MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2011 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 5–9, 2011

ON AFFINE CONNECTIONS IN A RIEMANNIAN MANIFOLD WITH A CIRCULANT METRIC AND TWO CIRCULANT AFFINOR STRUCTURES*

Iva Dokuzova, Dimitar Razpopov

In the present paper it is considered a class V of 3-dimensional Riemannian manifolds M with a metric g and two affinor tensors q and S. It is defined another metric \bar{g} in M. The local coordinates of all these tensors are circulant matrices. It is found: 1) a relation between curvature tensors R and \bar{R} of g and \bar{g} , respectively; 2) an identity of the curvature tensor R of g in the case when the curvature tensor \bar{R} vanishes; 3) a relation between the sectional curvature of a 2-section of the type $\{x,qx\}$ and the scalar curvature of M.

1. Introduction. In this paper we investigate the class V of manifolds admitting an additional structure q, such that it's cube degree is the identity. In the basic manifold M the metric g is positively defined and q is a parallel structure with respect to the affine connection ∇ of g. By g and q we construct another metric f which is non-degenerate. By f we obtain an affine connection $\overline{\nabla}$. Our main problem is to find a subclass of V, such that $\overline{\nabla}$ is a locally flat connection.

We consider a 3-dimensional Riemannian manifold M with a metric tensor g and two affinor tensors q and S such that: their local coordinates form circulant matrices. So these matrices are as follows:

(1)
$$g_{ij} = \begin{pmatrix} A & B & B \\ B & A & B \\ B & B & A \end{pmatrix}, \quad A > B > 0,$$

where A and B are smooth functions of a point $p(x^1, x^2, x^3)$ on some $F \subset \mathbb{R}^3$,

$$q_i^{\cdot j} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad S_i^j = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Let ∇ be the connection of g. The following results have been obtained in [1]:

(3)
$$q^3 = E; \quad g(qx, qy) = g(x, y), \quad x, y \in \chi M.$$

(4)
$$\nabla q = 0 \quad \Leftrightarrow \quad \operatorname{grad} A = \operatorname{grad} B.S.$$

^{*2000} Mathematics Subject Classification: 53C15, 53B20.

Key words: Riemannian manifold, affinor structure, curvatures.

This work is partially supported by project RS09 - FMI - 003 of the Scientific Research Fund, Paisii Hilendarski University of Plovdiv, Bulgaria.

(5)
$$0 < B < A \implies g$$
 is possitively defined.

If M has a metric g from (1), affinor structures q and S from (2) and $\nabla q = 0$, then we note for brevity that M is in the class V.

Now, we give an example of a manifold of this class. Let

(6)
$$A = (x^1)^2 + (x^2)^2 + (x^3)^2, \quad B = x^1 x^2 + x^2 x^3 + x^1 x^3,$$

be two functions of a point $p(x^1, x^2, x^3) \neq (x, x, x)$. Then, A > B > 0 and

(7)
$$g_{ij} = \begin{pmatrix} A & B & B \\ B & A & B \\ B & B & A \end{pmatrix}$$

is positively defined. Also, we obtain $\operatorname{grad} A = \operatorname{grad} B.S$ which implies $\nabla q = 0$. So, the manifold M with a metric g, defined by (6) and (7), and affinor structures q and S, defined by (2), is in the class V.

We denote $\tilde{q}_j^s = q_a^s q_j^a$, $\Phi_j^s = q_j^s + \tilde{q}_j^s$, and from (2) we have:

(8)
$$\tilde{q}_j^s = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \Phi_j^s = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

2. Affine connections. Let M be in V. We denote $f_{ij} = g_{ik}q_j^k + g_{jk}q_i^k$, i.e.

(9)
$$f_{ij} = \begin{pmatrix} 2B & A+B & A+B \\ A+B & 2B & A+B \\ A+B & A+B & 2B \end{pmatrix}.$$

We calculate det $f_{ij} = 2(A - B)^2(A + 2B) \neq 0$, so f is a non-degenerated symmetric tensor field. Evidently, we have that $\nabla q = 0$, which thank's to (2), (8) and (9), implies:

(10)
$$\nabla \tilde{q} = 0, \qquad \nabla f = 0, \qquad \nabla S = 0, \qquad \nabla \Phi = 0.$$

For later use, from (1) - (9), we find next identities:

(11)
$$\Phi_j^s g_{is} = f_{ji}, \qquad \Phi_j^s f_{is} = 2g_{ji} + f_{ji}, \qquad f_{ji} g^{is} = \Phi_j^s \qquad g_{ji} f^{is} = \frac{1}{2} S_j^s.$$

Further, we suppose that α and β are two smooth functions in F, such that $\alpha \neq \beta$, $\alpha + 2\beta \neq 0$. Now, we construct the metric \bar{g} as follows

$$\bar{g} = \alpha \cdot g + \beta \cdot f$$

The local coordinates of \bar{g} are

$$\bar{g}_{ij} = \begin{pmatrix} \alpha A + 2\beta B & \beta A + (\alpha + \beta)B & \beta A + (\alpha + \beta)B \\ \beta A + (\alpha + \beta)B & \alpha A + 2\beta B & \beta A + (\alpha + \beta)B \\ \beta A + (\alpha + \beta)B & \beta A + (\alpha + \beta)B & \alpha A + 2\beta B \end{pmatrix}.$$

Since det $\bar{g}_{ij} = (\alpha - \beta)^2 (A - B)^2 (A + 2B)(\alpha + 2\beta) \neq 0$, \bar{g} is a non-degenerated tensor field

Let $\alpha > \beta > 0$, then $\alpha A + 2\beta B > \beta A + (\alpha + \beta)B > 0$. Analogously to (5) we state that \overline{g} is positively defined.

Let $\alpha = 0, \beta \neq 0$.

- (a) If $\beta > 0$, then the main minors of the matrix \bar{g}_{ij} are: $2\beta B > 0$, $\beta^2(B-A)(A+3B) < 0$, $(-\beta)^2(A-B)^2(A+2B)2\beta > 0$. We state that \bar{g} is an indefinite metric.
 - (b) If $\beta < 0$, then analogously to (a) we state that \overline{g} is an indefinite metric.

In [2] it is proved the next assertion:

Theorem 2.1. Let M be a manifold in V, g and \bar{g} be two metrics of M, related by (12). Let ∇ and $\overline{\nabla}$ be the corresponding connections of g and \overline{g} . Then, $\overline{\nabla} g = 0$ if and only if, when

(13)
$$\operatorname{grad} \alpha = \operatorname{grad} \beta.S.$$

Let $\beta = 0$ in (12). Then, we have

$$\bar{g} = \alpha.g.$$

The condition (14) defines the well-known conformal transformation in the Riemannian manifold M.

The general case, when $\alpha \neq 0$, $\beta \neq 0$ in (12), leads to very complex calculations and it will be an object of next investigations.

Now, we consider the case $\alpha=0$ in (12). We obtain

$$\bar{g}_{ij} = \beta. f_{ij}.$$

Then, from (13) we can get that $\overline{\nabla}q=0$ if and only if, when β is a constant. Further, we suppose $\nabla q \neq 0$, i.e. β is not a constant. Thanks to (15) we get

(16)
$$\nabla_k \bar{g}_{ij} = \beta_k f_{ij}, \qquad \beta_k = \nabla_k \beta.$$

We have the well-known identities:

(17)
$$\overline{\nabla}_k \bar{g}_{ij} = \partial_k \bar{g}_{ij} - \overline{\Gamma}^a_{ki} \bar{g}_{aj} - \overline{\Gamma}^a_{kj} \bar{g}_{ai},$$

(18)
$$\nabla_k \bar{g}_{ij} = \partial_k \bar{g}_{ij} - \Gamma^a_{ki} \bar{g}_{aj} - \Gamma^a_{kj} \bar{g}_{ai},$$

$$(19) \overline{\nabla}_k \bar{q}_{ij} = 0.$$

Using (11), (16) – (19), for the tensor $T_{ik}^s = \overline{\Gamma}_{ki}^s - \Gamma_{ki}^s$ of the affine deformation of ∇ and $\overline{\nabla}$ we find

(20)
$$T_{ik}^{s} = \beta_k \delta_i^s + \beta_i \delta_k^s - \frac{1}{2} \beta^a S_a^s f_{ik}, \qquad \beta_k \sim \frac{\beta_i}{2\beta}.$$

We have that
$$\overline{\nabla}_i q_j^k = \nabla_i q_j^k - \beta_j q_i^k + \tilde{\beta}_j \delta_i^k - \frac{1}{2} \beta^a S_a^k q_j^t f_{ti} + \frac{1}{2} \beta^a S_a^t q_t^k f_{ij}$$
.

Let R be the curvature tensor field of ∇ . Let \overline{R} be the curvature tensor field of $\overline{\nabla}$. It is well-known the relation (see [3])

(21)
$$\overline{R}_{ijk}^h = R_{ijk}^h + \nabla_j T_{ik}^h - \nabla_k T_{ij}^h + T_{ik}^s T_{sj}^h - T_{ij}^s T_{sk}^h.$$
 From (20) and (21) after some calculations we obtain

(22)
$$\overline{R}_{ijk}^{h} = R_{ijk}^{h} + \delta_{k}^{h}(\nabla_{j}\beta_{i} - \beta_{i}\beta_{j} + \varphi f_{ij}) - \delta_{j}^{h}(\nabla_{k}\beta_{i} - \beta_{i}\beta_{k} + \varphi f_{ik}) + \frac{1}{2}f_{ij}S_{t}^{h}(\nabla_{k}\beta^{t} - \beta_{k}\beta^{t}) - \frac{1}{2}f_{ik}S_{t}^{h}(\nabla_{j}\beta^{t} - \beta_{j}\beta^{t}), \quad \varphi = \frac{1}{2}\beta^{t}\beta_{s}S_{t}^{s}.$$

Theorem 2.2. Let M be in V, ∇ and $\overline{\nabla}$ be the Riemannian connections of g and \overline{g} , related by (15). If $\overline{\nabla}$ is a locally flat connection, then the curvature tensor field R of ∇ 178

is

(23)
$$R(x,y,z,u) = \frac{\tau}{6} [(2g(x,u)g(y,z) - 2g(x,z)g(y,u) + (g(qx,u) + g(x,qu))(g(qy,z) + g(y,qz)) - (g(qx,z) + g(x,qz))(g(qy,u) + g(y,qu))],$$

where $x, y, z, u \in \chi M$.

Proof. We have $\overline{R} = 0$. From (22) we find

(24)
$$R_{ijk}^h = \delta_j^h P_{ki} - \delta_k^h P_{ij} - f_{ij} Q_k^h + f_{ik} Q_j^h,$$

where
$$P_{ki} = \nabla_k \beta_i - \beta_i \beta_k + \varphi f_{ik}$$
, $Q_k^h = \frac{1}{2} S_t^h (\nabla_k \beta^t - \beta_k \beta^t)$.

Now, we put k = h in (24) and with the help of (11) we get

(25)
$$R_{ij} = -P_{ij} - \psi f_{ij}, \qquad \psi = \frac{1}{2} S_t^h \nabla_h \beta^t.$$

We note that $R_{ij} = R_{ijk}^k$ are the local coordinates of the Ricci tensor of ∇ , also $\tau = R_{ij}g^{ij}$ and $\tau^* = R_{ij} f^{ij}$ are the first and the second scalar curvatures of M, respectively. The identity (25) implies

(26)
$$\tau^* = -2\varphi - 4\psi.$$

Using (11), we have that $Q_k^h = P_{ka}f^{ah} - \varphi \delta_k^h$, and from (25) we get (27) $Q_k^h = -R_{ka}f^{ah} - (\psi + \varphi)\delta_k^h.$

$$(27) Q_k^h = -R_{ka}f^{ah} - (\psi + \varphi)\delta_k^h$$

We substitute (25) - (27) in (24), and find

(28)
$$R_{ijk}^{h} = \delta_k^h \left(R_{ij} - \frac{\tau^*}{2} f_{ij} \right) - \delta_j^h \left(R_{ki} - \frac{\tau^*}{2} f_{ki} \right) + f_{ij} R_{ka} f^{ah} - f_{ik} R_{ja} f^{ah}.$$

From (28) and $R_k^h = R_{ijk}^h g^{ij}$ we have

(29)
$$2R_{k}^{h} = \tau \delta_{k}^{h} + \frac{\tau^{*}}{2} \Phi_{k}^{h} - \Phi_{k}^{t} R_{ta} f^{ah}.$$

Now, we contract (29) with f_{ih} , and from identity $f_{ih}R_k^h = \Phi_i^a R_{ka}$ we obtain:

$$2\Phi_i^a R_{ka} = \left(\frac{\tau^*}{2} + \tau\right) f_{ki} + \tau^* g_{ki} - \Phi_k^t R_{ti}$$

and

$$2\Phi_k^a R_{ia} = \left(\frac{\tau^*}{2} + \tau\right) f_{ki} + \tau^* g_{ki} - \Phi_i^t R_{tk}.$$

The last system of two equations implies

(30)
$$\Phi_k^a R_{ia} = \frac{1}{3} \left(\left(\frac{\tau^*}{2} + \tau \right) f_{ki} + \tau^* g_{ki} \right).$$

From (11) and (30) we find

(31)
$$\Phi_k^a R_{ia} f^{ij} = \frac{1}{3} \left(\left(\frac{\tau^*}{2} + \tau \right) \delta_k^j + \tau^* S_k^j \right).$$

After substituting (31) in (29), we get

$$R_k^h = \frac{\tau}{3}\delta_k^h + \frac{\tau^*}{6}\Phi_k^h,$$

and also

(32)
$$R_{ki} = \frac{\tau}{3} g_{ki} + \frac{\tau^*}{6} f_{ki}, \quad R_{ki} f^{ih} = \frac{\tau}{6} S_k^h + \frac{\tau^*}{6} \delta_k^h.$$

From the last equations we find that

$$\tau^* = -\tau.$$

That's why (32) becomes

(33)
$$R_{ki} = \frac{\tau}{6} (2g_{ki} - f_{ki}), \quad R_{ki} f^{ih} = \frac{\tau}{6} (S_k^h - \delta_k^h).$$

Finely we obtain

$$R_{ijk}^{h} = \frac{\tau}{6} (2\delta_{k}^{h} g_{ij} - 2\delta_{j}^{h} g_{ki} + (\delta_{k}^{h} + S_{k}^{h}) f_{ij} - (\delta_{j}^{h} + S_{j}^{h}) f_{ki})$$

and

$$R_{hijk} = \frac{\tau}{6} (2g_{kh}g_{ij} - 2g_{hj}g_{ki} + f_{kh}f_{ij} - f_{hj}f_{ki}).$$

The last identity is equivalent to (23).

We note that $R_{ijk}^h \neq 0$, so ∇ isn't a locally flat connection. \square

Let p be a point in M and x, y be two linearly independent vectors in T_pM . It is known that

$$\mu(x,y) = \frac{R(x,y,x,y)}{g(x,x)g(y,y) - g^{2}(x,y)}$$

is the sectional curvature of the 2-section $\{x, y\}$.

Corollary 2.3. Let M satisfy the conditions of Theorem 2.2. Let x be an arbitrary vector in T_pM , and φ be the angle between x and qx. Then, the sectional curvature of the 2-section $\{x, qx\}$ is

$$\mu(x,qx) = -\frac{\tau}{6} \tan^2 \frac{\varphi}{2}, \qquad \varphi \in (0,\frac{2\pi}{3}).$$

Corollary 2.4. Let M satisfy the conditions of Theorem 2.2. Then, the Ricci tensor of g is degenerated.

The proof follows from (33).

Note. Let $\{x,qx\}$ be a 2-section and g(x,qx)=0. Then, $\mu(x,qx)=-\frac{\tau}{6}$.

REFERENCES

- [1] G. DZHELEPOV, I. DOKUZOVA, D. RAZPOPOV. On a three dimensional Riemannian manifold with an additional structure. arXiv:math.DG/0905.0801.
- [2] G. DZHELEPOV, D. RAZPOPOV, I. DOKUZOVA. Almost conformal transformation on Riemannian manifold with an additional structure. Proceedings of the Anniversary International Conference, Plovdiv, 2010, 125–128, arXiv:math.DG/1010.4975
- [3] K. Yano. Differential geometry. New York, Pergamont press, 1965.

Iva Dokuzova
University of Plovdiv
Faculty of Mathematics and Informatics
Department of Geometry
236 Bulgaria Blvd
4003 Plovdiv, Bulgaria
e-mail: dokuzova@uni-plovdiv.bg

Dimitar Razpopov
Department of Mathematics and Physics
Agricultural University of Plovdiv
12, Mendeleev Blvd
4000 Plovdiv, Bulgaria
e-mail: drazpopov@qustyle.bg

ВЪРХУ АФИННИ СВЪРЗАНОСТИ В РИМАНОВО МНОГООБРАЗИЕ С ЦИРКУЛАНТНА МЕТРИКА И ДВЕ ЦИРКУЛАНТНИ АФИНОРНИ СТРУКТУРИ

Ива Р. Докузова, Димитър Р. Разпопов

В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика \bar{g} в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина \bar{R} породен от \bar{g} ; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина \bar{R} се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка $\{x,qx\}$ и скаларната кривина на M.