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Suppose that X is a compact metric space with dim X = n. Then for the n − 1
dimensional diameter dn−1(X) we have dn−1(X) > 0 and in the same time dn(X) = 0.
It follows now that X contains a minimal by inclusion closed subset Y for which
dn−1(Y ) = dn−1(X). Under these conditions Y is a Cantor manifold [7]. In this note
we prove that every such subspace Y is even a continuum V

n. Various consequences
are discussed.

1. Introduction. The theory of Cantor Manifolds developed from an initial effort to
give a rigorous description of a degree of connectedness of some basic objects. A typical
example in this attitude is the n-dimensional cube In (I = [0, 1]). In 1925, Urysohn
established that the n-dimensional cube cannot be separated by any (n− 2)-dimensional
closed subset. In other words, In is not a sum of two proper closed sets whose intersection
is at most (n − 2)-dimensional. In 1957, Alexadroff proved that In is even the so-called
continuum (V n).

Later various ways in establishing properties of connectedness of In are proposed,
namely, in 1969 by Wilkinson and in 1970 by Hadziivanov. They proved that In is not
a union of countable many propers closed sets whose pair-wise intersections are at most
(n−2)-dimensional. Finally we should note that there are various different results in this
direction. For example, using the classical theorem of Sierpinski, Urysohn have proved
that In is not cut by (n−2)-dimensional Gδ subsets. However, it is worthy of mentioning
that at present, it seems that the best description of a connectedness of In appears in
the concept of (V n)-continua.

A mandatory condition for a “good” class of Cantor Manifolds is that every n-
dimensional compact metric space X must contain a n-dimensional Cantor Manifold from
the corresponding class. There is various results concerning the above mentioned classes
[1], [2], [3], [6]. In [7] it is proved that if X is a compact metric finite dimensional space,
then X contains a Cantor Manifold Y with additional condition dn−1(Y ) = dn−1(X). In
this note we prove that X contains even a continuum V n Y with dn−1(Y ) = dn−1(X).

2. Basic concepts and definitions. Let ̺ be the metric of the compact space X .

Definition 2.1 For A ⊂ X the diameter of A is the number

diam(A) = sup{̺(x, y)|x, y ∈ A}.
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Next we recall some useful notions. Let U = {U1, U2, . . . , Um} be a finite family
of subsets of X . The order ordU of U is by definition the maximal number of ele-
ments of U , which intersection is nonempty. The measure meshU of U is the number
max{diam(Ui)| i = 1, 2, . . . , m}.

We call the set |U| =
⋃m

i=1
Ui the body of U . If |U| = X , then U is called a cover of

X . If in addition U consists of open sets then U shall be named open cover.

Definition 2.2.The closed set C is a partition in X between P and Q if X\C = U∪V ,
where U and V are open, U ⊃ P , V ⊃ Q and U ∩ V = ∅.

Definition 2.3. The n-dimensional diameter dn(X) of the metric space X is the
number inf{mesh(U)}, where U runs the set of all finite open covers of X with ord(U) ≤
n + 1.

Further let us recall that X is a Cantor n-Manifold (CM) [1] if dimX = n and there
is no a partition C in X with dimC ≤ n − 2.

X is called a Strongly Cantor Manifold (SCM) [6] if it is impossible to represent X

as
⋃∞

i=1
Fi, where Fi is closed for every i and

dim
⋃

i6=j

(Fi ∩ Fj) ≤ n − 2.

Definition 2.4. The subset L of X cuts X between P and Q , if for every closed
subset Y of X, which connects Y ∩ P and Y ∩ Q, we have Y ∩ L 6= ∅.

The space X is by definition a Mazurkiewitz Manifold (MM) if for every L ⊂ X which
cuts X one has dimL ≥ n − 1.

Definition 2.5. The space X is a continuum V n or Alexandroff Manifold (AM) if
for every pair of disjoint nonempty open sets A and B there exists ε > 0 such that
dn−2(C) ≥ ε for every partition C between A and B.

Sometimes we call that X is (n, ε)-connected between A and B. Note that it is
well-known that CM ⊂ SCM ⊂ MM ⊂ AM and every inclusion is strong.

3. Main theorem and corollaries.

Theorem 3.1. Let (X, ̺) be a compact metric space for which χ = dn−1(X) > 0,
dn(X) = 0 and for every proper closed subset Y of X one has dn−1(Y ) < χ. Then, X is
a continuum V n.

Proof. Choose an arbitrary disjoint pair of nonempty open sets A and B in X and
put XA = X \A and XB = X \B. In view of the fact that XA and XB are proper closed
subsets of X we should have dn−1(XA) < χ and dn−1(XB) < χ. That means one can
find two finite open covers UA of XA and UB of XB respectively for which ord(UA) ≤ n;
ord(UB) ≤ n and µA = mesh(UA) < χ; µB = mesh(UB) < χ.

Now suppose that for every ε > 0 the space X is not (n, ε)-connected between A and
B. In other words for every ε > 0 one can find some partition C in X between A and B

with dn−2(C) < ε.
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Furthermore, denote by λA and λB the Lebesgue numbers of UA and UB and choose
ε > 0 such that 2ε < min{λA, λB , χ − µA, χ − µB}.

Now let C be a partition between A and B for which dn−2(C) < ε and consider some
open cover UC of C with µC = mesh(UC) < ε and ord(UC) ≤ n − 2. Next it is easy to
see that one can take a refinement VC of a cover UC with ord(VC) = ord(UC) and such
that cl|VC | ⊂ |VC | (here cl means closure).

C was a partition, hence, X \C = YA ∪YB , where YA,B ⊃ A, B are open disjoint sets.
Then ZA = YA \ cl|VC | and ZB = YB \ cl|VC | are disjoint open subsets of X . Denote by
WB = VA|XB

and WA = VB|XA
the restrictions of the corresponding covers over the sets

XB and XA respectively. Clearly P = WA ∪ UC ∪WB is an open cover of X for which
meshP < min{ε + µA; ε + µB} < χ and because of the choice of ε it is easy to check that
P can be modified such that the order of P remains less than n. This contradicts to the
minimality of X . �

Corollary 3.1 ([2]). Every compact metric n-dimensional space X contains a conti-
nuum V n Y . Moreover, one can choose Y such that dn−1(Y ) = dn−1(X).

Proof. It follows by the Zorn lemma that the set of all subcompacta Z of X with
dn−1(Z) = dn−1(X) ordered by inclusion has a minimal element. �

Because V n continua are Cantor Manifolds in any other sense from the mentioned
above the results of [1], [6] and [5] can be obtained as corollaries (with some reinforce-
ment). For example every n-dimensional compact metric space X contains SCM subspace
Y with dn−1(Y ) = dn−1(X).
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МИНИМАЛНИ ПОПРОСТРАНСТВА С МАКСИМАЛНИ

РАЗМЕРНОСТНИ ДИАМЕТРИ

Владимир Тодоров

Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1-
мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато
dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността
на Лебег). От тук се получава, че X съдържа минимално по включване затво-
рено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от
това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че вся-
ко такова (минимално) подпространство Y е даже континуум V

n. Получени са
също така някои следствия.

222


