ON AFFINE CONNECTIONS IN A RIEMANNIAN MANIFOLD WITH A CIRCULANT METRIC AND TWO CIRCULANT AFFINOR STRUCTURES*

Iva Dokuzova, Dimitar Razpopov

In the present paper it is considered a class V of 3-dimensional Riemannian manifolds M with a metric g and two affinor tensors q and S. It is defined another metric \bar{g} in M. The local coordinates of all these tensors are circulant matrices. It is found: 1) a relation between curvature tensors R and \bar{R} of g and \bar{g}, respectively; 2) an identity of the curvature tensor R of g in the case when the curvature tensor \bar{R} vanishes; 3) a relation between the sectional curvature of a 2 -section of the type $\{x, q x\}$ and the scalar curvature of M.

1. Introduction. In this paper we investigate the class V of manifolds admitting an additional structure q, such that it's cube degree is the identity. In the basic manifold M the metric g is positively defined and q is a parallel structure with respect to the affine connection ∇ of g. By g and q we construct another metric f which is non-degenerate. By f we obtain an affine connection $\bar{\nabla}$. Our main problem is to find a subclass of V, such that $\bar{\nabla}$ is a locally flat connection.

We consider a 3 -dimensional Riemannian manifold M with a metric tensor g and two affinor tensors q and S such that: their local coordinates form circulant matrices. So these matrices are as follows:

$$
g_{i j}=\left(\begin{array}{lll}
A & B & B \tag{1}\\
B & A & B \\
B & B & A
\end{array}\right), \quad A>B>0
$$

where A and B are smooth functions of a point $p\left(x^{1}, x^{2}, x^{3}\right)$ on some $F \subset R^{3}$,

$$
q_{i}^{j}=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{2}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad S_{i}^{j}=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

Let ∇ be the connection of g. The following results have been obtained in [1]:

$$
\begin{equation*}
q^{3}=E ; \quad g(q x, q y)=g(x, y), \quad x, y \in \chi M \tag{3}
\end{equation*}
$$

(4)

$$
\nabla q=0 \quad \Leftrightarrow \quad \operatorname{grad} A=\operatorname{grad} B . S
$$

${ }^{*} 2000$ Mathematics Subject Classification: 53C15, 53B20.
Key words: Riemannian manifold, affinor structure, curvatures.
This work is partially supported by project RS09-FMI - 003 of the Scientific Research Fund, Paisii Hilendarski University of Plovdiv, Bulgaria.

$$
\begin{equation*}
0<B<A \quad \Rightarrow g \text { is possitively defined. } \tag{5}
\end{equation*}
$$

If M has a metric g from (1), affinor structures q and S from (2) and $\nabla q=0$, then we note for brevity that M is in the class V.

Now, we give an example of a manifold of this class. Let

$$
\begin{equation*}
A=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}, \quad B=x^{1} x^{2}+x^{2} x^{3}+x^{1} x^{3} \tag{6}
\end{equation*}
$$

be two functions of a point $p\left(x^{1}, x^{2}, x^{3}\right) \neq(x, x, x)$. Then, $A>B>0$ and

$$
g_{i j}=\left(\begin{array}{lll}
A & B & B \tag{7}\\
B & A & B \\
B & B & A
\end{array}\right)
$$

is positively defined. Also, we obtain $\operatorname{grad} A=\operatorname{grad} B . S$ which implies $\nabla q=0$. So, the manifold M with a metric g, defined by (6) and (7), and affinor structures q and S, defined by (2), is in the class V.

We denote $\tilde{q}_{j}^{s}=q_{a}^{s} q_{j}^{a}, \Phi_{j}^{s}=q_{j}^{s}+\tilde{q}_{j}^{s}$, and from (2) we have:

$$
\tilde{q}_{j}^{s}=\left(\begin{array}{ccc}
0 & 0 & 1 \tag{8}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \Phi_{j}^{s}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

2. Affine connections. Let M be in V. We denote $f_{i j}=g_{i k} q_{j}^{k}+g_{j k} q_{i}^{k}$, i.e.

$$
f_{i j}=\left(\begin{array}{ccc}
2 B & A+B & A+B \tag{9}\\
A+B & 2 B & A+B \\
A+B & A+B & 2 B
\end{array}\right)
$$

We calculate $\operatorname{det} f_{i j}=2(A-B)^{2}(A+2 B) \neq 0$, so f is a non-degenerated symmetric tensor field. Evidently, we have that $\nabla q=0$, which thank's to (2), (8) and (9), implies:

$$
\begin{equation*}
\nabla \tilde{q}=0, \quad \nabla f=0, \quad \nabla S=0, \quad \nabla \Phi=0 \tag{10}
\end{equation*}
$$

For later use, from (1) - (9), we find next identities:

$$
\begin{equation*}
\Phi_{j}^{s} g_{i s}=f_{j i}, \quad \Phi_{j}^{s} f_{i s}=2 g_{j i}+f_{j i}, \quad f_{j i} g^{i s}=\Phi_{j}^{s} \quad g_{j i} f^{i s}=\frac{1}{2} S_{j}^{s} \tag{11}
\end{equation*}
$$

Further, we suppose that α and β are two smooth functions in F, such that $\alpha \neq \beta$, $\alpha+2 \beta \neq 0$. Now, we construct the metric \bar{g} as follows

$$
\begin{equation*}
\bar{g}=\alpha . g+\beta . f . \tag{12}
\end{equation*}
$$

The local coordinates of \bar{g} are

$$
\bar{g}_{i j}=\left(\begin{array}{ccc}
\alpha A+2 \beta B & \beta A+(\alpha+\beta) B & \beta A+(\alpha+\beta) B \\
\beta A+(\alpha+\beta) B & \alpha A+2 \beta B & \beta A+(\alpha+\beta) B \\
\beta A+(\alpha+\beta) B & \beta A+(\alpha+\beta) B & \alpha A+2 \beta B
\end{array}\right) .
$$

Since $\operatorname{det} \bar{g}_{i j}=(\alpha-\beta)^{2}(A-B)^{2}(A+2 B)(\alpha+2 \beta) \neq 0, \bar{g}$ is a non-degenerated tensor field.

Let $\alpha>\beta>0$, then $\alpha A+2 \beta B>\beta A+(\alpha+\beta) B>0$. Analogously to (5) we state that \bar{g} is positively defined.

Let $\alpha=0, \beta \neq 0$.
(a) If $\beta>0$, then the main minors of the matrix $\bar{g}_{i j}$ are: $2 \beta B>0, \beta^{2}(B-A)(A+$ $3 B)<0,(-\beta)^{2}(A-B)^{2}(A+2 B) 2 \beta>0$. We state that \bar{g} is an indefinite metric.
(b) If $\beta<0$, then analogously to (a) we state that \bar{g} is an indefinite metric.

In [2] it is proved the next assertion:

Theorem 2.1. Let M be a manifold in V, g and \bar{g} be two metrics of M, related by (12). Let ∇ and $\bar{\nabla}$ be the corresponding connections of g and \bar{g}. Then, $\bar{\nabla} q=0$ if and only if, when

$$
\begin{equation*}
\operatorname{grad} \alpha=\operatorname{grad} \beta . S \tag{13}
\end{equation*}
$$

Let $\beta=0$ in (12). Then, we have

$$
\begin{equation*}
\bar{g}=\alpha . g \tag{14}
\end{equation*}
$$

The condition (14) defines the well-known conformal transformation in the Riemannian manifold M.

The general case, when $\alpha \neq 0, \beta \neq 0$ in (12), leads to very complex calculations and it will be an object of next investigations.

Now, we consider the case $\alpha=0$ in (12). We obtain

$$
\begin{equation*}
\bar{g}_{i j}=\beta . f_{i j} \tag{15}
\end{equation*}
$$

Then, from (13) we can get that $\bar{\nabla} q=0$ if and only if, when β is a constant. Further, we suppose $\bar{\nabla} q \neq 0$, i.e. β is not a constant. Thanks to (15) we get

$$
\begin{equation*}
\nabla_{k} \bar{g}_{i j}=\beta_{k} f_{i j}, \quad \beta_{k}=\nabla_{k} \beta \tag{16}
\end{equation*}
$$

We have the well-known identities:

$$
\begin{gather*}
\bar{\nabla}_{k} \bar{g}_{i j}=\partial_{k} \bar{g}_{i j}-\bar{\Gamma}_{k i}^{a} \bar{g}_{a j}-\bar{\Gamma}_{k j}^{a} \bar{g}_{a i}, \tag{17}\\
\nabla_{k} \bar{g}_{i j}=\partial_{k} \bar{g}_{i j}-\Gamma_{k i}^{a} \bar{g}_{a j}-\Gamma_{k j}^{a} \bar{g}_{a i}, \tag{18}\\
\bar{\nabla}_{k} \bar{g}_{i j}=0 \tag{19}
\end{gather*}
$$

$\frac{\text { Using (11), (16) }}{\bar{\nabla}}$ - (19), for the tensor $T_{i k}^{s}=\bar{\Gamma}_{k i}^{s}-\Gamma_{k i}^{s}$ of the affine deformation of ∇ and $\bar{\nabla}$ we find

$$
\begin{equation*}
T_{i k}^{s}=\beta_{k} \delta_{i}^{s}+\beta_{i} \delta_{k}^{s}-\frac{1}{2} \beta^{a} S_{a}^{s} f_{i k}, \quad \beta_{k} \sim \frac{\beta_{i}}{2 \beta} \tag{20}
\end{equation*}
$$

We have that $\bar{\nabla}_{i} q_{j}^{k}=\nabla_{i} q_{j}^{k}-\beta_{j} q_{i}^{k}+\tilde{\beta}_{j} \delta_{i}^{k}-\frac{1}{2} \beta^{a} S_{a}^{k} q_{j}^{t} f_{t i}+\frac{1}{2} \beta^{a} S_{a}^{t} q_{t}^{k} f_{i j}$.
Let R be the curvature tensor field of ∇. Let \bar{R} be the curvature tensor field of $\bar{\nabla}$. It is well-known the relation (see [3])

$$
\begin{equation*}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\nabla_{j} T_{i k}^{h}-\nabla_{k} T_{i j}^{h}+T_{i k}^{s} T_{s j}^{h}-T_{i j}^{s} T_{s k}^{h} \tag{21}
\end{equation*}
$$

From (20) and (21) after some calculations we obtain

$$
\begin{align*}
\bar{R}_{i j k}^{h} & =R_{i j k}^{h}+\delta_{k}^{h}\left(\nabla_{j} \beta_{i}-\beta_{i} \beta_{j}+\varphi f_{i j}\right)-\delta_{j}^{h}\left(\nabla_{k} \beta_{i}-\beta_{i} \beta_{k}+\varphi f_{i k}\right) \\
& +\frac{1}{2} f_{i j} S_{t}^{h}\left(\nabla_{k} \beta^{t}-\beta_{k} \beta^{t}\right)-\frac{1}{2} f_{i k} S_{t}^{h}\left(\nabla_{j} \beta^{t}-\beta_{j} \beta^{t}\right), \quad \varphi=\frac{1}{2} \beta^{t} \beta_{s} S_{t}^{s} \tag{22}
\end{align*}
$$

Theorem 2.2. Let M be in V, ∇ and $\bar{\nabla}$ be the Riemannian connections of g and \bar{g}, related by (15). If $\bar{\nabla}$ is a locally flat connection, then the curvature tensor field R of ∇ 178
is

$$
\begin{align*}
R(x, y, z, u) & =\frac{\tau}{6}[(2 g(x, u) g(y, z)-2 g(x, z) g(y, u) \\
& +(g(q x, u)+g(x, q u))(g(q y, z)+g(y, q z)) \tag{23}\\
& -(g(q x, z)+g(x, q z))(g(q y, u)+g(y, q u))]
\end{align*}
$$

where $x, y, z, u \in \chi M$.
Proof. We have $\bar{R}=0$. From (22) we find

$$
\begin{equation*}
R_{i j k}^{h}=\delta_{j}^{h} P_{k i}-\delta_{k}^{h} P_{i j}-f_{i j} Q_{k}^{h}+f_{i k} Q_{j}^{h}, \tag{24}
\end{equation*}
$$

where $P_{k i}=\nabla_{k} \beta_{i}-\beta_{i} \beta_{k}+\varphi f_{i k}, Q_{k}^{h}=\frac{1}{2} S_{t}^{h}\left(\nabla_{k} \beta^{t}-\beta_{k} \beta^{t}\right)$.
Now, we put $k=h$ in (24) and with the help of (11) we get

$$
\begin{equation*}
R_{i j}=-P_{i j}-\psi f_{i j}, \quad \psi=\frac{1}{2} S_{t}^{h} \nabla_{h} \beta^{t} . \tag{25}
\end{equation*}
$$

We note that $R_{i j}=R_{i j k}^{k}$ are the local coordinates of the Ricci tensor of ∇, also $\tau=R_{i j} g^{i j}$ and $\tau^{*}=R_{i j} f^{i j}$ are the first and the second scalar curvatures of M, respectively. The identity (25) implies

$$
\begin{equation*}
\tau^{*}=-2 \varphi-4 \psi . \tag{26}
\end{equation*}
$$

Using (11), we have that $Q_{k}^{h}=P_{k a} f^{a h}-\varphi \delta_{k}^{h}$, and from (25) we get

$$
\begin{equation*}
Q_{k}^{h}=-R_{k a} f^{a h}-(\psi+\varphi) \delta_{k}^{h} \tag{27}
\end{equation*}
$$

We substitute (25) - (27) in (24), and find

$$
\begin{equation*}
R_{i j k}^{h}=\delta_{k}^{h}\left(R_{i j}-\frac{\tau^{*}}{2} f_{i j}\right)-\delta_{j}^{h}\left(R_{k i}-\frac{\tau^{*}}{2} f_{k i}\right)+f_{i j} R_{k a} f^{a h}-f_{i k} R_{j a} f^{a h} \tag{28}
\end{equation*}
$$

From (28) and $R_{k}^{h}=R_{i j k}^{h} g^{i j}$ we have

$$
\begin{equation*}
2 R_{k}^{h}=\tau \delta_{k}^{h}+\frac{\tau^{*}}{2} \Phi_{k}^{h}-\Phi_{k}^{t} R_{t a} f^{a h} \tag{29}
\end{equation*}
$$

Now, we contract (29) with $f_{i h}$, and from identity $f_{i h} R_{k}^{h}=\Phi_{i}^{a} R_{k a}$ we obtain:

$$
2 \Phi_{i}^{a} R_{k a}=\left(\frac{\tau^{*}}{2}+\tau\right) f_{k i}+\tau^{*} g_{k i}-\Phi_{k}^{t} R_{t i}
$$

and

$$
2 \Phi_{k}^{a} R_{i a}=\left(\frac{\tau^{*}}{2}+\tau\right) f_{k i}+\tau^{*} g_{k i}-\Phi_{i}^{t} R_{t k}
$$

The last system of two equations implies

$$
\begin{equation*}
\Phi_{k}^{a} R_{i a}=\frac{1}{3}\left(\left(\frac{\tau^{*}}{2}+\tau\right) f_{k i}+\tau^{*} g_{k i}\right) . \tag{30}
\end{equation*}
$$

From (11) and (30) we find

$$
\begin{equation*}
\Phi_{k}^{a} R_{i a} f^{i j}=\frac{1}{3}\left(\left(\frac{\tau^{*}}{2}+\tau\right) \delta_{k}^{j}+\tau^{*} S_{k}^{j}\right) \tag{31}
\end{equation*}
$$

After substituting (31) in (29), we get

$$
R_{k}^{h}=\frac{\tau}{3} \delta_{k}^{h}+\frac{\tau^{*}}{6} \Phi_{k}^{h}
$$

and also

$$
\begin{equation*}
R_{k i}=\frac{\tau}{3} g_{k i}+\frac{\tau^{*}}{6} f_{k i}, \quad R_{k i} f^{i h}=\frac{\tau}{6} S_{k}^{h}+\frac{\tau^{*}}{6} \delta_{k}^{h} . \tag{32}
\end{equation*}
$$

From the last equations we find that

$$
\tau^{*}=-\tau
$$

That's why (32) becomes

$$
\begin{equation*}
R_{k i}=\frac{\tau}{6}\left(2 g_{k i}-f_{k i}\right), \quad R_{k i} f^{i h}=\frac{\tau}{6}\left(S_{k}^{h}-\delta_{k}^{h}\right) \tag{33}
\end{equation*}
$$

Finely we obtain:

$$
R_{i j k}^{h}=\frac{\tau}{6}\left(2 \delta_{k}^{h} g_{i j}-2 \delta_{j}^{h} g_{k i}+\left(\delta_{k}^{h}+S_{k}^{h}\right) f_{i j}-\left(\delta_{j}^{h}+S_{j}^{h}\right) f_{k i}\right)
$$

and

$$
R_{h i j k}=\frac{\tau}{6}\left(2 g_{k h} g_{i j}-2 g_{h j} g_{k i}+f_{k h} f_{i j}-f_{h j} f_{k i}\right)
$$

The last identity is equivalent to (23).
We note that $R_{i j k}^{h} \neq 0$, so ∇ isn't a locally flat connection.
Let p be a point in M and x, y be two linearly independent vectors in $T_{p} M$. It is known that

$$
\mu(x, y)=\frac{R(x, y, x, y)}{g(x, x) g(y, y)-g^{2}(x, y)}
$$

is the sectional curvature of the 2 -section $\{x, y\}$.
Corollary 2.3. Let M satisfy the conditions of Theorem 2.2. Let x be an arbitrary vector in $T_{p} M$, and φ be the angle between x and $q x$. Then, the sectional curvature of the 2-section $\{x, q x\}$ is

$$
\mu(x, q x)=-\frac{\tau}{6} \tan ^{2} \frac{\varphi}{2}, \quad \varphi \in\left(0, \frac{2 \pi}{3}\right)
$$

Corollary 2.4. Let M satisfy the conditions of Theorem 2.2. Then, the Ricci tensor of g is degenerated.

The proof follows from (33).
Note. Let $\{x, q x\}$ be a 2 -section and $g(x, q x)=0$. Then, $\mu(x, q x)=-\frac{\tau}{6}$.

REFERENCES

[1] G. Dzhelepov, I. Dokuzova, D. Razpopov. On a three dimensional Riemannian manifold with an additional structure. arXiv:math.DG/0905.0801.
[2] G. Dzhelepov, D. Razpopov, I. Dokuzova. Almost conformal transformation on Riemannian manifold with an additional structure. Proceedings of the Anniversary International Conference, Plovdiv, 2010, 125-128, arXiv:math.DG/1010.4975
[3] K. Yano. Differential geometry. New York, Pergamont press, 1965.

Iva Dokuzova
University of Plovdiv
Faculty of Mathematics and Informatics
Department of Geometry
236 Bulgaria Blvd
4003 Plovdiv, Bulgaria
e-mail: dokuzova@uni-plovdiv.bg
Dimitar Razpopov
Department of Mathematics and Physics
Agricultural University of Plovdiv
12, Mendeleev Blvd
4000 Plovdiv, Bulgaria
e-mail: drazpopov@qustyle.bg

ВЪРХУ АФИННИ СВЪРЗАНОСТИ В РИМАНОВО МНОГООБРАЗИЕ С ЦИРКУЛАНТНА МЕТРИКА И ДВЕ ЦИРКУЛАНТНИ АФИНОРНИ СТРУКТУРИ

Ива Р. Докузова, Димитър Р. Разпопов

В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика \bar{g} в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина \bar{R} породен от $\bar{g} ; 2$) тъждество за тензора на кривина R в случая, когато тензорът на кривина \bar{R} се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка $\{x, q x\}$ и скаларната кривина на M.

