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DISPERSIVE ESTIMATES OF SOLUTIONS TO THE WAVE

EQUATION WITH A POTENTIAL IN DIMENSIONS TWO

AND THREE
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Abstract. We prove dispersive estimates for solutions to the wave equation
with a real-valued potential V ∈ L∞(Rn), n = 2 or 3, satisfying V (x) =
O(〈x〉−(n+1)/2−ǫ), ǫ > 0.

1. Introduction and statement of results. Let V ∈ L∞(Rn),
n ≥ 2, be a real-valued function satisfying

(1.1) |V (x)| ≤ C〈x〉−δ, ∀x ∈ Rn,

with constants C > 0 and δ > (n + 1)/2, where 〈x〉 = (1 + |x|2)1/2. Denote
by G0 and G the self-adjoint realizations of the operators −∆ and −∆ + V (x)
on L2(Rn). It is well known that the absolutely continuous spectrums of the
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operators G0 and G coincide with the interval [0,+∞). Moreover, by Kato’s
theorem the operator G has no strictly positive eigenvalues. When n ≥ 3 this
implies that G has no strictly positive resonances neither. Indeed, it is possible to
show in this case that, under the assumption (1.1) with δ > 2, such a resonance
is in fact an eigenvalue (e.g. see [5], [6]). When n = 2 it follows easily that,
under the assumption (1.1) with δ > 1, there exists an a0 > 0 such that G has
no resonances in the interval [a0,+∞).

Throughout this paper, given 1 ≤ p ≤ +∞, Lp will denote the space
Lp(Rn). Also, given an a > 0 denote by χa ∈ C∞(R) a function supported in
the interval [a,+∞), χa = 1 on [a+1,+∞). The purpose of this work is to prove
the following

Theorem 1.1 Assume (1.1) fulfilled. If n = 3, for every a > 0, 2 ≤ p <
+∞, there exists a constant C > 0 so that the following estimate holds

(1.2)
∥∥∥eit

√
G(

√
G)−α(n+1)/2χa(

√
G)
∥∥∥
Lp′→Lp

≤ C|t|−α(n−1)/2, ∀t 6= 0,

where 1/p + 1/p′ = 1, α = 1 − 2/p.
If n = 2, the estimate (1.2) holds with a = a0, a0 being as above. More-

over, if in addition G has no strictly positive resonances, then (1.2) holds for any

a > 0.

Note that given a smooth, bounded function f supported in the interval
(0,+∞), the operator-valued function f(

√
G) is well defined even if the operator

G is not non-negative. In particular, the operator in the LHS of (1.2) is well
defined.

It is well known that the estimate (1.2) holds true for the free operator
G0 with χa ≡ 1 in all dimensions. For n = 3, an analogue of (1.2) (for 2 ≤ p ≤ 4)
is proved in [5] for non-negative potentials satisfying (1.1) as well as an extra
regularity assumption. In [2] an analogue of (1.2) is proved in all dimensions

n ≥ 3 (for 2 ≤ p ≤ 2(n + 1)

n− 1
) for a class of non-negative potentials. Note also the

work [1], where an analogue of (1.2) for n ≥ 3 is proved for all 2 ≤ p ≤ +∞ but
with loss of ε-derivatives for potentials belonging to the Schwartz class S(Rn).
Recently, in [4] an analogue of (1.2) with n = 3 has been proved for a class
of potentials satisfying (1.1) with 4/3 < δ ≤ 2, but with a weaker decay as
|t| → +∞. Note also the work [3], where a better time decay than that in (1.2)
has been obtained on weighted Lp spaces for potentials satisfying (1.1) with n = 3
and δ > 2.

To our best knowledge, for the first time in the present paper the estimate
(1.2) is proved in the whole range of values of p. It also seems that the case n = 2
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has not been treated before our work. We believe that the estimate (1.2) holds
in all dimensions under the assumption (1.1) only, but the method developed
here does not work any more when n ≥ 4, because in this case the outgoing
and incoming free resolvents do not satisfy analogues of the estimates (2.15) and
(2.17) below. The reason for this is that the singularity on the diagonal of the
kernels of these resolvents (which in turn is determined by the behaviour at zero
of the corresponding Hankel functions) is too strong when n ≥ 4.

It is expected that the function χa in (1.2) could be replaced by the char-
acteristic function of the interval [0,+∞) (the absolutely continuous spectrum
of G) if one additionally supposes that the zero is neither an eigenvalue nor a
resonance of G. We believe that our method can be modified in a way allowing
to prove such a statement. When n = 3 this seems not to be very difficult in
view of the nice behaviour at zero of both the free and the perturbed resolvents.
When n = 2, however, these resolvents have a logarithmic singularity at zero,
which would make the proof quite technical.

Our method consists of reducing (1.2) to semi-classical estimates (see
Theorem 2.1 below) valid for all 2 ≤ p ≤ +∞. The advantage of such an
approach is that one can easily make an interpolation between L2 → L2 and
L1 → L∞ estimates.
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F. C. was visiting the University of Nantes in May 2005, under the support of
the agreement Brazil-France in Mathematics – Proc. 69.0014/01-5. F. C. is also
partially supported by the CNPq, Brazil.

2. Proof of Theorem 1.1. Given parameters a > 0, 0 < h ≤ 1, and
a function ϕ ∈ C∞

0 ([a,+∞)), denote

Φ(t;h) = eit
√
Gϕ(h

√
G) − eit

√
G0ϕ(h

√
G0).

It is easy to see that Theorem 1.1 follows from the following

Theorem 2.1. Assume (1.1) fulfilled. If n = 3, for every a > 0, 2 ≤ p ≤
+∞, there exists a constant C > 0 so that the following estimate holds

(2.1) ‖Φ(t;h)‖Lp′→Lp ≤ Ch1−αn|t|−α(n−1)/2, ∀t 6= 0, 0 < h ≤ 1,

where 1/p + 1/p′ = 1, α = 1 − 2/p.
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If n = 2, the estimate (2.1) holds with a = a0, a0 being as in the introduc-

tion. Moreover, if in addition G has no strictly positive resonances, then (2.1)
holds for any a > 0.

Indeed, using the identity

σ−α(n+1)/2χa(σ) =

∫ 1

0
ϕ(θσ)θα(n+1)/2−1dθ,

where ϕ(σ) = σ1−α(n+1)/2χ′
a(σ) ∈ C∞

0 ([a,+∞)), since 0 ≤ α < 1, we get

∥∥∥eit
√
G(

√
G)−α(n+1)/2χa(

√
G) − eit

√
G0(
√
G0)

−α(n+1)/2χa(
√
G0)

∥∥∥
Lp′→Lp

(2.2) ≤
∫ 1

0
‖Φ(t; θ)‖Lp′→Lp θ

α(n+1)/2−1dθ

≤ C|t|−α(n−1)/2

∫ 1

0
θ−α(n−1)/2dθ ≤ C|t|−α(n−1)/2,

which implies (1.2).

P r o o f o f T h e o r e m 2.1. Clearly, it suffices to prove (2.1) for p = +∞,
p′ = 1 and p = p′ = 2. In what follows in this section we will show that (2.1)
holds true with p = +∞, p′ = 1. We write Φ(t;h) in terms of the outgoing and
incoming resolvents

R±
0 (λ) = (G0 − λ2 ± i0)−1, R±(λ) = (G− λ2 ± i0)−1,

as follows

Φ(t;h) =
1

πi

∫ ∞

0
eitλϕ(hλ)

(
(R+(λ) −R+

0 (λ)) − (R−(λ) −R−
0 (λ))

)
λdλ

(2.3) =
∑

±
± 1

πi

∫ ∞

0
eitλϕ(hλ)T±(λ)λdλ :=

∑

±
±Φ±(t;h),

where

T±(λ) = R±
0 (λ)

(
−V + V R±(λ)V

)
R±

0 (λ).
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Recall that the kernel of the resolvent R±
0 (λ) is given in terms of the Hankel

functions by

[R±
0 (λ)](x, y) = ± i

4

(
λ

2π|x− y|

)ν
H±
ν (λ|x− y|),

where ν = (n− 2)/2. The perturbed resolvent R±(λ) is defined by the limit

R±(λ) = lim
ε→0+

(G− λ2 ± iε)−1 : 〈x〉−sL2 → 〈x〉sL2, s > 1/2,

which exists in view of the limiting absorption principle.
We need now the following

Proposition 2.2. Assume (1.1) fulfilled. If n = 3, the operator-valued

function T±(λ) : L1 → L∞ is C1 in λ and satatisfies the estimates

(2.4) ‖T±(λ)‖L1→L∞ ≤ C, λ ≥ a,

(2.5)

∥∥∥∥
dT±

dλ
(λ)

∥∥∥∥
L1→L∞

≤ C, λ ≥ a,

∀a > 0 with a constant C > 0 independent of λ, which may depend on a.
If n = 2, the operator-valued function T±(λ) : L1 → L∞ is Hölder of

order 1/2 and satatisfies the estimates

(2.6) ‖T±(λ)‖L1→L∞ ≤ Cλ−1, λ ≥ a0,

(2.7)
∥∥T±(λ2) − T±(λ1)

∥∥
L1→L∞

≤ Cλ−1
1 |λ2 − λ1|1/2, λ2 > λ1 ≥ a0,

a0 being such that G has no resonances in the interval [a0,+∞).

Let n = 3. Integrating by parts once the integral in (2.3) and using (2.4)
and (2.5), one easily gets

∥∥Φ±(t;h)
∥∥
L1→L∞

≤ Ch−2|t|−1, ∀t 6= 0, 0 < h ≤ 1,

which clearly implies (2.1) with p = +∞, p′ = 1 in this case.
Let n = 2. We will first consider the case |t| ≥ 1. Choose a real-valued

function φ ∈ C∞
0 ([1/3, 1/2]), φ ≥ 0, such that

∫
φ(σ)dσ = 1. Then the function

T±
θ (λ) = θ−1

∫
T±(λ+ σ)φ(σ/θ)dσ, 0 < θ ≤ 1,
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is smooth with values in L(L1, L∞) and, in view of (2.6) and (2.7), satisfies the
estimates

(2.8) ‖T±
θ (λ)‖L1→L∞ ≤ Cλ−1,

‖T±
θ (λ) − T±(λ)‖L1→L∞ ≤ θ−1

∫
‖T±(λ+ σ) − T±(λ)‖L1→L∞φ(σ/θ)dσ

(2.9) ≤ Cθ−1λ−1

∫
σ1/2φ(σ/θ)dσ ≤ Cθ1/2λ−1,

∥∥∥∥
T±
θ

dλ
(λ)

∥∥∥∥
L1→L∞

≤ θ−2

∫
‖T±(λ+ σ) − T±(λ)‖L1→L∞ |φ′(σ/θ)|dσ

(2.10) ≤ Cθ−2λ−1

∫
σ1/2|φ′(σ/θ)|dσ ≤ Cθ−1/2λ−1.

Hence,
∥∥∥∥
∫ ∞

0
eitλϕ(hλ)

(
T±
θ (λ) − T±(λ)

)
λdλ

∥∥∥∥
L1→L∞

(2.11) ≤ Cθ1/2

∫ ∞

0
|ϕ(hλ)|dλ ≤ Cθ1/2h−1,

∥∥∥∥
∫ ∞

0
eitλϕ(hλ)T±

θ (λ)λdλ

∥∥∥∥
L1→L∞

(2.12) =

∥∥∥∥t
−1

∫ ∞

0
eitλ

d

dλ

(
ϕ(hλ)T±

θ (λ)λ
)
dλ

∥∥∥∥
L1→L∞

≤ Ch−1|t|−1θ−1/2.

By (2.11) and (2.12),

(2.13) ‖Φ±(t;h)‖L1→L∞ ≤ Ch−1
(
θ1/2 + |t|−1θ−1/2

)
≤ Ch−1|t|−1/2,

if we take θ = |t|−1. If 0 < |t| ≤ 1, by (2.6) we get

(2.14) ‖Φ±(t;h)‖L1→L∞ ≤ Ch−1.
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Clearly, (2.1) with p = +∞, p′ = 1 follows in this case from (2.13) and (2.14). �

P r o o f o f P r o p o s i t i o n 2.2. We will first prove the following

Lemma 2.3. If n = 3, we have for every λ ≥ 0,

(2.15)
∥∥∥R±

0 (λ)〈x〉−1/2−ǫ
∥∥∥
L2→L∞

≤ C,

(2.16)

∥∥∥∥
dR±

0

dλ
(λ)〈x〉−3/2−ǫ

∥∥∥∥
L2→L∞

≤ C,

∀0 < ǫ≪ 1, with a constant C > 0 independent of λ but depending on ǫ.

If n = 2, we have

(2.17)
∥∥∥R±

0 (λ)〈x〉−1/2−ǫ
∥∥∥
L2→L∞

≤ Cλ−1/2, λ ≥ λ0,

(2.18)∥∥(R±
0 (λ2) −R±

0 (λ1)
)
〈x〉−1−ǫ∥∥

L2→L∞
≤ Cλ

−1/2
1 |λ2 − λ1|1/2, λ2 > λ1 ≥ λ0,

∀0 < ǫ ≪ 1, ∀λ0 > 0, with a constant C > 0 independent of λ, λ1 and λ2, but

depending on λ0 and ǫ.

P r o o f. When n = 3, the estimates (2.15) and (2.16) are proved in [5]
(Lemma II.2) and [3] (Proposition 2.1) using that

H±
1/2(z) = c±e±izz−1/2.

That is why we will consider here only the case n = 2. Recall that, when z → 0,
the function H±

0 (z) is of the form

(2.19) H±
0 (z) = H±

0,1(z) +H±
0,2(z) log z,

with functions H±
0,j(z) analytic at z = 0. For z ≥ 1 the function H±

0 (z) is of the
form

(2.20) H±
0 (z) = e±izb±0 (z),

where b±0 (z) is a symbol of order −1/2, i.e.

(2.21)
∣∣∂jzb±0 (z)

∣∣ ≤ Cjz
−1/2−j , z ≥ 1,
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for all integers j ≥ 0. Hence, for λ ≥ λ0, we have

∥∥∥R±
0 (λ)〈x〉−1/2−ǫ

∥∥∥
2

L2→L∞

≤ sup
x∈R2

∫

R2

∣∣H±
0 (λ|x− y|)

∣∣2 〈y〉−1−2ǫdy

≤ C sup
x∈R2

∫

λ|x−y|≤1
|log(λ|x− y|)|2 dy + Cλ−1 sup

x∈R2

∫

λ|x−y|≥1

〈y〉−1−2ǫ

|x− y| dy

≤ Cλ−2

∫

|ξ|≤1
|log |ξ||2 dξ + Cλ−1 sup

x∈R2

∫

R2

〈y〉−1−2ǫ

|x− y| dy ≤ Cλ−1,

which implies (2.17). To prove (2.18) we will use the inequality

∣∣H±
0 (σλ2) −H±

0 (σλ1)
∣∣2 ≤ σ

(∣∣H±
0 (σλ1)

∣∣+
∣∣H±

0 (σλ2)
∣∣)
∫ λ2

λ1

∣∣∣∣
dH±

0

dz
(σλ)

∣∣∣∣ dλ

≤ σ|λ2 − λ1|
(
∣∣H±

0 (σλ1)
∣∣2 +

∣∣H±
0 (σλ2)

∣∣2 + |λ2 − λ1|−1

∫ λ2

λ1

∣∣∣∣
dH±

0

dz
(σλ)

∣∣∣∣
2

dλ

)
.

Thus, in view of (2.19)-(2.21), we have for λ2 > λ1 ≥ λ0,

|λ2 − λ1|−1
∥∥(R±

0 (λ2) −R±
0 (λ1)

)
〈x〉−1−ǫ∥∥2

L2→L∞

≤
2∑

j=1

sup
x∈R2

∫

R2

∣∣H±
0 (λj |x− y|)

∣∣2 |x− y|〈y〉−2−2ǫdy

+|λ2 − λ1|−1

∫ λ2

λ1

sup
x∈R2

∫

R2

∣∣∣∣
dH±

0

dz
(λ|x− y|)

∣∣∣∣
2

|x− y|〈y〉−2−2ǫdydλ

≤ C
2∑

j=1

sup
x∈R2

∫

λj |x−y|≤1
|log(λj |x− y|)|2 |x− y|dy

+C
2∑

j=1

λ−1
j sup

x∈R2

∫

λj |x−y|≥1
〈y〉−2−2ǫdy
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+C|λ2 − λ1|−1

∫ λ2

λ1

λ−2 sup
x∈R2

∫

λ|x−y|≤1

dy

|x− y|dλ

+C|λ2 − λ1|−1

∫ λ2

λ1

λ−1 sup
x∈R2

∫

λ|x−y|≥1
〈y〉−2−2ǫdydλ

≤ C

2∑

j=1

λ−3
j

∫

|ξ|≤1
|ξ| |log |ξ||2 dξ + C

2∑

j=1

λ−1
j

∫

R2

〈y〉−2−2ǫdy

+Cλ−2
1

∫

|ξ|≤1

dξ

|ξ| + Cλ−1
1

∫

R2

〈y〉−2−2ǫdy ≤ Cλ−1
1 ,

which implies (2.18). �

It is easy to see that Proposition 2.2 follows from Lemma 2.3 and the
following

Proposition 2.4. Assume (1.1) fulfilled. Then, there exists a constant

λ0 > 0 so that we have

(2.22)
∥∥∥〈x〉−1/2−ǫR±(λ)〈x〉−1/2−ǫ

∥∥∥
L2→L2

≤ Cλ−1,

for λ ≥ λ0, 0 < ǫ ≪ 1, with a constant C > 0 independent of λ. Moreover, if

n = 3, we have

(2.23)

∥∥∥∥〈x〉
−3/2−ǫ dR

±

dλ
(λ)〈x〉−3/2−ǫ

∥∥∥∥
L2→L2

≤ Cλ−1,

for λ ≥ λ0, 0 < ǫ ≪ 1, with a constant C > 0 independent of λ. If n = 2, we

have

(2.24)
∥∥〈x〉−1−ǫ (R±(λ2) −R±(λ1)

)
〈x〉−1−ǫ∥∥

L2→L2 ≤ Cλ−1
1 |λ2 − λ1|1/2,

for λ2 > λ1 ≥ λ0, 0 < ǫ≪ 1, with a constant C > 0 independent of λ1 and λ2.

If G has no strictly positive resonances, the above estimates hold true for

any λ0 > 0 with a constant C > 0 depending on λ0.

P r o o f. The estimate (2.22) is well known to hold for every λ > 0 for the
free operator G0 in all dimensions, i.e. we have

(2.25)
∥∥∥〈x〉−1/2−ǫR±

0 (λ)〈x〉−1/2−ǫ
∥∥∥
L2→L2

≤ Cλ−1.
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Let us now see that (2.22) holds under the assumption (1.1) with δ > 1 in all
dimensions. To this end, we will take advantage of the identity

(2.26) 〈x〉−sR±(λ)〈x〉−s1
(
1 +K±(λ)

)
= 〈x〉−sR±

0 (λ)〈x〉−s1 ,

where

K±(λ) = 〈x〉s1V R±
0 (λ)〈x〉−s.

By (2.25), we have with 1/2 < s1 ≤ δ − 1/2,

(2.27)
∥∥K±(λ)

∥∥
L2→L2 ≤ Cλ−1, ∀λ > 0.

Hence, there exists λ0 > 0 so that we have

(2.28)
∥∥∥
(
1 +K±(λ)

)−1
∥∥∥
L2→L2

≤ Const, ∀λ ≥ λ0.

Thus, (2.22) follows from (2.25), (2.26) and (2.28). Moreover, if G has no strictly
positive resonances, (2.28) holds for any λ0 > 0. Therefore, in this case (2.22)
holds for any λ0 > 0.

To prove (2.23) we will use that it holds for G0 in all dimensions, i.e.

(2.29)

∥∥∥∥〈x〉
−3/2−ǫ dR

±
0

dλ
(λ)〈x〉−3/2−ǫ

∥∥∥∥
L2→L2

≤ Cλ−1,

for ∀λ > 0, 0 < ǫ≪ 1, with a constant C > 0 independent of λ. Let now n = 3.
Then (1.1) is fulfilled with δ > 2. Differentiating (2.26) leads to the identity

〈x〉−s dR
±

dλ
(λ)〈x〉−s1

(
1 +K±(λ)

)

(2.30) = 〈x〉−s dR
±
0

dλ
(λ)〈x〉−s1 − 〈x〉−sR±(λ)〈x〉−s1+1 d

dλ
〈x〉−1K±(λ).

Let 3/2 < s1 ≤ δ− 1/2. As above, we conclude that (2.28) still holds. Therefore,
(2.23) follows from (2.30) together with the estimates (2.22) and (2.29).

Let now n = 2. Then (1.1) is fulfilled with δ > 3/2. We will first show
that (2.24) holds for the free operator G0, i.e.

(2.31)
∥∥〈x〉−1−ǫ (R±

0 (λ2) −R±
0 (λ1)

)
〈x〉−1−ǫ∥∥

L2→L2 ≤ Cλ−1
1 |λ2 − λ1|1/2.
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To this end, fix λ2 > λ1 and consider the operator-valued function

M±(z) = |λ2 − λ1|−z〈x〉−1/2−z−ǫ (R±
0 (λ2) −R±

0 (λ1)
)
〈x〉−1/2−z−ǫ, z ∈ C.

In view of (2.25), M±(z) is analytic in z for Re z ≥ 0 with values in L(L2) and
satisfies the bounds

(2.32) ‖M±(z)‖L2→L2 ≤ C ′eARe z, 0 ≤ Re z ≤ 1,

with some constants C ′, A > 0 depending on λ1 and λ2. Moreover, by (2.25) and
(2.29) we have

(2.33) ‖M±(z)‖L2→L2 ≤ Cλ−1
1 ,

on Re z = 0 and Re z = 1, with a constant C > 0 independent of z, λ1 and λ2.
By (2.32), (2.33) and the Phragmèn-Lindelöf principle we conclude that (2.33)
holds for 0 ≤ Re z ≤ 1. In particular, it holds for z = 1/2, which is equivalent to
(2.31).

In view of (2.26) we have the identity

〈x〉−s
(
R±(λ2) −R±(λ1)

)
〈x〉−s1

(
1 +K±(λ2)

)

= 〈x〉−s
(
R±

0 (λ2) −R±
0 (λ1)

)
〈x〉−s1

(2.34) −〈x〉−sR±(λ1)〈x〉−s1+1/2
(
〈x〉−1/2K±(λ2) − 〈x〉−1/2K±(λ1)

)
.

Let 1 < s1 ≤ δ − 1/2. Then we have (2.28) with λ = λ2, which together with
(2.22), (2.31) and (2.34) imply (2.24). �

3. Semi-classical L
2 estimates. In this section we will prove (2.1)

with p = p′ = 2. In fact, we will show that this estimate holds for all dimensions
and for a larger class of potentials. More precisely, we will prove the following

Theorem 3.1. Assume (1.1) fulfilled with δ > 1. Then, there exist

constants C, a > 0 such that the following estimate holds

(3.1) ‖Φ(t;h)‖L2→L2 ≤ Ch, ∀t, 0 < h ≤ 1.

Moreover, if in addition G has no strictly positive resonances, then (3.1) holds

for every a > 0.
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P r o o f. We begin by proving the following

Lemma 3.2. For every ϕ ∈ C∞
0 ((0,+∞)), we have

(3.2)
∥∥∥ϕ(h

√
G) − ϕ(h

√
G0)

∥∥∥
L2→L2

≤ Ch2.

P r o o f. Define the function ψ ∈ C∞
0 ((0,+∞)) by ψ(σ2) = ϕ(σ). To

prove (3.2) we will make use of the Helffer-Sjöstrand formula

(3.3) ψ(h2G) =
1

π

∫

C

∂ψ̃

∂z
(z)(h2G− z)−1L(dz),

where L(dz) denotes the Lebesgue measure on C, and ψ̃ ∈ C∞
0 (C) is an almost

analytic continuation of ψ supported in a small complex neighbourhood of suppψ
and satisfying

∣∣∣∣∣
∂ψ̃

∂z
(z)

∣∣∣∣∣ ≤ CN |Im z|N , ∀N ≥ 1.

Thus we have

∥∥ψ(h2G) − ψ(h2G0)
∥∥
L2→L2

≤ O(h2)

∫

C

∣∣∣∣∣
∂ψ̃

∂z
(z)

∣∣∣∣∣
∥∥(h2G0 − z)−1V (h2G− z)−1

∥∥
L2→L2 L(dz)

(3.4) ≤ ON (h2)

∫

Cψ

|Im z|N
∥∥(h2G0 − z)−1

∥∥
L2→L2

∥∥(h2G− z)−1
∥∥
L2→L2 L(dz),

where Cψ = supp ψ̃. Now (3.2) follows from (3.4) and the trivial bounds

(3.5)
∥∥(h2G0 − z)−1

∥∥
L2→L2 +

∥∥(h2G− z)−1
∥∥
L2→L2 ≤ 2|Im z|−1.

�

We will derive now (3.1) from Lemma 3.2 and the following

Proposition 3.3. Assume (1.1) fulfilled with δ > 1 and let ϕ ∈
C∞

0 ([a,+∞)). Then, for every s > 1/2 there exist constants C, a > 0 such
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that the following estimates hold

(3.6)

∫ ∞

−∞

∥∥∥〈x〉−seit
√
G0ϕ(h

√
G0)f

∥∥∥
2

L2
dt ≤ C‖f‖2

L2 , ∀f ∈ L2, 0 < h ≤ 1,

(3.7)

∫ ∞

−∞

∥∥∥〈x〉−seit
√
Gϕ(h

√
G)f

∥∥∥
2

L2
dt ≤ C‖f‖2

L2, ∀f ∈ L2, 0 < h ≤ 1.

Using Duhamel’s formula

eit
√
Gϕ(h

√
G) − eit

√
G0ϕ(h

√
G) = i

sin
(
t
√
G0

)
√
G0

(√
Gϕ(h

√
G) −

√
G0ϕ(h

√
G)
)

(3.8) −
∫ t

0

sin
(
(t− τ)

√
G0

)
√
G0

V eiτ
√
Gϕ(h

√
G)dτ,

we obtain

eit
√
Gϕ(h

√
G) − eit

√
G0ϕ(h

√
G0)

=
(
ϕ1(h

√
G) − ϕ1(h

√
G0)

)
eit

√
Gϕ(h

√
G)

+ϕ1(h
√
G0)e

it
√
G0

(
ϕ(h

√
G) − ϕ(h

√
G0)

)

(3.9) −iϕ1(h
√
G0) sin

(
t
√
G0

)(
ϕ(h

√
G) − ϕ(h

√
G0)

)

+iϕ̃1(h
√
G0) sin

(
t
√
G0

)(
ϕ̃(h

√
G) − ϕ̃(h

√
G0)

)

−h
∫ t

0
ϕ̃1(h

√
G0) sin

(
(t− τ)

√
G0

)
V eiτ

√
Gϕ(h

√
G)dτ,

where ϕ1 ∈ C∞
0 ([a,+∞)) is such that ϕ1ϕ ≡ ϕ, ϕ̃(σ) = σϕ(σ), ϕ̃1(σ) =

σ−1ϕ1(σ). For all nontrivial f, g ∈ L2, in view of Lemma 3.2, Proposition 3.3
and (3.9), we have with 0 < s− 1/2 ≪ 1, ∀γ > 0,

|〈Φ(t;h)f, g〉| ≤ O(h2)‖f‖L2‖g‖L2
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+O(h)

∫ ∞

−∞

∣∣∣
〈
〈x〉sV eiτ

√
Gϕ(h

√
G)f, 〈x〉−s sin

(
(t− τ)

√
G0

)
ϕ̃1(h

√
G0)g

〉∣∣∣ dτ

≤ O(h2)‖f‖L2‖g‖L2 +O(h)γ

∫ ∞

−∞

∥∥∥〈x〉−seiτ
√
Gϕ(h

√
G)f

∥∥∥
2

L2
dτ

+O(h)γ−1

∫ ∞

−∞

∥∥∥〈x〉−s sin
(
τ
√
G0

)
ϕ̃1(h

√
G0)g

∥∥∥
2

L2
dτ

≤ O(h2)‖f‖L2‖g‖L2 +O(h)γ‖f‖2
L2 +O(h)γ−1‖g‖2

L2

(3.10) ≤ O(h)‖f‖L2‖g‖L2 ,

if we choose γ = ‖g‖L2/‖f‖L2 , which clearly implies (3.1). �

P r o o f o f P r o p o s i t i o n 3.3. Without loss of generality we may sup-
pose that the function ϕ is real-valued. Denote by H the Hilbert space L2(R;L2).
Clearly, (3.7) is equivalent to the fact that the operator Ah : L2 → H defined by

(Ahf) (x, t) = 〈x〉−seit
√
Gϕ(h

√
G)f

is bounded uniformly in h. Observe that the adjoint A∗
h : H → L2 is defined by

A∗
hf =

∫ ∞

−∞
e−iτ

√
Gϕ(h

√
G)〈x〉−sf(τ, x)dτ,

so we have, ∀f, g ∈ H,

(3.11) 〈AhA∗
hf, g〉H =

∫ ∞

−∞
〈ρ(t, ·), g(t, ·)〉L2 dt,

where

ρ(t, x) =

∫ ∞

−∞
〈x〉−sei(t−τ)

√
Gϕ2(h

√
G)〈x〉−sf(τ, ·)dτ.

Hence, for the Fourier transform, ρ̂(λ, x), of ρ(t, x) with respect to the variable t
we have

(3.12) ρ̂(λ, x) = Q(λ)f̂(λ, x),
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where Q(λ) is the Fourier transform of the operator

〈x〉−seit
√
Gϕ2(h

√
G)〈x〉−s.

On the other hand, the formula

eit
√
Gϕ2(h

√
G) =

1

πi

∫ ∞

−∞
eitλϕ2(hλ)

(
R+(λ) −R−(λ)

)
λdλ

shows that

(3.13) Q(λ) = (πi)−1λϕ2(hλ)〈x〉−s
(
R+(λ) −R−(λ)

)
〈x〉−s.

By (2.22) and (3.13) we conclude

(3.14) ‖Q(λ)‖L2→L2 ≤ C

with a constant C > 0 independent of λ and h. By (3.12) and (3.14),

(3.15) ‖ρ̂(λ, ·)‖L2 ≤ C‖f̂(λ, ·)‖L2 ,

which together with (3.11) leads to

|〈AhA∗
hf, g〉H| =

∣∣∣∣
∫ ∞

−∞
〈ρ̂(λ, ·), ĝ(λ, ·)〉L2 dλ

∣∣∣∣

≤ C

∫ ∞

−∞
‖f̂(λ, ·)‖L2‖ĝ(λ, ·)‖L2dλ

≤ Cγ

∫ ∞

−∞
‖f̂(λ, ·)‖2

L2dλ+ Cγ−1

∫ ∞

−∞
‖ĝ(λ, ·)‖2

L2dλ

(3.16) = Cγ‖f‖2
H + Cγ−1‖g‖2

H = 2C‖f‖H‖g‖H,

if we take γ = ‖g‖H/‖f‖H, with a constant C > 0 independent of h, f and g. It
follows from (3.16) that the operator AhA∗

h : H → H is bounded uniformly in h,
and hence so is the operator Ah : L2 → H. This proves (3.7). Clearly, (3.6) is
treated in the same way using (2.25) instead of (2.22). �
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