f(s) is strictly increasing for s > 2, and that

(4.21) 0 < f(s) < 1 < F (s) for s > 2.
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Furthermore, both functions are very close to 1 for large s. More precisely, they

satisfy

(4.22) F (s), f(s) = 1 + O(s−s) as s → ∞.

Substituting (4.19) and (4.20) into (4.14), we obtain

S(A,P, z) ≤ XV (z)
(

F (s) + O
(

(log y)−1/3
)

)

+ R for s ≥ 1,(4.23)

S(A,P, z) ≥ XV (z)
(

f(s) + O
(

(log y)−1/3
)

)

−R for s ≥ 2,(4.24)

where R is defined by (4.13).

We now return to our initial goal—namely, to prove that the sequence A
contains almost primes. We want to use (4.24) to show that

(4.25) S(A,P,Xα) > 0

for some fixed α > 0. This will imply the existence of an a ∈ A all of whose

prime divisors exceed Xα. If |a| ≪ Xg for all a ∈ A, it will then follow that A
contains a Pr-number, where r ≤ g/α. Clearly, since we want to minimize r, we

would like to take α as large as possible. On the one hand, in order to derive

(4.25) from (4.24), we need to ensure that the main term in (4.24) is positive and

that the error term R is of a smaller order of magnitude than the main term. It

is the balancing of these two requirements that determines the optimal choice for

z and, ultimately, the quality of our result. In view of (4.21), the positivity of

the main term in (4.24) requires choosing y slightly larger than z2. On the other

hand, while in some applications the estimation of R is easier than in others, it

is always the case that it imposes a restriction on how large we can choose y, and

hence, how large we can choose z. In the next section, we demonstrate how this

general approach works when applied to the binary Goldbach problem.

4.3. The linear sieve in the binary Goldbach problem. In this

section, we apply the linear Rosser–Iwaniec sieve to the sequence A in (1.7) and

the set P of odd primes that do not divide n, that is,

A = A(n) = {n − p : 2 < p < n} and P = {p : p > 2, p ∤ n}.

It is clear that all elements of A are odd numbers and that at most log n of them

may have a common prime factor with n (for (n, n − p) > 1 implies p | n, and

n has at most log n odd prime factors). Thus, P is the set of “typical” prime

divisors of elements of A.
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Next, we proceed to define the quantity X and the multiplicative function

ω(d) in (4.5). We have

(4.26) |Ad| =
∑

2<p<n
p≡n (mod d)

1 = π(n; d, n) − 1,

so the prime number theorem for arithmetic progressions suggests the choice

(4.27) X = li n and ω(d) =

{

d/φ(d) if (d, n) = 1,

0 otherwise.

With this choice, the error terms r(X, d) defined by (4.5) satisfy the inequality

|r(X, d)| ≤







1 +

∣

∣

∣

∣

π(n; d, n) − lin

φ(d)

∣

∣

∣

∣

if (d, n) = 1,

1 otherwise.

It then follows from the Bombieri–Vinogradov theorem (Theorem 8) that

(4.28) R ≤ y +
∑

d≤y

max
(a,d)=1

∣

∣

∣

∣

π(n; d, a) − li n

φ(d)

∣

∣

∣

∣

≪ n(log n)−3,

whenever y ≤ n1/2(log n)−6. Furthermore, we have

(4.29) V (z) =
∏

p<z
p∤n

(

1 − 1

p − 1

)

≥
∏

p<z

(

1 − 1

p − 1

)

≫ (log z)−1.

On choosing y = n1/2(log n)−6 and z = n2/9, we have

log y

log z
=

9

4
+ O

(

log log n

log n

)

> 2.2,

provided that n is sufficiently large. Hence, we deduce from (4.21), (4.24) and

(4.27)–(4.29) that

(4.30) S(A,P, z) ≫ n(log n)−2.

That is, there are ≫ n(log n)−2 elements of A that have no prime divisors smaller

than n2/9. Since the numbers in A do not exceed n, the elements of A counted
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on the left side of (4.30) have at most four prime divisors each, that is, the left

side of (4.30) counts solutions of n − p = P4.

We have some freedom in our choice of parameters in the above argument.

For example, we could have set z = nα, where α is any fixed real number in the

range 1/5 < α < 1/4. Of course, what we would really like to do is set z = nα,

where α > 1/4. With such a choice for z, the above argument would establish the

existence of infinitely many solutions to n − p = P3. Unfortunately, our choice

of z is restricted (via the condition s = log y/ log z > 2) by the largest value of

Q admissible in the Bombieri–Vinogradov theorem. In particular, in order to be

able to choose z = n1/4, we would need a version of the Bombieri–Vinogradov

theorem that holds for Q ≤ x1/2+ε.

4.4. Weighted sieves and Chen’s theorem. The idea of a weighted

sieve was introduced by Kuhn [124] who observed that instead of the sifting

function S(A,P, z) one may consider a more general sum of the type

(4.31) W (A,P, z) =
∑

a∈A,
(a,P (z))=1

w(a),

where w(a) are weights at one’s disposal to choose. It is common to use weights

of the form

(4.32) w(a) = 1 −
∑

p|a
z≤p<z1

ωp,

with suitably chosen 0 ≤ ωp < 1. With such a choice of w(a), (4.31) can be

written in the form

(4.33) W (A,P, z) = S(A,P, z) −
∑

z≤p<z1

ωpS(Ap,P, z).

We can now use an ordinary sieve to estimate the right side of (4.33). For

example, we can appeal to (4.24) to bound S(A,P, z) from below and to (4.23)

to bound each sifting function S(Ap,P, z) from above. If the resulting lower

bound for the right side of (4.33) is positive, we then conclude that there exist

elements a of A with w(a) > 0. Such numbers a have no prime divisors p < z

and the number of their prime divisors with z ≤ p < z1 can be controlled via the

choice of the ωp’s.
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The above idea plays an important role in improvements on the result

established in §4.3. Using weighted sieves, Buchstab [29] and Richert [196] proved

that every sufficiently large even n can be represented as the sum of a prime and

a P3-number. Richert used weights of the form

w(a) = 1 − θ
∑

p|a
z≤p<z1

(

1 − log p

log z1

)

,

while Buchstab’s weights were somewhat more complicated. Chen’s proof of

Theorem 2 uses weights of the form (4.32) with z = n1/10, z1 = n1/3, and

ωp =
1

2
+

1

2
δp(a),

where

δp(a) =

{

1 if a = pp1p2 with p1 ≥ z1,

0 otherwise.

Here, n is the even number appearing in the statement of Theorem 2 and a is an

element of the sequence (1.7). With this choice of ωp, successful sifting produces

numbers a ∈ A with w(a) > 0 and no prime divisors p < n1/10. One can prove

that any such number a must in fact be a P2-number. The reader can find a

detailed proof of Chen’s theorem in [66, Chapter 11], [175, Chapter 10], or [178,

Chapter 9].

4.5. Other sieve methods. We conclude our discussion of sieve methods

with a brief account of some of the important ideas in sieve theory left out of the

previous sections.

Selberg’s sieve. The Rosser–Iwaniec sieve defined by (4.17) and (4.18)

is not particularly sensitive to the arithmetical nature of the sequence A that

is being sifted. In fact, the only piece of information about A that the Rosser–

Iwaniec sieve does take into account is its sieve dimension. Such sieves are known

as combinatorial. Selberg [204] proposed another approach, which uses the mul-

tiplicative function ω(d) appearing in (4.5) to construct essentially best possible

upper sieve weights λ+(d) for a given sequence A.

Suppose that ρ(d) is a real function such that ρ(1) = 1. Then

∑

d|n

µ(d) ≤





∑

d|n

ρ(d)





2

.
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We can apply this inequality to estimate S(A,P, z) as follows:

S(A,P, z) ≤
∑

a∈A





∑

d|n

ρ(d)





2

=
∑

a∈A

∑

d1,d2|n

ρ(d1)ρ(d2)

=
∑

d1,d2

ρ(d1)ρ(d2)
∣

∣A[d1,d2]

∣

∣,

where |Ad| is as before and [d1, d2] is the least common multiple of d1 and d2.

Using (4.5), we find that

S(A,P, z) ≤ XW + R′,

where

W =
∑

d1,d2

ρ(d1)ρ(d2)
ω([d1, d2])

[d1, d2]
, R′ =

∑

d1,d2

ρ(d1)ρ(d2)r(X, [d1, d2]).

In order to control the “error term” R′, we further assume that ρ(d) = 0 when

d > ξ, where ξ > 0 is a parameter. The double sum W is a quadratic form in the

variables ρ(d), 1 < d ≤ ξ. Selberg’s idea is to choose the values of these variables

as to minimize this quadratic form.

More information about Selberg’s sieve—including the techniques used

to construct the lower sieve function λ−(d) of Selberg’s sieve—can be found in

[66, 174] and in Selberg’s collected works [205, 206].

The large sieve. The method known as the large sieve was introduced

in 1941 by Linnik [140], but its systematic study did not commence until Rényi’s

work [195] on the binary Goldbach problem. The original idea of Linnik and Rényi

evolved into a general analytic principle that has penetrated analytic number

theory on many levels (and perhaps does not warrant the name “sieve” anymore,

but the term has survived for historical reasons). The most prominent application

of the large sieve is the Bombieri–Vinogradov theorem. The reader will find

discussion of the number-theoretic aspects of the large sieve in [20, 49, 171] and

of the analytic side of the story in [49, 171, 172].

Alternative form of the error term in the sieve. Iwaniec [106]

obtained a variant of the linear sieve featuring an error term that is better suited

for certain applications than the error term R defined in (4.13). It is of the form

(4.34)
∑

m<M
m|P (z)

∑

n<N
n|P (z)

ambnr(X,mn),
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where the coefficients am and bn are bounded above in absolute value and r(X,mn)

are the remainder terms defined earlier. In some applications, one can use the

bilinearity of this expression to estimate the double sum when the product MN

is larger than the largest value of y for which one can obtain a satisfactory bound

for R. Iwaniec [104] used this idea in his proof that certain quadratic polynomials

take on infinitely P2-numbers (recall §2.4).
Prime detecting sieves. For a long time it was believed that sieve

methods are not capable of detecting prime numbers; there are even a couple of

prominent papers (see [21, 205]) that quantify the shortcomings of the classical

sieve technology. In short, classical sieves are incapable of distinguishing between

integers having even number of prime divisors and those having an odd number

of prime divisors (this is known in sieve theory as the parity obstacle). A prime

detecting sieve overcomes the parity obstacle by combining the general sieve phi-

losophy with additional analytic information. A variant of the basic idea can be

traced all the way back to Vinogradov’s work on sums over primes, but the first

explicit uses of prime detecting sieves appeared in the late 1970s in investigations

of the distribution of primes in short intervals (see [91, 107]). The method flour-

ished during the last decade and has been instrumental in the proofs of several

of the restults mentioned in the previous sections: the result of Friedlander and

Iwaniec [58] on prime values of x2 + y4; the results of Heath-Brown and Moroz

[89, 92] on prime values of binary cubic forms; and the result of Baker, Harman,

and Pintz [9] on primes in short intervals are just three such examples. Com-

pared to classical sieve methods, the theory of prime detecting sieves is still in its

infancy and thus the general literature on the subject is relatively scarce, but the

reader eager to learn more about such matters will find two excellent expositions

in [59] and [79].

5. Other work on the Waring–Goldbach problem. In the In-

troduction, we mentioned the cornerstones in the study of the Goldbach and

Waring–Goldbach problems. However, as is often the case in mathematics, those

results are intertwined with a myriad of other results on various aspects and vari-

ants of the two main problems. In this section, we describe some of the more

important results of the latter kind. The circle method, sieve methods, or a

combination of them play an essential role in the proofs of all these.

5.1. Estimates for exceptional sets. Inspired by the work of Chu-

dakov [42] and Estermann [54] on the exceptional set in the binary Goldbach

problem, Hua studied the function h(k), defined to be the least s such that al-

most all integers n ≤ x, n ≡ s (mod K(k)), can be written as the sum of s kth
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powers of primes (K(k) is defined by (1.12)). Let Ek,s(x) denote the number of

exceptions, that is, the number of integers n, with n ≤ x and n ≡ s (mod K(k)),

for which (1.14) has no solution in primes p1, . . . , ps. Hua showed (essentially)

that if H(k) ≤ s0(k), then Ek,s(x) = o(x) for any s ≥ 1

2
s0(k). Later, Schwarz

[202] refined Hua’s method to show that

(5.1) Ek,s(x) ≪ x(log x)−A

for any fixed A > 0.

In recent years, motivated by the estimate (1.6) of Montgomery and

Vaughan, several authors have pursued similar estimates for exceptional sets for

squares and higher powers of primes. The first to obtain such an estimate were

Leung and Liu [134], who showed that E2,3(x) ≪ x1−δ, with an absolute constant

δ > 0. Explicit versions of this result were later given in [16, 80, 128, 159, 160],

the best result to date being the estimate (see Harman and Kumchev [80])

E2,3(x) ≪ x6/7+ε.

Furthermore, several authors [80, 147, 149, 155, 249] obtained improvements on

Hua’s bound (5.1) for E2,4(x), the most recent being the bound

E2,4(x) ≪ x5/14+ε,

established by Harman and Kumchev [80]. Ren [194] studied the exceptional set

for sums of five cubes of primes and proved that

E3,s(x) ≪ x1−(s−4)/153 (5 ≤ s ≤ 8).

This estimate has since been improved by Wooley [248] and Kumchev [126]. In

particular, Kumchev [126] showed that

E3,5(x) ≪ x79/84, E3,6(x) ≪ x31/35,

E3,7(x) ≪ x51/84, E3,8(x) ≪ x23/84.

Finally, Kumchev [126] has developed the necessary machinery to obtain esti-

mates of the form Ek,s(x) ≪ x1−δ, with explicit values of δ = δ(k, s) > 0, for all

pairs of integers k ≥ 4 and s for which an estimate of the form (5.1) is known.

In 1973 Ramachandra [192] considered the exceptional set for the binary

Goldbach problem in short intervals. He proved that if y ≥ x7/12+ε and A > 0,

then

E(x + y) − E(x) ≪ y(log x)−A,



An invitation to additive prime number theory 47

where the implied constant depends only on A and ε. After a series of improve-

ments on this result [8, 52, 53, 111, 112, 115, 135, 167, 182], this estimate is now

known for y ≥ x7/108+ε (see Jia [115]). Lou and Yao [164, 250] were the first to

pursue a short interval version of the estimate (1.6) of Montgomery and Vaughan.

Their result was substantially improved by Peneva [180] and the best result in

this direction, due to Languasco [131], states that there exists a small constant

δ > 0 such that

E(x + y) − E(x) ≪ y1−δ/600,

whenever y ≥ x7/24+7δ .

Furthermore, J. Liu and Zhan [157] and Mikawa [169] studied the quantity

E2,3(x) in short intervals and the latter author showed that

E2,3(x + y) − E2,3(x) ≪ y(log x)−A

for any fixed A > 0 and any y ≥ x1/2+ε.

5.2. The Waring–Goldbach problem with almost primes. There

have also been attempts to gain further knowledge about the Waring–Goldbach

problem by studying closely related but more accessible problems. The most com-

mon such variants relax the multiplicative constraint on (some of) the variables.

Consider, for example, Lagrange’s equation

(5.2) x2
1 + x2

2 + x2
3 + x2

4 = n.

Greaves [62] proved that every sufficiently large n 6≡ 0, 1, 5 (mod 8) can be rep-

resented in the form (5.2) with x1, x2 primes and x3, x4 (unrestricted) integers.

Later, Plaksin [189] and Shields [207] found independently an asymptotic formula

for the number of such representations. Brüdern and Fouvry [24] proved that

every sufficiently large integer n ≡ 4 (mod 24) can be written as the sum of four

squares of P34-numbers. Heath-Brown and Tolev [94] established, under the same

hypothesis on n, that one can solve (5.2) in one prime and three almost primes

of type P101 or in four almost primes, each of type P25. Tolev [218] has recently

improved the results in [94], replacing the types of the almost primes involved by

P80 and P21, respectively. We must also mention the recent result by Blomer and

Brüdern [17] that all sufficiently large integers n such that n ≡ 3 (mod 24) and

5 ∤ n are sums of three almost primes of type P521 (and of type P371 if n is also

squarefree).
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In 1951 Roth [200] proved that if n is sufficiently large, the equation

(5.3) x3 + p3
1 + · · · + p3

7 = n

has solutions in primes p1, . . . , p7 and an integer x. Brüdern [22] showed that

if n ≡ 4 (mod 18), then x can be taken to be a P4-number, and Kawada [118]

used an idea from Chen’s proof of Theorem 2 to obtain a variant of Brüdern’s

result for almost primes of type P3. Furthemore, Brüdern [23] proved that every

sufficiently large integer is the sum of the cubes of a prime and six almost-primes

(five P5-numbers and a P69-number) and Kawada [119] has shown that every

sufficiently large integer is the sum of seven cubes of P4-numbers.

Wooley [249] showed that all but O
(

(log x)6+ε
)

integers n ≤ x, satisfying

certain natural congruence conditions can be represented in the form (5.2) with

prime variables x1, x2, x3 and an integer x4. Tolev [219] established a result of

similar strength for the exceptional set for equation (5.2) with primes x1, x2, x3

and an almost prime x4 of type P11.

5.3. The Waring–Goldbach problem with restricted variables.

Through the years, a number of authors have studied variants of the Goldbach

and Waring–Goldbach problems with additional restrictions on the variables. In

1951 Haselgrove [82] announced that every sufficiently large odd integer n is the

sum of three primes p1, p2, p3 such that |pi−n/3| ≤ n63/64+ε. In other words, one

can take the primes in Vinogradov’s three prime theorem to be “almost equal”.

Subsequent work by several mathematicians [7, 34, 109, 110, 177, 254] tightened

the range for the pi’s to |pi − n/3| ≤ n4/7 (see Baker and Harman [7]).

Furthermore, Bauer, Liu, and Zhan [13, 156, 158] considered the problem

of representations of an integer as sums of five squares of almost equal primes.

The best result to date is due to Liu and Zhan [158], who proved that every

sufficiently large integer n ≡ 5 (mod 24) can be written as

n = p2
1 + · · · + p2

5,

with primes p1, . . . , p5 satisfying |p2
i − n/5| < n45/46+ε. Liu and Zhan [156] also

showed that the exponent
45

46
can be replaced by 19

20 on the assumption of GRH.

In 1986 Wirsing [244] proved that there exist sparse sequences of primes

S such that every sufficiently large odd integer can be represented as the sum

of three primes from S. However, his method was probabilistic and did not

yield an example of such a sequence. Thus, Wirsing proposed the problem of

finding “natural” examples of arithmetic sequences having this property. The
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first explicit example was given by Balog and Friedlander [12]. They proved

that the sequence of Piatetski-Shapiro primes (recall (2.13)) is admissible for

1 < c < 21/20. Jia [113] improved the range for c to 1 < c < 16/15, and

Peneva [181] studied the binary problem with a Piatetski-Shapiro prime and an

almost prime. Tolev [215]–[217] and Peneva [179] considered additive problems

with prime variables p such that the integers p+2 are almost-primes. For example,

Tolev [217] proved that every sufficiently large n ≡ 3 (mod 6) can be represented

as the sum of primes p1, p2, p3 such that p1+2 = P2, p1+2 = P5, and p1+2 = P7.

Green and Tao announced at the end of [64] that, using their method, one can

prove that there are arbitrarily long non trivial arithmetic progressions consisting

of primes p such that p + 2 = P2. They presented in [65] a proof of this result for

progressions of three primes.

5.4. Linnik’s problem and variants. In the early 1950s Linnik pro-

posed the problem of finding sparse sequences A such that all sufficiently large

integers n (possibly subject to some parity condition) can be represented as sums

of two primes and an element of A. He considered two special sequences. First,

he showed [143] that if GRH holds, then every sufficiently large odd n is the sum

of three primes p1, p2, p3 with p1 ≪ (log n)3. Montgomery and Vaughan [173]

sharpened the bound on p1 to p1 ≪ (log n)2 and also obtained an unconditional

result with p1 ≪ n7/72+ε; the latter bound has been subsequently improved to

p1 ≪ n0.02625 (this follows by the original argument of Montgomery and Vaughan

from recent results of Baker, Harman, and Pintz [9] and Jia [114]).

Linnik [142, 144] was also the first to study additive representations as

sums of two primes and a fixed number of powers of 2. He proved, first under

GRH and later unconditionally, that there is an absolute constant r such that

every sufficiently large even integer n can be expressed as the sum of two primes

and r powers of 2, that is, the equation

p1 + p2 + 2ν1 + · · · + 2νr = n,

has solutions in primes p1, p2 and non-negative integers ν1, . . . , νr. Later Gal-

lagher [60] established the same result by a different method. Several authors

have used Gallagher’s approach to find explicit values of the constant r above

(see [137, 138, 150, 151, 152, 242]); in particular, Li [138] proved that r = 1906 is

admissible and Wang [242] obtained r = 160 under GRH. Recently, Heath-Brown

and Puchta [93] and Pintz and Ruzsa [187] made (independently) an important

discovery that leads to a substantial improvement on the earlier results. Their

device establishes Linnik’s result with r = 13 (see [93]) and with r = 7 under
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GRH (see [93, 187]). Furthermore, Pintz and Rusza [188] have announced an

unconditional proof of the case r = 8.

There is a similar approximation to the Waring–Goldbach problem for

four squares of primes. J. Y. Liu, M. C. Liu, and Zhan [153, 154] proved that

there exists a constant r such that every sufficiently large even integer n can be

expressed in the form

p2
1 + p2

2 + p2
3 + p2

4 + 2ν1 + · · · + 2νr = n,

where p1, . . . , p4 are primes and ν1, . . . , νr are non-negative integers. J. Y. Liu

and M. C. Liu [148] established this result with r = 8330 and considered also the

related problem about representations of integers as sums of a prime, two squares

of primes and several powers of 2.

5.5. Additive problems with mixed powers. In 1923 Hardy and

Littlewood [71] used the general philosophy underlying the circle method to for-

mulate several interesting conjectures. For example, they stated a conjectural

asymptotic formula for the number of representations of a large integer n in the

form

(5.4) p + x2 + y2 = n,

where p is a prime and x, y are integers. Their prediction was confirmed in the late

1950s, first by Hooley [97] under the assumption of GRH and then unconditionally

by Linnik [145]. The reader will find the details of the proof in [98, 146].

In another conjecture, Hardy and Littlewood proposed an asymptotic

formula for the number of representations of a large integer n as the sum of

a prime and a square. While such a result appears to lie beyond the reach of

present methods, Miech [166] showed that this conjecture holds for almost all

integers n ≤ x. Let Ek(x), k ≥ 2, denote the number of integers n ≤ x such

that the equation n = p + xk has no solution in a prime p and an integer x.

Miech obtained the bound E2(x) ≪ x(log x)−A for any fixed A > 0. Subsequent

work of Brüdern, Brünner, Languasco, Mikawa, Perelli, Pintz, Polyakov, A. I.

Vinogradov, and Zaccagnini [26, 28, 132, 168, 183, 190, 235, 251] extended and

sharpened Miech’s estimate considerably. Here is a list of some of their results:

• For any fixed k ≥ 2, we have Ek(x) ≪ x1−δk , where δk > 0 depends at most

on k; see [28, 190, 235] for the case k = 2 and [183, 251] for the general

case.
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• Assuming GRH, we have Ek(x) ≪ x1−δk , where δk = 1/(k2k) or δk =

1/(25k) according as 2 ≤ k ≤ 4 or k ≥ 5; see [183] and [26].

• If k ≥ 2 is a fixed integer and K = 2k−2 then there exists a small absolute

constant δ > 0 such that

Ek(x + y) − Ek(x) ≪ y1−δ/(5K),

provided that x(7/12)(1−1/k)+δ ≤ y ≤ x; see [132].

Furthermore, several mathematicians [14, 15, 26, 157] obtained variants of the

above bounds in the case when the variable x is also restricted to primes, while

Zaccagnini [252] studied the more general problem of representing a large integer

n in the form n = p + f(x), where f(X) ∈ Z[X].

Several interesting theorems were proved by Brüdern and Kawada [25].

For example, one of them states that if k is an integer with 3 ≤ k ≤ 5, then all

sufficiently large integers n can be represented as

x + p2
1 + p3

2 + pk
3 = n,

where pi are primes and x = P2.

5.6. The Waring–Goldbach problem “with coefficients”. In this

section we discuss the solubility of equations of the form (1.16), which we intro-

duced in §1.4 as a natural generalization of the Waring–Goldbach problem. There

are two substantially different contexts in which one can study this problem. Sup-

pose first that all a1, . . . , as, n are all of the same sign. Then one expects that

(1.16) must have solutions for sufficiently large |n|. When “sufficiently large” is

understood as |n| ≥ C(a1, . . . , as), with some unspecified constant depending on

the aj ’s, this is a trivial modification of the Waring–Goldbach problem (that can

be handled using essentially the same tools). On the other hand, the problem of

finding solution when |n| is not too large compared to |a|∞ = max{|a1|, . . . , |as|}
is significantly more challanging. Similarly, if a1, . . . , as are not all of the same

sign, one wants to find solutions of (1.16) in primes p1, . . . , ps that are not too

large compared to |a|∞ and |n|. Such questions were investigated first by Baker

[5], who studied the case k = 1 and s = 3. Later, Liu and Tsang [161] showed,

again for k = 1 and s = 3, that (1.16) has solutions when:

• a1, a2, a3 are of the same sign and |n| ≫ |a|A∞ for some absolute constant

A > 0;
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• a1, a2, a3 are not of the same sign and max{p1, p2, p3} ≪ |a|A−1
∞ + |n|.

In these results, the coefficients a1, a2, a3, n must satisfy also certain necessary

congruence conditions (which generalize the requirement that n be odd in Vino-

gradov’s three primes theorem). Through the efforts of several mathematicians,

the constant A has been evaluated and it is known that the value A = 38 is

admissible (see Li [139]). Furthermore, if we replace the natural arithmetic con-

ditions on the coefficients by another set of conditions, which are somewhat more

restrictive but also simplify greatly the analysis, we can decrease the value of

A further. In particular, Choi and Kumchev [38] have shown that A = 23/3 is

admissible under such stronger hypotheses.

Liu and Tsang [162] studied also the quadratic case of (1.16) in five vari-

ables and obtained results similar to those stated above for the linear case. In

this problem, explicit values of the analogue of A above were given by Choi and

Liu [39, 40], Choi and Kumchev [37], and Harman and Kumchev [80]. In partic-

ular, it is proved in [80] that (1.16) with k = 2 and s = 5 has solutions when:

• a1, . . . , a5 are of the same sign and |n| ≫ |a|15+ε
∞ ;

• a1, . . . , a5 are not of the same sign and max{p1, . . . , p5} ≪ |a|7+ε
∞ + |n|1/2.

5.7. Diophantine inequalities with primes. Some variants of the

Waring–Goldbach problem are stated most naturally in terms of diophantine

inequalities. The best-known problem of this kind concerns the distribution of

the values of the forms

(5.5) λ1p
k
1 + · · · + λsp

k
s ,

where k and s are positive integers, λ1, . . . , λs are nonzero real numbers, and

p1, . . . , ps are prime variables. It is natural to conjecture that if λ1, . . . , λs are

not all of the same sign and if λi/λj is irrational for some pair of indices i, j, then

the values attained by the form (5.5) are dense in R whenever s ≥ s0(k). In other

words, given any ε > 0 and α ∈ R, the inequality

(5.6)
∣

∣

∣λ1p
k
1 + · · · + λsp

k
s − α

∣

∣

∣ < ε

should have a solution in primes p1, . . . , ps. The first results in this problem were

obtained by Schwarz [203], who established the solvability of (5.6) under the

same restrictions on s as in Theorem 3. Baker [5] and Vaughan [221, 222, 224]

proposed the more difficult problem of replacing the fixed number ε on the right
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side of (5.6) by an explicit function of max{p1, . . . , ps} that approaches 0 as

max{p1, . . . , ps} → ∞. Further work has focused primarily on the case of small

k. For example, Harman [78] has shown that under the above assumptions on

λ1, λ2, λ3, the diophantine inequality

∣

∣λ1p1 + λ2p2 + λ3p3 − α
∣

∣ < max{p1, p2, p3}−1/5+ε

has infinitely many solutions in primes p1, p2, p3. Baker and Harman [6] showed

that on GRH the exponent
1

5
in this result can be replaced by

1

4
. Furthermore,

Harman [77] proved that if λ1/λ2 is a negative irrational number, then for any

real α the inequality
∣

∣λ1p + λ2P3 − α
∣

∣ < p−1/300

has infinitely many solutions in a prime p and a P3-almost prime. (This improves

on an earlier result of Vaughan [224], where the almost prime is a P4-number.)

In 1952 Piatetski-Shapiro [184] considered a variant of the Waring–Gold-

bach problem for non-integer exponents c > 1. He showed that for any fixed

c > 1, which is not an integer, there exists an integer H(c) with the following

property: if s ≥ H(c), the inequality

(5.7)
∣

∣pc
1 + · · · + pc

s − α
∣

∣ < ε

has solutions in primes p1, . . . , ps for any fixed ε > 0 and α ≥ α0(ε, c). In

particular, Piatetski-Shapiro showed that H(c) ≤ 5 for 1 < c < 3/2. Motivated

by Vinogradov’s three prime theorem, Tolev [213] proved that H(c) ≤ 3 for

1 < c < 15/14. The range of validity of Tolev’s result was subsequently extended

by several authors [32, 33, 125, 130]; in particular, Kumchev [125] has given the

range 1 < c < 61/55. Furthemore, it follows from the work of Kumchev and

Laporta [129, 133] that H(c) ≤ 4 for 1 < c < 6/5 and for almost all (in the sense

of Lebesgue measure) 1 < c < 2, while Garaev [61] has showed that H(c) ≤ 5 for

1 < c < (1 +
√

5)/2 = 1.61 . . . . Finally, Tolev [214] and Zhai [253] have studied

systems of inequalities of the form (5.7).

Several authors [1, 2, 30, 31] have studied variants of Goldbach’s problem,

suggested by results about additive inequalities. For example, Arkhipov, Chen,

and Chubarikov [2] proved that if λ1/λ2 is an algebraic irrationality, then all but

O(x2/3+ε) positive integers n ≤ x can be represented in the form

[λ1p1] + [λ2p2] = n,
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where p1, p2 are primes.

6. A new path: arithmetic progressions of primes. Finally,

we should say a few words about the astonishing result of Green and Tao [64]

on the existence of arbitrarily long arithmetic progressions of prime numbers.

They deduce the existence of such arithmetic progressions from a generalization

of a celebrated theorem of Szemerédi [209, 210], which is itself a deep result in

combinatorial number theory. Let A be a set of positive integers with positive

upper density, that is,

δ(A) = lim sup
N→∞

#{n ∈ A : n ≤ N}
N

> 0.

In its original, most basic form, Szemerédi’s theorem asserts that such a set A
contains an arithmetic progression of length k for all integers k ≥ 3. From this

basic statement, Green and Tao deduce the following more general result.

Theorem 9 (Szemerédi’s theorem for pseudorandom measures). Let

δ ∈ (0, 1] be a fixed real number, let k ≥ 3 be a fixed integer, and let N be a large

prime. Suppose that ν is a “k-pseudorandom measure8” on ZN = (Z/NZ) and

f : ZN → [0,∞) is a function satisfying

(6.1) 0 ≤ f(x) ≤ ν(x) for all x ∈ ZN

and
∑

x∈ZN

f(x) ≥ δN.

Then

(6.2)
∑

x∈ZN

∑

r∈ZN

f(x)f(x + r) . . . f(x + (k − 1)r) ≫ N2,

the implied constant depending at most on δ and k.

To relate this result to the version of Szemerédi’s theorem stated earlier,

consider the case where ν(x) = 1 for all x (this is a k-pseudorandom measure)

and f(x) is the characteristic function of the set AN = A ∩ [1, N ] considered

8A k-pseudorandom measure on ZN is a non-negative function on ZN whose average over
ZN is close to 1 and which is subject to a couple of additional constraints that are too technical
to state here. See [64] for details.
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as a subset of ZN . Then the left side of (6.2) counts (essentially) the k-term

arithmetic progressions in the set AN (the majority of which are also k-term

arithmetic progressions in A ∩ Z).

To derive the result on arithmetic progressions of primes, Green and Tao

take f(x) to be a function which, in some sense (see [64] for details), approximates

the characteristic function of the primes in the interval [c1N, c2N ], where 0 < c1 <

c2 < 1 are suitable constants. Then they construct a pseudorandom measure ν(x)

such that (6.1) holds. This leads to the following theorem.

Theorem 10 (Green and Tao, 2004). Let k ≥ 3 and let A be a set of

prime numbers such that

lim sup
N→∞

#{n ∈ A : n ≤ N}
π(N)

> 0.

Then A contains infinitely many k-term arithmetic progresions. In particular,

there are infinitely many k-term arithmetic progresions of prime numbers.

We remark that the infinitude of the k-term progressions of primes is a

consequence of (6.2). In fact, using the explicit form of the function f(x) to which

they apply Theorem 9, Green and Tao establish the existence of ≫ N2(log N)−k

k-term progressions within A ∩ [1, N ].

Several other interesing results are announced in [64]. For example, one

of them asserts that there are infinitely many progressions of primes p1, . . . , pk

such that each pi + 2 is a P2-number (a proof of this result in the case k = 3 is

presented in [65]).

Conclusion. With this, our survey comes to a close. We tried to describe

the central problems and the main directions of research in the additive theory of

prime numbers and to introduce the reader to the classical methods. Complete

success in such an undertaking is perhaps an impossibility, but hopefully we have

been able to paint a representative picture of the current state of the subject and

to motivate the reader to seek more information from the literature. Maybe some

of our readers will one day join the ranks of the number theorists trying to turn

the great conjectures mentioned above into beautiful theorems!
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Astérisque 18, Société Math. France, 1974.

[21] E. Bombieri. The asymptotic sieve. Rend. Accad. Naz. XL (5) 1/2

(1975/76), 243–269.
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