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ON A CLASS OF UNIVALENT FUNCTIONS WITH

NEGATIVE COEFFICIENTS*

Donka Pashkouleva

The aim of this paper is to obtain sharp results involving coefficient bounds, growth
and distortion properties for some classes of analytic and univalent functions with
negative coefficients.

1. Introduction and definitions. Let S denote the class of functions of the form

f(z) = z +

∞
∑

n=2

anzn

that are analytic and univalent in the unit disk E. We denote by C and S∗ the classes
of convex and starlike functions, respectively.

A function f(z) analytic in E, is said to be starlike of order β (0 ≤ β < 1) in E if
f(0) = f ′(0) − 1 = 0 and

ℜ
zf ′(z)

f(z)
> β

for z ∈ E. The class of such functions is denoted by S∗
β. Clearly, S∗

0
= S∗.

A function f(z) analytic in E is said to be close-to-convex of order β (0 ≤ β < 1)
in E if there exist a function g(z) ∈ S∗ and a real number γ such that for z ∈ E and

γ ∈
(

−
π

2
,
π

2

)

,

ℜeiγ zf ′(z)

g(z)
> β.

The class of such functions is denoted by Kβ.
A function f(z) is said to be close-to-star of order β (0 ≤ β < 1) if there exists a

function g(z) ∈ S∗ such that for z ∈ E,

ℜ
f(z)

g(z)
> β.

The class of such functions is denoted by Rβ .
A function f(z), analytic in E with f(0) = f ′(0) − 1 = 0 is said to be quasi-convex if

and only if there exists a function g(z) ∈ C such that for z ∈ E,

ℜ
(zf ′(z))

′

g′(z)
> β.
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The class of such functions is denoted by C∗
β .

Let T denotes the subclass of S, consisting of functions f(z) of the form

f(z) = z −

∞
∑

n=2

|an|z
n.

We denote T ∗
β = S∗

β ∩ T ; K∗
β = Kβ ∩ T ; R∗

β = Rβ ∩ T ; L∗
β = C∗

β ∩ T .

It is known that T = T ∗
0

= T ∗ and f ∈ T ∗
β if and only if, for 0 ≤ β < 1

∞
∑

n=2

n − β

1 − β
|an| ≤ 1 [1].

In [2] Schild considered a subclass of T consisting of polynomials having |z| < 1 as a
disk of univalence. Schild showed [2] that a necessary and sufficient condition for f ∈ T

is

1 −

∞
∑

n=2

n|an| = 0.

By means of this result he get better results for certain quantities connected with
conformal mapping of univalent functions. Other subclasses of T have been studied by
Gupta and Jain [3], [4] and Silverman [1], [5].

In this paper we consider the following subclass Ht,α(β) of T :

Definition 1.1. A function f(z) = z−

∞
∑

n=2

|an|z
n is said to be in Ht,α(β) (0 ≤ α < 1,

0 ≤ β < 1, 0 < t ≤ 1), if there exists a function g ∈ T ∗, with

g(z) = z −

∞
∑

n=2

|bn|z
n

such that for z ∈ E

(1.1) ℜ

{

tzf ′(z) + (1 − t)z (zf ′(z))
′

αg(z) + (1 − α)zg′(z)

}

> β.

Evidently, H1,1(β) = K∗
β , the class of close-to-convex functions of order β introduced

in [6]. Note also that H1,0(β) = R∗
β and H0,1(β) = L∗

β .

In the sequel we write

(1.2) Jt,α(f, g, z0) =
1

1 − β

{

tz0f
′(z0) + (1 − t)z0(zof

′(z0))
′

αg(z0) + (1 − α)z0g′(z0)
− β

}

.

2. Some results about the class Ht,α(β).

Lema 2.1. Let f ∈ Ht,α(β) be given by (1.1). Then,

min
|z|≤r<1

ℜJt,α(f, g, z) = Jt,α(f, g, r).

The proof is standard.
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Theorem 2.1. Let f(z) ∈ Ht,α(β) be given by (1.1). Then, for 0 < r < 1,

(2.1)

t

∞
∑

n=2

[n|an| − (α + n(1 − α))|bn|] r
n−1

1 −
∞
∑

n=2

(α + n(1 − α))|bn|r
n−1

+

+(1 − t)

∞
∑

n=2

[n2|an| − (α + n(1 − α))|bn|]r
n−1

1 −
∞
∑

n=2

(α + n(1 − α))|bn|r
n−1

< 1 − β

when 0 ≤ α ≤ 1, 0 ≤ t ≤ 1. The estimate (2.1) is also sufficient for f to be in Ht,α(β).

Proof. If f ∈ Ht,α(β), then Jt,α(f, g, r) > 0 for 0 < r < 1, which is equivalent to
(2.1). If, on the other hand, (2.1) holds for every r < 1, then from Lemma 2.1 it follows
that f ∈ Ht,α(β).

Remark A. If

∞
∑

n=2

n|an| < 1,

∞
∑

n=2

n|bn| < 1 and

∞
∑

n=2

n2|an| < ∞, then Jt,α(f, g, r) is

continuous at r = 1 and (2.1) may be replaced by

(2.2)

∞
∑

n=2

(

tn + (1 − t)n2
)

|an| − β

∞
∑

n=2

(α + (1 − α)n) |bn| ≤ 1 − β.

Remark B. In [1] it was shown that

∞
∑

n=2

|bn| ≤
1

2
for g ∈ T ∗, so that

(2.3)

∞
∑

n=2

(

tn + (1 − t)n2
)

|an| ≤ 1 − β +
β(2 − α)

2
= 1 −

αβ

2
.

In fact, (2.3) is a necessary condition for f to be in Ht,α(β) and we could always take

g(z) = z −
1

2
z2 and (2.3) would also be sufficient.

Theorem 2.2. Let f ∈ Ht,α(β) be given by (1.1). Then,

an ≤ An =
αβ + (1 − αβ)n

n2 [t + (1 − t)n]
.

The result is sharp for every n, with equality for

f(z) = z − Anzn

and g ∈ T , with g(z) = z −
1

n
zn.

Proof. By (2.2) we have

(

tn + (1 − t)n2
)

|an| ≤ 1 − β + β (α + (1 − α)n) |bn| ≤
αβ + (1 − αβ)n

n
and, hence,

|an| ≤
αβ + (1 − αβ)n

n2 [t + (1 − t)n]

where we have used the fact that |bn| ≤
1

n
[1].
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Theorem 2.3. If f ∈ Ht,α(β), then

(2.4) r −
(2 − αβ)

4(2 − t)
r2 ≤ |f(z)| ≤ r +

(2 − αβ)

4(2 − t)
r2, |z| ≤ r

(2.5) 1 −
(2 − αβ)

2(2 − t)
r ≤ |f ′(z)| ≤ 1 +

(2 − αβ)

2(2 − t)
r, |z| ≤ r.

Equality holds in all cases for

f(z) = z −
2 − αβ

4(2 − t)
z2.

Proof. From (2.3) we have

(4 − 2t)

∞
∑

n=2

|an| ≤

∞
∑

n=2

n {t + (1 − t)n} |an| ≤
2 − αβ

2

which gives

(2.6)

∞
∑

n=2

|an| ≤
2 − αβ

4(2 − t)
.

Thus,

|f(z)| ≤ r +
2 − αβ

4(2 − t)
r2.

Also

|f(z)| ≥ r −

∞
∑

n=2

|an|r
n ≥ r −

(2 − αβ)

4(2 − t)
r2

where we have used (2.6). Hence, (2.4) follows.
Further,

|f ′(z)| ≤ 1 +

∞
∑

n=2

n|an||z|
n−1 ≤ 1 + r

∞
∑

n=2

n|an|

and

|f ′(z)| ≥ 1 −
∞
∑

n=2

n|an||z|
n−1 ≥ 1 − r

∞
∑

n=2

n|an|.

Again from (2.3) we obtain
∞
∑

n=2

n|an| ≤
2 − αβ

2(2 − t)

and (2.5) follows.
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