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NECESSARY AND SUFFICIENT CONDITION FOR

OSCILLATIONS OF NEUTRAL DIFFERENTIAL EQUATION
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Abstract. We obtain necessary and sufficient conditions for the oscilla-
tion of all solutions of neutral differential equation with mixed (delayed and
advanced) arguments

[

x (t) +
m

∑

k=1

rkx (t − µk)

]

′

+
n

∑

i=1

pix (t − τi) = 0,

where rk, µk, pi, τi ∈ R for k = 1, 2, . . . , m and i = 1, 2, . . . , n. Our results
extend and improve several known results in the literature and solve an open
problem posed by Gyori and Ladas [6].

1. Introduction. In recent years the literature on the oscillation of
neutral delay differential equations is growing very fast. It is a relatively new
field with interesting applications in real world life problems. In fact, the neutral
delay differential equations appear in modelling of the networks containing lossless
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transmission lines (as in high-speed computers where the lossless transmission
lines are used to interconnect swithching circuits), in the study of vibrating masses
attached to an elastic bar, as the Euler equation in some variational problems,
theory of automatic control and in neuromechanical systems in which inertia
plays an important role (see [2] and [5]).

In this paper we shall consider the following first order linear neutral
differential equation with mixed (delayed and advanced) arguments

[

x(t) +

m
∑

k=1

rkx(t − µk)

]

′

+

n
∑

i=1

pix(t − τi) = 0,(1)

where rk, µk, pi, τi ∈ R for k = 1, 2, . . . ,m and i = 1, 2, . . . , n.

As usual a solution x (t) of equation (1) is said to be oscillatory if it has
arbitrarily large zeros on [t0,∞). Otherwise it is nonoscillatory. The equation
(1) is called oscillatory if every solution of this equation is oscillatory.

In the case when n = m = 1, r1 ∈ R, µ1, τ1 and p1 ≥ 0, Ladas and
Stavroulakis [10] proved that the necessary and sufficient condition for the os-
cillation of (1) is that the characteristic equation has no real roots. For m = 1
and r1 ∈ R, µ1, pi and τi ≥ 0 for i = 1, 2, . . . , n this was proved by Kulenovic,
Ladas and Meimaridou [8]. Also for n = m = 1 and µ1, r1, τ1 and p1 ∈ R the
above result was proved by Grove, Ladas and Meimaridou [5]. When rk = 0 or
µk = 0, the result is due to Tramov [15]. For a simple proof see Ladas, Sficas and
Stavroulakis [9].

One of our results establishes the important fact that the oscillatory na-
ture of the solutions of Eq. (1) is determined by the roots of the characteristic
equation

λ +

m
∑

k=1

rkλe−λµk +

n
∑

i=1

pie
−λτi = 0.

This is in contrast to the stability nature of the solutions of Eq. (1). Snow [13]
has shown, for example, that even though the characteristic roots of an NDE may
all have negative real parts, it is still possible for some solutions to be unbounded.
See also [11].

In the sequel, for convenience, when we write a functional inequality, we
shall mean that it holds eventually, that is, for all sufficiently large values of the
argument t.

2. Main results. The following lemmas are useful tools in the proof of
the main results of this paper.
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Lemma 1. Let υ(t) be a positive and continuously differentiable function
on some interval [t0,∞) .

Assume that there exist positive numbers A and α such that for t suffi-
ciently large,

υ′(t) ≤ 0 and υ(t − α) < Aυ(t).

Set

Λ =
{

λ ≥ 0 : υ′ (t) + λυ (t) ≤ 0, for t sufficiently large.
}

Then A > 1 and λ0 =
ln(A)

α
/∈ Λ.

Lemma 2. Let υ(t) be a positive and continuously differentiable function
on some interval [t0,∞). Assume that there exist positive numbers A and α such
that for t sufficiently large,

υ′(t) ≥ 0 and υ(t + α) < Aυ(t).

Set

Λ =
{

λ ≥ 0 : −υ′ (t) + λυ (t) ≤ 0, for t sufficiently large.
}

.

Then A > 1 and λ0 =
ln(A)

α
/∈ Λ.

Lemma 3. Let p and σ be positive constants and let z(t) be an eventually
positive solution of the delay differential inequality

z′(t) + pz(t − σ) ≤ 0.

Let y(t) be an eventually positive solution of the advance differential inequality

y′(t) − py(t + σ) ≥ 0.

Then for t sufficiently large,

z(t − σ) ≤ βz(t),

and

y(t + σ) ≤ βy(t),

where β =
4

(pσ)2
.

For the proof of these lemmas see [6].
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Theorem 1. Consider the neutral differential equation with mixed (de-
layed and advanced) arguments (1). Assume that rk ∈ R+, µk, pi, τi ∈ R,
pipj ≥ 0 and τiτj ≥ 0 for k = 1, 2, . . . ,m and i, j = 1, 2, . . . , n. Then a neces-
sary and sufficient condition for the oscillation of (1) is that the characteristic
equation

λ +

m
∑

k=1

rkλe−λµk +

n
∑

i=1

pie
−λτi = 0,(2)

has no real roots.

P r o o f. The proof of the necessity part of the theorem is very brief. If it
were false, the characteristic equation (2) would have a real root λ0 and therefore
Eq. (1) would have the nonoscillatory solution

x (t) = eλ0t.

But this contradicts the hypothesis that every solution of Eq. (1) oscillates.
Now suppose that equation (2) has no real root.
Set

F (λ) = λ +

m
∑

k=1

rkλe−λµk +

n
∑

i=1

pie
−λτi ,

and

z (t) = x (t) +

m
∑

k=1

rkx (t − µk) .

As F (λ) = 0 has no real roots, we consider the following cases.
Case (1): τi < 0 for i = 1, 2, . . . , n.

As F (−∞) = −∞ it follows that F (0) =
n
∑

i=1
pi < 0 implies pi < 0 for

i = 1, 2, . . . , n. Then F (∞) = −∞ and because equation (2) has no real roots it
follows that there exists a positive constant δ such that

λ +

m
∑

k=1

rkλe−λµk +

n
∑

i=1

pie
−λτi ≤ −δ, for λ ∈ R,(3)

where
−δ = max

λ∈R
F (λ) .

Assume, for the sake of contradiction, that equation (1) has an eventually positive
solution x (t). Then eventually

z′(t) = −

n
∑

i=1

pix (t − τi) > 0.
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Define the set

Λ =
{

λ ≥ 0 : −z′ (t) + λz (t) ≤ 0, for t sufficiently large.
}

.

Clearly 0 ∈ Λ and Λ is a non-empty subinterval of R+.
We show that Λ has the following contradictory properties
(p1) There exists positive numbers λ1 and λ2 such that

λ1 ∈ Λ and λ2 /∈ Λ.

(p2) If λ ∈ Λ therefor λ + δ ∈ Λ where δ is defined in (3).
We take τ∗ ≥ τi for i = 1, 2, . . . , n. Observe that z(t) is increasing z(t) <

x(t) and so

z′(t) +

n
∑

i=1

piz (t − τ∗) ≥ 0.(4)

Therefore,

z′ (t) +
n

∑

i=1

piz (t) ≥ 0,

which implies that −
n
∑

i=1
pi ∈ Λ. From Lemmas 2, 3 and (4) it follows that

λ2 =

ln

[

4

(τ∗ (
∑n

i=1 pi))
2

]

−τ∗
/∈ Λ.

We turn to the proof of (p2). Let λ ∈ Λ and set

φ(t) = e−λtz(t).

Therefore
φ′(t) = −e−λt

(

−z′(t) + λz(t)
)

≥ 0,

which shows that φ(t) is increasing. Thus

−z′(t) + (λ + δ)z(t) =
n

∑

i=1

piz(t − τi) + (λ + δ)z(t)

=

n
∑

i=1

piφ(t − τi)e
λ(t−τi) + (λ + δ)φ(t)eλt

≤ φ(t)eλt

[

m
∑

k=1

rkλe−λµk +
n

∑

i=1

pie
−λτi + λ + δ

]

≤ φ(t)eλt(−δ + δ) = 0.
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This proves (p2) and thus the proof of the Theorem is complete in this case.

Case (2): τi > 0 for i = 1, 2, . . . , n.

As F (∞) = ∞, it follows that F (0) =
n
∑

i=1
pi > 0 implies pi > 0 for

i = 1, 2, . . . , n. Then F (−∞) = ∞ and because equation (2) has no real roots it
follows that there exists a positive constant δ such that

λ +

m
∑

k=1

rkλe−λµk +

n
∑

i=1

pie
−λτi ≥ δ, for λ ∈ R,(5)

where

δ = min
λ∈R

F (λ) .

Assume, for the sake of contradiction, that equation (1) has an eventually positive
solution x(t). Then eventually

z′ (t) = −

n
∑

i=1

pix (t − τi) < 0.

Define the set

Λ =
{

−λ ≥ 0 : z′ (t) − λz (t) ≤ 0, for t sufficiently large.
}

.

As in case (1), Λ is a non-empty subinterval of R+.

We show that Λ has the following contradictory properties

(p1) There exists positive numbers λ1 and λ2 such that

λ1 ∈ Λ and λ2 /∈ Λ.

(p2) If −λ ∈ Λ therefore −λ + δ ∈ Λ where δ is defined in (5).

We take τi ≥ τ∗ for i = 1, 2, . . . , n. Observe that x(t) is decreasing,
z(t) < x(t) and so

z′(t) +
n

∑

i=1

piz(t − τ∗) ≤ 0.(6)

Therefore

z′(t) +
n

∑

i=1

piz(t) ≤ 0,
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which implies that
n
∑

i=1
pi ∈ Λ. From Lemmas 1, 3 and (6) it follows that

λ2 =

ln

[

4

(τ∗ (
∑n

i=1 pi))
2

]

τ∗
/∈ Λ.

We turn to the proof of (p2).
Let −λ ∈ Λ and set

φ(t) = e−λtz(t).

Therefore
φ′(t) = e−λt

(

z′(t) − λz(t)
)

≤ 0,

which shows that φ(t) is non-increasing. Thus

z′(t) + (−λ + δ)z(t) = −

n
∑

i=1

piz(t − τi) + (−λ + δ)z(t)

= −

n
∑

i=1

piφ(t − τi)e
λ(t−τi) + (−λ + δ)φ(t)eλt

≤ φ(t)eλt

[

−

m
∑

k=1

λrke
−λµk −

n
∑

i=1

pie
−λτi − λ + δ

]

≤ φ(t)eλt(−δ + δ) = 0.

This proves (p2) and therefore the proof of the theorem is complete in this case. �

Remark. Consider equation (1) and assume that pgi
> 0, i = 1, 2, . . . , l

and that phj
≤ 0, j = 1, 2, . . . , s with l + s = n. Let qhj

= −phj
, j = 1, 2, . . . , s.

Then equation (1) takes the form

[

x (t) +
m

∑

k=1

rkx (t − µk)

]

′

+
l

∑

i=1

pgi
x (t − τgi

) −
s

∑

j=1

qhj
x

(

t − τhj

)

= 0,(7)

or simply,

[

x (t) +
m

∑

k=1

rkx (t − µk)

]

′

+
l

∑

i=1

pix (t − τi) −
s

∑

j=1

qjx (t − σj) = 0,(8)

where rk ∈ R−, µk, pi, τi, qj and σj ∈ R+, k = 1, 2, . . . ,m, i = 1, 2, . . . , l,
j = 1, 2, . . . , s with l + s = n, τ1 ≥ τ2 ≥ . . . ≥ τl and σ1 ≥ σ2 ≥ . . . ≥ σs.
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Theorem 2. Consider the neutral delay differential equation (8). Then

l
∑

i=1

pi >

s
∑

j=1

qj, and τ1 ≥ σ1,(9)

are necessary conditions for the oscillation of all solutions of equation (8) while

lpi >
s

∑

j=1

qj, τi ≥ σ1 for all i = 1, 2, . . . , l,(10)

l
∑

i=1



1 +

m
∑

k=1

rk −

s
∑

j=1

qj (τi − σj)



 ≥ 0,(11)

and
l

∑

i=1



lpi −

s
∑

j=1

qj



 >
1

e





l
∑

i=1



1 +

m
∑

k=1

rk −

s
∑

j=1

qj (τi − σj)







 ,(12)

where e is natural number, are sufficient conditions for the oscillation.

P r o o f. The characteristic equation of equation (8) is

F (λ) = λ +

m
∑

k=1

rkλe−λµk +

l
∑

i=1

pie
−λτi −

s
∑

j=1

qje
−λσj = 0.(13)

Assume that all solutions of equation (8) are oscillatory. Consequently the char-
acteristic equation (13) has no real roots. As F (∞) = ∞, it follows that

F (0) =

l
∑

i=1

pi −

s
∑

j=1

qj > 0,(14)

which implies that
l

∑

i=1

pi >
s

∑

j=1

qj.(15)

Also, we have τi ≥ σi since if τi < σi, then we get F (−∞) = −∞, which means
that equation (13) has a real root. On the other hand, assume that equation (8)
has nonoscillatory solution and then the characteristics equation (13) has a real
root λ0,

F (λ0) = λ0 +
m

∑

k=1

rkλ0e
−λ0µk +

l
∑

i=1

pie
−λ0τi −

s
∑

j=1

qje
−λ0σj = 0.(16)
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But for all λ ∈ R, one can write for every i = 1, 2, . . . , l

λ



1 +

m
∑

k=1

rke
−λµk −

s
∑

j=1

qje
−λσj

τi−σj
∫

0

e−λsds





=



λ +

m
∑

k=1

rkλe−λµk −

s
∑

j=1

qje
−λσj



 +





s
∑

j=1

qj



 e−λτi .(17)

Hence,

l
∑

i=1

λ



1 +

m
∑

k=1

rke
−λµk −

s
∑

j=1

qje
−λσj

τi−σj
∫

0

e−λsds





= l



λ +

m
∑

k=1

rkλe−λµk −

s
∑

j=1

qje
−λσj



 +





s
∑

j=1

qj





l
∑

i=1

e−λτi ,(18)

and consequently F (λ) can be written in the form

F (λ) =
1

l







l
∑

i=1

λ



1 +
m

∑

k=1

rke
−λµk −

s
∑

j=1

qje
−λσj

τi−σj
∫

0

e−λsds





−





s
∑

j=1

qj





l
∑

i=1

e−λτi







+
l

∑

i=1

pie
−λτi .(19)

Then for all λ ≥ 0, we get

F (λ) >
1

l







l
∑

i=1



lpi −

s
∑

j=1

qj



 e−λτi +
l

∑

i=1

λ



1 +
m

∑

k=1

rk −

s
∑

j=1

qj(τi − σj)











> 0.

(20)

Consequently, F (λ) has no nonnegative real roots and then λ0 < 0. Using
(16) and (18), we get

l
∑

i=1

λ0



1 +

m
∑

k=1

rke
−λ0µk −

s
∑

j=1

qje
−λ0σj

τi−σj
∫

0

e−λ0sds
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= l



λ0 +

m
∑

k=1

rkλ0e
−λ0µk −

s
∑

j=1

qje
−λ0σj



 +





s
∑

j=1

qj





l
∑

i=1

e−λ0τi

= −

l
∑

i=1



lpi −

s
∑

j=1

qj



 e−λ0τi < 0.(21)

Since λ0 < 0, from equation (21), one can write

0 <
l

∑

i=1



1 +
m

∑

k=1

rke
−λ0µk −

s
∑

j=1

qje
−λ0σj

τi−σj
∫

0

e−λ0sds





<
l

∑

i=1



1 +
m

∑

k=1

rk −

s
∑

j=1

qj (τi − σj)



 .(22)

Using equations (21) and (22), we obtain

λ0

l
∑

i=1



1 +

m
∑

k=1

rk −

s
∑

j=1

qj (τi − σj)





<

l
∑

i=1

λ0



1 +

m
∑

k=1

rke
−λ0µk −

s
∑

j=1

qje
−λ0σj

τi−σj
∫

0

e−λ0sds





= −

l
∑

i=1



lpi −

s
∑

j=1

qj



 e−λ0τi < 0,(23)

and consequently,

λ0 +

l
∑

i=1

[

lpi −
s

∑

j=1
qj

]

e−λ0τi

l
∑

i=1

[

1 +
m
∑

k=1

rk −
s

∑

j=1
qj (τi − σj)

] < 0.(24)

Thus, the equation

λ +

l
∑

i=1

[

lpi −
s

∑

j=1
qj

]

e−λτi

l
∑

i=1

[

1 +
m
∑

k=1

rk −
s

∑

j=1
qj (τi − σj)

] = 0,(25)
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has a negative real root, which is a contradiction with (12). �

Example. The following delay differential equation

(x(t)− 0.1x(t− 0.2)− 0.1x(t+0.3))′ +4x(t− 2.6)−x(t− 2.5)− 0.6x(t− 1.5) = 0,

is oscillatory because all necessary and sufficient conditions for that are satified.
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