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An equivalence relation in the set of all square binary matrices is described in this
paper. It is discussed a combinatoric problem about finding the cardinal number and
the elements of the factor set according to this relation. We examine the possibility
to get some special elements of this factor set. We propose an algorithm, which solves
these problems. The results we have received are used to describe the topology of the
different weaving structures.

1. Introduction. The present paper develops the ideas in the papers [8] and [3] and
in that sense it is an extention of them.

As we know [9, 10], the interweaving of the fibres in certain weaving structure can be
coded using square binary (or (0,1), or boolean) matrix, i.e. all elements of this matrix
are 0 or 1. The fabric represented by this matrix exists if and only if in each row and in
each column of the matrix there is at least one zero and at least one one. Two different
matrices correspond to the same weaving structure if and only if one matrix is obtained
from the other one by several consecutive cycle moves of the first row or column to the
last place.

Let n be a positive integer. Let us denote by B,, the set of all n x n binary matrices,
and by Q,, the set of all n xn binary matrices which have at least one 1 and one 0 in every
row and every column. It is obvious, that Q, C B,. About the necessary definitions
from the theory of matrices we refer [11] and [13]. Tt is not difficult to see, that

(1) B =2
If A= (a;j) € By, then AT = (a;;), 1 <i,j < n denotes the transposed matrix A.
We are interested in the subset P, C 9, of all permutating matrices, i.e. binary
matrices which have exactly one 1 in every row and column. As it is well known [13],

the set P,, together with the operation multiplication of matrices is a group, isomorphic
to the symmetric group S,,, i.e. the set
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(2) Sn:{(; 2 TL)‘1gik§n,k=1,2,...,n,ik7éilfork7él}

iy dg e ip
of all one to one maps of the set {1,2,...,n} to itself. If M € P,, and the corresponding
2 ... n
iy e ip
one 1 in the first row of M to be on the i1-st place, the 1 in the second row of M to be
on the is-nd place, and so on, the 1 in the n-th row of M to be on the i,-th place.

LettE{l,Q,...,n}andletp<1 20 b .n)GSn. We denote

element in this isomorphism is € Sy, then this means that the only

in Gy e Qg e in
(t)p = i the image i; of the number ¢ by the map p. For arbitrary pi,p2 € S, by
definition (t)p1p2 = ((t)p1)p2 (see [11]).

As it is well-known [13], if we multiply n X n matrix A from the right with per-
mutational matrix M € P,, then this is the same as changing the columns of A.
And if the corresponding element of M € P, in the above-described isomorphism is

1 2 .- e .

( P Zn € S, then after the multiplication we get a matrix with k column
112 g

equal to i; column of A, k = 1,2,...,n. Analogously, when we want to exchange the

rows we multiply A from the left with M7,

Identity element of the group P, is the identity matrix E,, consisting of 1’s in the
leading diagonal and zeros everywhere else. The identity element of the group S, is the
element ( b2 )

1 2 .. n )2

We say that the binary n x n matrices A and B are equivalent and we write A ~ B, if
one of the matrix can be transformed by the other after several consecutive cycle moves
of the first row or column to the last place. In other words, if A,B € Q,, and A ~ B,
then with the help of these matrices we code the same weaving structure (fabric). It is
obvious that this relation in the set B, is an equivalence relation. The equivalence class
according to the relation ~ with the matrix A we denote by A, and the sets of equivalence
classes in B,, and Q,, (factor set) according to ~, by B,, and Q,,. We consider that B,, and
Q,, are described if there is a representative of each equivalence class. The equivalence
classes of B,, by the equivalence relation ~ are particular kind of double coset (see [5]
§1.7, or [12] v. 1, ch. 2, §1.1). They make use of substitution groups theory ([6] §1.12,
§2.6) and linear representation of finite groups ([4] §§44—45).

We call the elements of Q,, interweavings. In that case the number n is called repeating
of the interweavings of Q,,. These notions are taken from the Interweaving-knowing - the
science which examines the design, physical and mechanical properties of the different
interweavings of the fibres after the given textile structure is weaved.

It is naturally to arise a lot of combinatoric problems which take place in practice in
the weaving industry, connected with the different subsets of Q,,, i.e. with the different
classes of interweavings. We examine some of these classes in the present paper.

2. Some classes of interweavings. It is easy to see, that if A € P, and B ~ A,
then B € P,. Interweavings whoose representatives are elements of the set P,, of all
permutational matrices, are called primary interweavings. A formula and an algorithm
to calculate the number of all primary interweavings with a random repetition n are
given in [7, 10].
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We examine the matrix

01 0 0
0 1 0
(3) P=1 1 0 | =(pij) €Pn
000 -+ 1
100 --- 0
where p1o =p23 =+ =pjiy1 =+ = Pn—1n = Pn1 = 1 and these are the only 1’s in P,

and all the other elements are zeros. In the above described isomorphism of the group
of permutational matrices with the symmetric group, the matrix P corresponds to the
element
1 2 3 - n—1 n

) 7T‘(234--. n 1)68”'

It is not difficult to calculate that P! # E, when 1 <t < n, P" = E,,, where E,, is
the identity matrix of order n and P**t™ = P* for every natural number k.

Let A € B,, and let

and

It is easy to prove [13] that the first row of B is equal to the second row of A, the
second row of B is equal to the third row of A and so on, the last row of B is equal to
the first row of A, i.e. the matrix B is obtained from the matrix A by moving the first
row to the last place, and the other rows are moved one level upper.

Analogously, we convince that C' is obtained from from A by moving the last column
to the first place, and the other column move one position to the right.

Having in mind what is described above, it is easy to prove the following:

Lemma 1. Let A, B € B,,, then A ~ B if and only if there exist natural numbers k, 1,
so that
A= P*BP',
where P is the matriz given by the formula (3). From the equality P"t = Pt it follows

that for each natural number t, is enough to find the numbers k and | in the interval
[0,n —1].

Corollary 1. Each equivalence class of B, according to the relation ~ contains no
more than n? elements.

Corollary 2. All elements of the given equivalence class of By, according to the relation
~ can be placed in a s X t rectangular table, where s and t are divisors of n.

We use some matrix operations similar to transposition of matrix.
Let

ai1 aiz2 -+ QAin
a1 Qa2 -+ A2n

(5) A= . . . €B,
Gp1 Anp2 *° Ann
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If A is a square binary matrix, represented by the formula (5), then by definition

A1n Alpn—1 - Q11
g azn AaA2p—1 - G21

(6) A” = ,
Ann QApn—1 *°° Qan1

i.e. A® is obtained from A as the last column of A becomes the first, the column before
last - second and so on, the first column becomes last. In other words, if A = (a;;), then
AS = (ain—j+1), 1 <i4,5 <n.

It is obvious that

(45)% = A,

We say, that the matrix A € B,, is a mirror image of the matrix B € B,,, if AS = B.

It is easy to see, that if the matrix A is a mirror image of the matrix B, then B is a
mirror image of A, i.e. the relation “mirror image” is symmetric.

In the general case A # A, If A= B and B = C¥, then in the general case we have
A=DB%= (CS )S = (C # C®. Therefore, the relation ”mirror image” is not reflexive and
is not transitive.

We consider the matrix

0 0 0 0 1
0 0 01 0
(7) s=1020 100 = (si;) € Pn,
10 --- 0 0 0
where for each i =1,2,...,n S;p—s41 =1 and s;; =0 as j # n —1 + 1. According to

the above described isomorphism of the group of permutational matrices with symmetric
group, the matrix S corresponds to the element

®) o= (h 2 ) esn

n n—1 n-2
Obviously, S is a symmetric matrix, i.e. ST = S. We check directly that S? = E,,.
It is not difficult to see [13], that for each A € B,, e.g.
(9) AS = AS.

Lemma 2. If P and S are the matrices given by the formulas (3) and (7), then for
each 1 =10,1,2,...,n—1 the following is true:
(10) PlS = spnt

Proof. Let us denote by & and & the operations corresponding to addition and
subtraction in the ring Z, = {1,2,...,n = 0} of the remainders modulus n. If 7 € S,
and o € §,, are elements corresponding to the matrices P € P, and S € P, by the
isomorphism of the groups P, and S,, described by the formulas (4), (8), (3) and (7),
then for each t =1,2,...,n:

(11) t)r=t®d1 (by definition)
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(12) (tlo=n@let (by definition)

We prove by induction, that for each positive integer [
(13) Wt =tel
If | = 1, then the proposition follows from (11). Let the equation (t)7! =t @ [ be true.
Then, we get ()7t = ((t)n!)mr = (t ® )7 =t @1 @ 1, and it follows that the equation
(13) is true for every positive integer [.

Using the equations (11), (12) and (13) we get:

t)rlo = ()n)o=(t@l)o=n®lotol)=n®l1otol

(Yo"t = (()o)m" ! = (n@l1ot)r" ! = (n@1ot)d(n—1) = 2nd1otol = n@1otol.

The last equation is true, because 2n = n = 0 (mod n). We see, that (t)7lc =
(t)or™~! for every t = 1,2,...,n and therefore, 7'c = on"~!. Having in mind the
isomorphism of the groups S,, and P,, we get that the proposition in the lemma is
true. O

Theorem 1. If A~ AS and B ~ A, then B ~ B”.

Proof. Since B ~ A, according to Lemma 1 there exist k,1 € {1,2,...,n}, such that
B = P*AP'. Applying Lemma 2, we get BS = PFAP'S = P*ASP™! and then it
follows that BS ~ AS, i.e. according to (9), B ~ A%. But A% ~ A ~ B and because
of the transitiveness of the relation ~, we get BS ~ B= B~ B%. [0

Theorem 1 gives us a rise to give the following definition:

Definition 1. Let A € Q,,. We say that A is a representative of self-mirrored
image (or mirror image to itself) interweaving, if A ~ AS.

Let us denote the set M,, C Q,, including all self-mirrored interweavings with repe-
tition equal to n.

For arbitrary A € BB,, we define the operation

ain agn Ann
Alp—1 A2n—-1 ' QApn-1

(14)  Af = . . . = (AS)T:(AS)T:STATZSAT
aii a1 an1

In other words, the matrix A% is received from matrix A by 90° clockwise rotating.
Obviously,
=\ R
(((AR)R) ) = A

Lemma 3. If P is a binary matriz, defined by the formula (3), then
PT _ Pnfl

In the general case A #£ A.

for each 4,5 €

Proof. If P = (p;;) and PT = (pij), then by definition pi; = pji
1,2,...,n there is

{1,2,...n}. Let PPT = Q = (¢;j) € Pn. Then, for each i =
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n n

Qii = Zpikpﬁm = Zp?k =(n—1)0+1 =1 and it is the unique one in ith row of the
k=1 k=1

matrix Q = PPT. Therefore, PPT = E,,, where E,, is the identity matrix. We multiply

from the left the two sides of the last equation with P"~! and having in mind, that

P" = E,, we get P"~'PPT = P"~1F,  and then finally we get, that PT = P*~1. [

Theorem 2. If A~ A" and B ~ A then B ~ BE.

Proof. B ~ A, hence according to the Lemma 1 there exist natural numbers k
and [, such that B = P*¥AP'. If we apply Lemma 2 and Lemma 3, we get B? =
SBT — S(PkAPl)T — S(PT)IAT(PT)k — S(Pn—l)lAT(Pn—l)k — SPnl—lATPkn—k —
SPrtAT pr—k — plgAT pr=Fk  Therefore, B ~ AR~ A~ B. [

Theorem 2 allows us to give the following definition:

Definition 2. Let A € Q,,. If A ~ AR then we say that A is a representative of
rotation stable interweaving.

Let us denote the set R,, C O, of all the rotation stable interweavings with repetition
equal to n.

The rotation stable interweavings play important role in practice. That means, if
a fabric is weaved which weaving structure is coded with a matrix, representative of
rotation stable interweaving, then this fabric have the same operating characteristics
(except of course the color) after a rotation by 90°.

3. Quantity evaluation of the sets of all self-mirrored and all rotation stable
interweavings with given repetition n. In [3] it is described a representation of the
elements of B, using ordered n-tuples of natural numbers < ki, ko,...,k, >, where
0<k; <2"—-1,9i=1,2,...,n. The one to one corresponding is based on the definite
representation of the natural numbers in binary number system, i.e. the number k; in
binary number system (having eventually some 0’s at the beginning) is the ith row of
the corresponding binary matrix. In [3] is proved that using this representation there
are faster and saving memory algorithms. Having this in mind, we create an algorithm,
which finds just one representative of each equivalence class to the factor sets Q,,, M,
and R,. And the representative we receive is the minimal of the equivalence class with
regard to the lexicographic order, this order is naturally brought in the set N™ of all
ordered n-tuples of whole nonnegative numbers. Therefore, we get an algorithm to solve
the combinatorial problem to find the number of the equivalence classes in the sets 9,
M., and R, relevant to the relation ~ with given natural number n.

The matrices P and S given by the formulas (3) and (7) are coded using ordered
n-tuples as follows:

(15) P o o(2n72 9n=3 2l 20 on—ly
(16) S o (20,2122 on—2 on—l)

In some programming languages (for example C, C++, Java [3, 8]) the number 2 = 2F
is calculated using the operation bitwise shift left “<<” and the operator (statement)
r=1<<k.

In [3] it is defined the operation logical multiplication of two binary matrices, which
we denote by “«”. Let A = (a;;) and B = (b;;) be matrices of B,,. Then,

(17) A*BZCZ(Cij)EBn
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and by definition for each i,j € {1,2...,n},

n
(18) cij = \/ (aix & bi),
k=1
where we denote by & and V the operations conjunction and disjunction in the boolean
algebra B, (&, V).

Analogously to the classical proof that the operation multiplication of matrices is
associative (see for example. [11]) it is proved that the operation logical multiplication
of binary matrices is associative. Therefore, B,, with the entered operation logical multi-
plication is monoid with identity — the identity matrix F,,. However, P, is not a trivial
subgroup of this monoid.

In [3, 8] it is described an algorithm, which need O(n?) operations to perform the
operation logical multiplication of two binary matrices, which are represented by us-
ing ordered n-tuple. But to get the product of two matrices according to the classical
definition we need O(n?) operations.

If the binary matrix A is represented using the ordered n-tuple of numbers, then to
check whether A belongs to the set Q,, C B,, we can use the following obvious proposition:

Lemma 4. Let A € B,, and let A be represented by the ordered n-tuple (k1,ka, ..., kn),
where 0 < k; <2"—1,i=1,2,...,n and let us denote by | and & the operations bitwise
“or” and bitwise “and” (to get detailed definitions see for example [1], [2] or [8]). Then:

(i) The number k;, i =1,2,...,n represents row of 0’s if and only if k; = 0;

(it) The number k;, i = 1,2,...,n represents row of 1’s if and only if k; = 2" — 1;

(4i1) j-th column of A contains only 0’s if and only if

(k1) ko| | kn)&2? =0;

(iv) j-th column of A contains only 1’s if and only if
(k1 & ko & -+ & k) & 27 # 0.

The algorithm, just described is based on the following propositions:
Lemma 5. If A€ B,,, B € P,, then
AxB=AB
and
Bx A= BA.

Proof. Let A = (a;5), B = (bi;), U = Ax B = (u;;) and V = AB = (v;5),
i,7=1,2,...,n. Let the unique 1 in the j-th column of B € P, is on the s-th place, i.e.
bs; =1 and by; = 0 when k # s. Then, by definition

n 1 for a;s=1
uij = \/ (air & bij) = { 0 for as =0
k=1

and
n

1 for a;s=1
vij = Z(aikbkj) - { 0 for a;s=0
k=1
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Therefore, u;; = v;; for each i,j € {1,2,...,n}.
Analogously it can be proved, that Bx A= BA. O

Lemma 6. Let A € B,, be represented by using ordered n-tuple < k1, ko, ..., k, > and
let A be a minimal element of the equivalence class corresponding to the lexicographic
order in N™. Then, k1 < ki for each t =2,3,...,n.

Proof. We assume that there exists t € {2,3,...,n} such that k& < ky. Then, if
we move the first row on the last place t — 1 times, we get a matrix A’ € B,,, such as
A’ ~ A and A’ is represented using the n-tuple < k¢, k¢a1, ..., kn, k1,. .., ke—1 >. Then,
obviously A’ < A according to the lexicographic order in N™, which runs counter to the
minimum of A in the equivalence class A. O

We can propose the following generalized algorithm to obtain just one representative
of each equivalence class in the factor sets Q.,, M,, and R,

Algorithm 1.

1. Generating all ordered n-tuples of natural numbers < ki, ko, ..., k, > such that
1<k <2"—-2and k1 <k;ast1=2,3,...,n;

2. Check whether the elements obtained in 1. belong to the set Q,, according to the
Lemma 4 (iii) (iv) (cases (i) and (ii) we reject when we generate the elements in
point 1 according to the Lemma 6);

3. Check whether the element, obtained in point 2. _is minimal in the equivalence class.
According to Lemmas 1 and 5 A is minimal in A if and only if A < P¥x Ax P for
each k,1 € {0,1,...,n — 1}, where P is the matrix represented by n-tuple (15);

4. Check whether the elements obtained in point 3. belong to the set M,, according
to Definition 1 and apply Lemmas 1 and 5;

5. Check whether the elements obtained in point 3. belong to the set R, according
to Definition 2 and apply Lemmas 1 and 5.

The results of the Algorithm 1 for are presented in the next table:

n 2 3 4 5

|0, 1| 14 | 1446 | 705 366

M| || 1] 2 | 142 1302

[Ral || 1] 2 18 74

When n > 6, then too large values are got (see (1)) and to avoid ”overloading” it is
necessary to be used some special programming techniques which is not the task in this
report.
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MATEMATUYECKO MOJIEJIMPAHE IIPU JU3AMHA HA ThKAYHU
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CTPYKTVYPU

Kpacumup ﬂopgmeB, Xpuctuna Kocragunaosa

B pabGorara ce pa3sriex/ja e/{Ha peJialis Ha eKBHBAJIEHTHOCT B MHOXKECTBOTO OT BCHY-
K1 KBaJparHu bunapHu Marpuiy. ObcbaeHa e KOMOMHATOPHATA 33/1a49a 33 HAMUPaHe
MOII[HOCTTA ¥ eJIEMEHTHTe Ha (HPaKTOPMHOKECTBOTO OTHOCHO Ta3H peJiaius. Pasrire-
JlaHa € ¥ BBb3MOXKHOCTTA 3a IOJydJaBaHe Ha HSKOW CIEIUAJHU €JIEMEHTH Ha TOBAa
dakropmuOKecTBO. IIpeaioxkeH e asropuTbM 3a perniaBaHe Ha IIOCTABEHUTE 3a/atu.
[Tosy4yennre B craTusTa PE3yITaTH HAMHUPAT IIPUJIOXKEHHE IIPH OIMHCAHUETO TOIOJIO-
IUATA HA PA3JIUIHUTE ThKAYHU CTPYKTYDH.



