ON SOME JACOBI SERIES*

Georgi Boychev

The paper presents properties of some Jacobi series.

Suppose that $\alpha+1, \beta+1$ and $\alpha+\beta+2$ are not equal to $0,-1,-2, \ldots$ The polynomials $\left\{P_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ defined by equalities

$$
P_{n}^{(\alpha, \beta)}(z)=\binom{n+\alpha}{n} F\left(-n, n+\alpha+\beta+1, \alpha+1 ; \frac{1-z}{2}\right), \quad n=0,1,2, \ldots ; z \in \mathbb{C},
$$

where \mathbb{C} is the complex plane and $F(a, b, c ; \zeta)$ is Gauss hypergeometric function, are called Jacobi polynomials with parameters α and β. The functions $\left\{Q_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ defined by equalities

$$
\begin{gathered}
Q_{n}^{(\alpha, \beta)}(z)=\frac{2^{n+\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{\Gamma(2 n+\alpha+\beta+2)(z-1)^{n+1}} F\left(n, n+\alpha+1,2 n+\alpha+\beta+2 ; \frac{2}{1-z}\right), \\
n=0,1,2, \ldots ; \quad z \in G=\mathbb{C} \backslash[-1,1]
\end{gathered}
$$

are called Jacobi associated functions.
Let $\omega(z)$ be that inverse of Zhukovskii function in the region G for which $|\omega(z)|>1$. Then, in the region G the Jacobi polynomials and Jacobi associated functions have respectively the representations $(n \geq 1)$ [1, Chapter III, (1.9), (1.30)]

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(z)=P^{(\alpha, \beta)}(z) n^{-\frac{1}{2}}[\omega(z)]^{n}\left\{1+p_{n}^{(\alpha, \beta)}(z)\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{(\alpha, \beta)}(z)=Q^{(\alpha, \beta)}(z) n^{-\frac{1}{2}}[\omega(z)]^{-n-1}\left\{1+q_{n}^{(\alpha, \beta)}(z)\right\} \tag{2}
\end{equation*}
$$

where $P^{(\alpha, \beta)}(z) \neq 0, Q^{(\alpha, \beta)}(z) \neq 0,\left\{p_{n}^{(\alpha, \beta)}(z)\right\}_{n=1}^{+\infty}$, and $\left\{q_{n}^{(\alpha, \beta)}(z)\right\}_{n=1}^{+\infty}$ are holomorhpic functions in the region G.

If $n \rightarrow+\infty$, then

$$
\begin{equation*}
p_{n}^{(\alpha, \beta)}(z)=O\left(n^{-1}\right) \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
q_{n}^{(\alpha, \beta)}(z)=O\left(n^{-1}\right) \tag{4}
\end{equation*}
$$

\]

uniformly on every compact subset of G.
We call the series of the kind

$$
\begin{equation*}
\sum_{n=0}^{+\infty} a_{n} P_{n}^{(\alpha, \beta)}(z) \tag{5}
\end{equation*}
$$

Jacobi series.
If

$$
0<r^{-1}=\lim _{n \rightarrow+\infty} \sup \left|a_{n}\right|^{\frac{1}{n}}<1,
$$

then the series (5) is absolutely and uniformly convergent on every compact subset of the region $E(r)=\left\{z \in \mathbb{C}:|z+1|+|z-1|<r+r^{-1}\right\}$ and divergent in $\mathbb{C} \backslash \overline{E(r)}$ [1, (IV.1.1),(b)]. Let $\gamma(r)=\partial E(r)$ for $r>1$.

Theorem 1 [1, (V.1.3)]. Let $f(z)$ be a complex function holomorphic in $E(R)$, where $R>1$. Then, the function $f(z)$ is representable in $E(R)$ by a series of the kind (1), i.e. $f(z)=\sum_{n=0}^{+\infty} a_{n} P_{n}^{(\alpha, \beta)}(z), z \in E(R)$, with coefficients

$$
a_{n}=\frac{1}{2 i \pi I_{n}^{(\alpha, \beta)}} \int_{\gamma(r)} f(\varsigma) Q_{n}^{(\alpha, \beta)}(\varsigma) d \varsigma, 1<r<R, n=0,1,2, \ldots,
$$

where

$$
I_{n}^{(\alpha, \beta)}=\left\{\begin{array}{ll}
\frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}, & n=0 \\
\frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{(2 n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n++\alpha+\beta+1)}, & n \geq 1
\end{array} .\right.
$$

Now we shall prove the following
Theorem 2. Let $1<R<+\infty, \alpha, \beta, \alpha+\beta+1 \neq-1,-2, \ldots$ and $f(z)$ be a complex function holomorphic and bounded in the region $E(R)$. Let $\left\{S_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ be the partial sums of Jacobi's series, representing the function $f(z)$ in $E(R)$. Then,

$$
\begin{equation*}
S_{n}^{(\alpha, \beta)}(z)=O(\ln n), \quad n \rightarrow+\infty, \quad z \in E(R) . \tag{6}
\end{equation*}
$$

Proof. Let M be a constant for which

$$
\begin{equation*}
|f(z)| \leq M, \quad z \in E(R) \tag{7}
\end{equation*}
$$

We assume that $r \in \Delta(R)=\left[\frac{R+1}{2}, R\right)$.
160

Using (1) and (2) it is easy to prove that

$$
\begin{aligned}
S_{n}^{(\alpha, \beta)}(z)= & \frac{1}{2 \pi i} \int_{\gamma(r)} \frac{1-[\omega(z) / \omega(\varsigma)]^{n}}{\varsigma-z} f(\varsigma) d \varsigma \\
& +\frac{1}{2 \pi i} \int_{\gamma(r)} \frac{D^{(\alpha, \beta)}(\varsigma, \varsigma)-D^{(\alpha, \beta)}(z, \varsigma)}{\varsigma-z}[\omega(z) / \omega(\varsigma)]^{n} f(\varsigma) d \varsigma \\
& -\frac{1}{2 \pi i} \int_{\gamma(r)} \frac{\delta_{n}^{(\alpha, \beta)}(z, \varsigma)}{\varsigma-z}[\omega(z) / \omega(\varsigma)]^{n} f(\varsigma) d \varsigma=J_{n, 1}+J_{n, 2}-J_{n, 3}
\end{aligned}
$$

where $D^{(\alpha, \beta)}(z, \varsigma)$ and $\left\{\delta_{n}^{(\alpha, \beta)}(z, \varsigma)\right\}_{n=1}^{+\infty}$ are complex-valued functions holomorphic in the region $G \times G$. Moreover, $D^{(\alpha, \beta)}(z, z) \equiv 1$ and $\delta_{n}^{(\alpha, \beta)}(z, z) \equiv 0(n=1,2, \ldots)$ in G.

Using (3) and (4) it is not difficult to prove that

$$
(z-\varsigma) \delta_{n}^{(\alpha, \beta)}(z, \varsigma)=O\left(n^{-1}\right)(n \rightarrow+\infty)
$$

uniformly on every compact subset of $G \times G$. Then we have

$$
\left|J_{n, 3}\right| \leq K_{1} n^{-1} \int_{\gamma(r)}|f(\varsigma)||d \varsigma| \leq K_{1} n^{-1} M \int_{\gamma(r)}|d \varsigma| \leq K_{2} n^{-1}
$$

where K_{1} and K_{2} are constants, which do not depend on r and n. Hence,

$$
\begin{equation*}
J_{n, 3}=O\left(n^{-1}\right)(n \rightarrow+\infty) \tag{8}
\end{equation*}
$$

uniformly with respect to $r \in \Delta(R)$.
It is easy to prove that for $|\omega(z)|,|\omega(\zeta)| \in \Delta(R)$, we have that

$$
\left|\frac{D^{(\alpha, \beta)}(\varsigma, \varsigma)-D^{(\alpha, \beta)}(z, \varsigma)}{\varsigma-z}\right| \leq K_{3}
$$

where K_{3} is constant. Then,

$$
\left|J_{n, 2}\right| \leq \frac{1}{2 \pi} K_{3} \int_{\gamma(r)}|f(\varsigma)||d \varsigma| \leq \frac{1}{2 \pi} K_{3} M \int_{\gamma(r)}|d \varsigma| \leq r K_{3} M \leq R K_{3} M
$$

From this inequality it follows that

$$
\begin{equation*}
J_{n, 2}=O(1) \quad(n \rightarrow+\infty) \tag{9}
\end{equation*}
$$

uniformly with respect to $r \in \Delta(R)$.
For the integral $J_{n, 1}$ we have the representation

$$
J_{n, 1}=\frac{1}{2 \pi i} \int_{\gamma(r)} \frac{\omega(\varsigma)-\omega(z)}{\varsigma-z} \frac{1-[\omega(z) / \omega(\varsigma)]^{n}}{\omega(\varsigma)-\omega(z)} f(\varsigma) d \varsigma
$$

Obviously the function $[\omega(\varsigma)-\omega(z)] /(\varsigma-z)$ is bounded for $|\omega(\varsigma)|,|\omega(z)| \in \Delta(R)$. Let $F(\zeta, z)=\frac{\omega(\varsigma)-\omega(z)}{\varsigma-z} f(z)$. Then, using (7) we get that $|F(\zeta, z)| \leq K_{4}$, where K_{4} is a constant.

Let $\omega(z)=r \exp i \theta$, where $\theta \in[-\pi, \pi]$ and $r \in \Delta(R)$. Putting $\omega(\zeta)=r \exp i \tau$ $(\tau \in[-\pi+\theta, \pi+\theta], r \in \Delta(R))$, we obtain that

$$
J_{n, 1}=\frac{1}{2 \pi} \int_{-\pi+\theta}^{\pi+\theta} F_{1}(\tau, \theta) \frac{1-\exp (i n(\tau-\theta))}{1-\exp (i(\tau-\theta))}\left(1-r^{-2} \exp (-2 i \tau)\right) d \tau
$$

where $F_{1}(\tau, \theta)=F\left[\left(\omega(\zeta)+\omega^{-1}(\zeta)\right) / 2,\left(\omega(z)+\omega^{-1}(z)\right) / 2\right]$ is a periodical function with respect to τ and θ. Using substitution $t=\theta-\tau$ in integral $J_{n, 1}$ we get

$$
J_{n, 1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{1}(\theta-\tau, \theta) \frac{1-\exp n t i}{1-\exp t i}\left[r^{-2} \exp 2 i(t-\tau)-1\right] d t
$$

Obviously, $\left|F_{1}(\tau, \theta)\right| \leq K_{4}$. Then, using the inequality $r>1$ we obtain that

$$
\left|J_{n, 1}\right| \leq K_{5} \int_{-\pi}^{\pi} \frac{|\sin (n t / 2)|}{|\sin (t / 2)|} d t \leq K_{6} \int_{0}^{\pi / 2} \frac{|\sin n u|}{\sin u} d u
$$

where K_{5} and K_{6} are constants.
Let $I=\int_{0}^{\pi / 2} \frac{|\sin n u|}{\sin u} d u$. Then $I=\int_{0}^{1 / n} \frac{\sin n u}{\sin u} d u+\int_{1 / n}^{\pi / 2} \frac{|\sin n u|}{\sin u} d u=I_{1}+I_{2}$.
Using the inequality $|\sin n u| \leq n \sin u$ we obtain that $I_{1} \leq n \int_{0}^{1 / n} d u=1$. Therefore,

$$
\begin{equation*}
I_{1}=O(1)(n \rightarrow+\infty) \tag{10}
\end{equation*}
$$

Using that $\sin u \geq 2 u / \pi$ for $u \in(0, \pi / 2)$, we get

$$
I_{2} \leq \frac{\pi}{2} \int_{1 / n}^{\pi / 2} \frac{|\sin n u|}{u} d u \leq \frac{\pi}{2} \int_{1 / n}^{\pi / 2} \frac{1}{u} d u=\frac{\pi}{2}\left(\ln \frac{\pi}{2}-\ln \frac{1}{n}\right)=\frac{\pi}{2}\left(\ln \frac{\pi}{2}+\ln n\right) .
$$

Hence,

$$
\begin{equation*}
I_{2}=O(\ln n)(n \rightarrow+\infty) \tag{11}
\end{equation*}
$$

From (10) and (11) it follows that

$$
\begin{equation*}
J_{n, 1}=O(\ln n)(n \rightarrow+\infty) \tag{12}
\end{equation*}
$$

Using asymptotic formulas (12), (9) and (8), we get the asymptotic formula (6) for these z for which $|\omega(z)| \in \Delta(R)$. Then, it is not difficult to prove that (6) is valid for every $z \in E(R)$. Thus Theorem 2 is proved.

As a corollary of Theorem 2 we can state the following proposition:
Theorem 3. Let $1<R<+\infty, \alpha, \beta, \alpha+\beta+1 \neq-1,-2, \ldots$ and $f(z)$ be a complex function holomorphic and bounded in the region $E(R)$. Let $\left\{S_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ be the partial 162
sums of the Jacobi series, representing the function $f(z)$ in $E(R)$. If

$$
\sigma_{n}^{(\alpha, \beta)}(z)=\frac{1}{n+1} \sum_{j=0}^{n} S_{j}^{(\alpha, \beta}(z) \quad(n=0,1,2, \ldots)
$$

then $\left\{\sigma_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ are bounded in the region $E(R)$.
Conversely, if $\left\{\sigma_{n}^{(\alpha, \beta)}(z)\right\}_{n=0}^{+\infty}$ are bounded in the region $E(R)$, then $f(z)$ is bounded in $E(R)$.

REFERENCES

[1] P. Russev. Classical Orthogonal Polynomials and Their Associated Functions in Complex Plane. Sofia, 2005.

Georgi S. Boychev
42, Irechek Str.
6000 Stara Zagora, Bulgaria
e-mail: GBoychev@hotmail.com

ВЪРХУ НЯКОИ РЕДОВЕ НА ЯКОБИ

Георги С. Бойчев
Настоящата статия съдържа свойства на някои редове на Якоби.

[^0]: *2000 Mathematics Subject Classification: 33C45, 40G05.
 Key words: Jacobi polynomials, Jacobi series.
 The second author is partially supported by the Research Sector of FMI-SU, contract number: 028/2009.

