МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2011 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011 Proceedings of the Fortieth Jubilee Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 5–9, 2011

MINIMAL SUBSPACES WITH MAXIMAL DIMENSIOANAL DIAMETERS*

Vladimir Todorov

Suppose that X is a compact metric space with dim X = n. Then for the n-1 dimensional diameter $d_{n-1}(X)$ we have $d_{n-1}(X) > 0$ and in the same time $d_n(X) = 0$. It follows now that X contains a minimal by inclusion closed subset Y for which $d_{n-1}(Y) = d_{n-1}(X)$. Under these conditions Y is a Cantor manifold [7]. In this note we prove that every such subspace Y is even a continuum V^n . Various consequences are discussed.

1. Introduction. The theory of Cantor Manifolds developed from an initial effort to give a rigorous description of a degree of connectedness of some basic objects. A typical example in this attitude is the *n*-dimensional cube I^n (I = [0, 1]). In 1925, Urysohn established that the *n*-dimensional cube cannot be separated by any (n-2)-dimensional closed subset. In other words, I^n is not a sum of two proper closed sets whose intersection is at most (n-2)-dimensional. In 1957, Alexadroff proved that I^n is even the so-called continuum (V^n) .

Later various ways in establishing properties of connectedness of I^n are proposed, namely, in 1969 by Wilkinson and in 1970 by Hadziivanov. They proved that I^n is not a union of countable many propers closed sets whose pair-wise intersections are at most (n-2)-dimensional. Finally we should note that there are various different results in this direction. For example, using the classical theorem of Sierpinski, Urysohn have proved that I^n is not cut by (n-2)-dimensional G_{δ} subsets. However, it is worthy of mentioning that at present, it seems that the best description of a connectedness of I^n appears in the concept of (V^n) -continua.

A mandatory condition for a "good" class of Cantor Manifolds is that every *n*dimensional compact metric space X must contain a *n*-dimensional Cantor Manifold from the corresponding class. There is various results concerning the above mentioned classes [1], [2], [3], [6]. In [7] it is proved that if X is a compact metric finite dimensional space, then X contains a Cantor Manifold Y with additional condition $d_{n-1}(Y) = d_{n-1}(X)$. In this note we prove that X contains even a continuum V^n Y with $d_{n-1}(Y) = d_{n-1}(X)$.

2. Basic concepts and definitions. Let ρ be the metric of the compact space X.

Definition 2.1 For $A \subset X$ the diameter of A is the number

$$\operatorname{diam}(A) = \sup\{\varrho(x, y) | x, y \in A\}.$$

^{*}2000 Mathematics Subject Classification: 54H20.

Key words: Cantor Manifold, dimensional diameter.

Next we recall some useful notions. Let $\mathcal{U} = \{U_1, U_2, \ldots, U_m\}$ be a finite family of subsets of X. The order ord \mathcal{U} of \mathcal{U} is by definition the maximal number of elements of \mathcal{U} , which intersection is nonempty. The measure mesh \mathcal{U} of \mathcal{U} is the number max $\{\operatorname{diam}(U_i) | i = 1, 2, \ldots, m\}$.

We call the set $|\mathcal{U}| = \bigcup_{i=1}^{m} U_i$ the *body* of \mathcal{U} . If $|\mathcal{U}| = X$, then \mathcal{U} is called a cover of X. If in addition \mathcal{U} consists of open sets then \mathcal{U} shall be named open cover.

Definition 2.2. The closed set C is a partition in X between P and Q if $X \setminus C = U \cup V$, where U and V are open, $U \supset P$, $V \supset Q$ and $U \cap V = \emptyset$.

Definition 2.3. The n-dimensional diameter $d_n(X)$ of the metric space X is the number $\inf\{\operatorname{mesh}(\mathcal{U})\}$, where \mathcal{U} runs the set of all finite open covers of X with $\operatorname{ord}(\mathcal{U}) \leq n+1$.

Further let us recall that X is a Cantor n-Manifold (CM) [1] if dim X = n and there is no a partition C in X with dim $C \le n - 2$.

X is called a Strongly Cantor Manifold (SCM) [6] if it is impossible to represent X as $\bigcup_{i=1}^{\infty} F_i$, where F_i is closed for every *i* and

$$\dim \bigcup_{i \neq j} (F_i \cap F_j) \le n - 2.$$

Definition 2.4. The subset L of X cuts X between P and Q , if for every closed subset Y of X, which connects $Y \cap P$ and $Y \cap Q$, we have $Y \cap L \neq \emptyset$.

The space X is by definition a Mazurkiewitz Manifold (MM) if for every $L \subset X$ which cuts X one has dim $L \ge n - 1$.

Definition 2.5. The space X is a continuum V^n or Alexandroff Manifold (AM) if for every pair of disjoint nonempty open sets A and B there exists $\varepsilon > 0$ such that $d_{n-2}(C) \geq \varepsilon$ for every partition C between A and B.

Sometimes we call that X is (n, ε) -connected between A and B. Note that it is well-known that $CM \subset SCM \subset MM \subset AM$ and every inclusion is strong.

3. Main theorem and corollaries.

Theorem 3.1. Let (X, ϱ) be a compact metric space for which $\chi = d_{n-1}(X) > 0$, $d_n(X) = 0$ and for every proper closed subset Y of X one has $d_{n-1}(Y) < \chi$. Then, X is a continuum V^n .

Proof. Choose an arbitrary disjoint pair of nonempty open sets A and B in X and put $X_A = X \setminus A$ and $X_B = X \setminus B$. In view of the fact that X_A and X_B are proper closed subsets of X we should have $d_{n-1}(X_A) < \chi$ and $d_{n-1}(X_B) < \chi$. That means one can find two finite open covers \mathcal{U}_A of X_A and \mathcal{U}_B of X_B respectively for which $\operatorname{ord}(\mathcal{U}_A) \leq n$; $\operatorname{ord}(\mathcal{U}_B) \leq n$ and $\mu_A = \operatorname{mesh}(\mathcal{U}_A) < \chi$; $\mu_B = \operatorname{mesh}(\mathcal{U}_B) < \chi$.

Now suppose that for every $\varepsilon > 0$ the space X is not (n, ε) -connected between A and B. In other words for every $\varepsilon > 0$ one can find some partition C in X between A and B with $d_{n-2}(C) < \varepsilon$.

220

Furthermore, denote by λ_A and λ_B the Lebesgue numbers of \mathcal{U}_A and \mathcal{U}_B and choose $\varepsilon > 0$ such that $2\varepsilon < \min\{\lambda_A, \lambda_B, \chi - \mu_A, \chi - \mu_B\}$.

Now let C be a partition between A and B for which $d_{n-2}(C) < \varepsilon$ and consider some open cover \mathcal{U}_C of C with $\mu_C = \operatorname{mesh}(\mathcal{U}_C) < \varepsilon$ and $\operatorname{ord}(\mathcal{U}_C) \leq n-2$. Next it is easy to see that one can take a refinement \mathcal{V}_C of a cover \mathcal{U}_C with $\operatorname{ord}(\mathcal{V}_C) = \operatorname{ord}(\mathcal{U}_C)$ and such that $cl|\mathcal{V}_C| \subset |\mathcal{V}_C|$ (here cl means closure).

C was a partition, hence, $X \setminus C = Y_A \cup Y_B$, where $Y_{A,B} \supset A$, B are open disjoint sets. Then $Z_A = Y_A \setminus cl |\mathcal{V}_C|$ and $Z_B = Y_B \setminus cl |\mathcal{V}_C|$ are disjoint open subsets of X. Denote by $\mathcal{W}_B = \mathcal{V}_A|_{X_B}$ and $\mathcal{W}_A = \mathcal{V}_B|_{X_A}$ the restrictions of the corresponding covers over the sets X_B and X_A respectively. Clearly $\mathcal{P} = \mathcal{W}_A \cup \mathcal{U}_C \cup \mathcal{W}_B$ is an open cover of X for which mesh $\mathcal{P} < \min\{\varepsilon + \mu_A; \varepsilon + \mu_B\} < \chi$ and because of the choice of ε it is easy to check that \mathcal{P} can be modified such that the order of \mathcal{P} remains less than n. This contradicts to the minimality of X. \Box

Corollary 3.1 ([2]). Every compact metric n-dimensional space X contains a continuum $V^n Y$. Moreover, one can choose Y such that $d_{n-1}(Y) = d_{n-1}(X)$.

Proof. It follows by the Zorn lemma that the set of all subcompacta Z of X with $d_{n-1}(Z) = d_{n-1}(X)$ ordered by inclusion has a minimal element. \Box

Because V^n continua are Cantor Manifolds in any other sense from the mentioned above the results of [1], [6] and [5] can be obtained as corollaries (with some reinforcement). For example every *n*-dimensional compact metric space X contains SCM subspace Y with $d_{n-1}(Y) = d_{n-1}(X)$.

REFERENCES

- P. S. URYSOHN. Memoire sur les multiplicites Cantoriennes (I). Fundam. Math., 7 (1925), 30–139.
- [2] P. S. ALEXANDROFF. Die Kontinua (V^p)-eine Verschärfung der Cantorshen Mannigfaltigkeiten. Monatsh. Math., 61 (1957), H. 1, 67–76.
- [3] J. B. WILKINSON. A lower bound for the dimension of certain G_{δ} sets in completely normal spaces. *Proc. Amer. Math. Soc.*, **20**, (1969) 175–178.
- [4] N. HADJIIVANOV. The *n*-dimensional cube can not be represented as a sum of contable many proper closed sets which pair-wise intersections are at most (n 2)-dimensional. *Compt. Rend. Acad. Sci. of USSR*, **195** (1970), No 1, 43–45 (in Russian).
- [5] N. HADJIIVANOV, V. TODOROV. On non-Euclideam manifolds. Compt. Rend. Bul. Acad. Sci., 33 (1980), No 4, 449–452 (in Russian).
- [6] N. G. HADZIIVANOV. On Cantor manifolds. Compt. Rend. Bulg. Acad. Sci., 31 (1978), No 7, 941–944 (in Russian).
- [7] N. HADZIIVANOV, V. TODOROV. On dimensional components of compact spaces. Compt. Rend. Bulg. Acad. Sci., 33 (1980), No 11, 1433–1435.

V. T. Todorov Department of Mathematics UACEG, 1 Hr. Smirnenski Blvd 1046 Sofia, Bulgaria e-mail: vttp@yahoo.com, vttfte@uacg.bg

МИНИМАЛНИ ПОПРОСТРАНСТВА С МАКСИМАЛНИ РАЗМЕРНОСТНИ ДИАМЕТРИ

Владимир Тодоров

Нека X е компактно метрично пространство с dim X = n. Тогава за n - 1-мерния диаметър $d_{n-1}(X)$ на X е изпълнено неравенството $d_{n-1}(X) > 0$, докато $d_n(X) = 0$ (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y, за което $d_{n-1}(Y) = d_{n-1}(X)$. Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n . Получени са също така някои следствия.